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CMB physics



CMB: where and when and how
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Opacity: A = (n o )" « H

Decoupling: A = H'
Free streaming: A » H i
Cosmological expansion,

constants and baryon

abundance conspire to

activate  decoupling  about
300000 years after the Big
Bang, at about 3000 K photon
temperature

> Expansion and the metric

perturbations affect all We can only see
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CMB: where, when and how

Baccigalupi 1999

Opacity: A = (n o )" « H
Decoupling: A = H

Free streaming: A » H'
Cosmological expansion,
constants and baryon
abundance conspire to

activate  decoupling  about
300000 years after the Big

Bang, at about 3000 K photon
temperature

Expansion and the metric
perturbations affect all
cosmological species

The CMB is a snapshot of
cosmologicall perturbations in
the photon component only

<>

Animation from the NASA WMAP team



CMB physics: Boltizmann equation

d photons

= metric + Compton scattering
oli

d baryons+leptons

= metric + Compton scattering
ol



CMB physics: Boltizmann equation

d neutrinos

= metric + weall 11
dt
d dark matter

= metric + weal interaction (7)

ol

metric = photons + neutrinos + baryons + leptons + dark matter



CMB physics: metric
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Compton scattering IS
anisotropic

An anisotropic Incident
Intensity determines a
linear polarization in the
outgoing radiation

At decoupling that
happens due to the finite
width of last scattering
and the cosmological
local quadrupole

.

CMB Physics: Compton scattering

Hu’s animation
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CMB' anisotropy.
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CIMIB anisotropy: 1ensing




Forming structures - lenses

Seljak & Zaldarriaga 1998



acceleration




Status of C\VIB observations



CMB anisotropies

T(n), Q(n), U(n), V(n)

spherical
harmonics

T = B
d Ik d Im? d Im

information
compression

C=2, (aImT’E’B)(aImT’E’B)*/Z(I-l'’I )




CNMB angular power spectrum
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CNMB angular power spectrum

Acoustic oscillations
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WMAP first year
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WIMAP third year
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CNMB angular power spectrum
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Cosmological concordance model

74% Dark Energy




Cosmological concordance model

74% Dark Energy
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CNMB anisotropy: statistics: unknown,
probably still hiaden by systematlcs

> Evidence for North south
asymmetry (Hansen et al.
40[0}5)

> Evidence for Bianchi models
(Jaffe et al. 2006)

> Poor constraints on inflation,
the error is about 100 times the
predicted deviations  from
Gaussianity (Komatsu et al.
2003)

> Lensing detection out of reach
or marginal, see smith et al. for
a 3.40 detection correlating
WMAP and NVSS galaxies

.



Other cosmological backgrounds?

> Neutrinos: abundance comparable to
photons ©, decoupling at MeV ©, cold as
photons ®, weak interaction ®

> Gravity waves: decoupling at Planck
energy ©, abundance unknown O,
gravitational interaction ®

> Morale: insist with the CMB, still for many
years...that's the best we have for long...



Forthcoming CMB' polarization probes

> Planck

> EBEx (US, collaborators in
France, lItaly, UK), baloon,
same launch time scale as
Planck for the north american
flight
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» SPIDER (US, ...)

> QUIET (US, UK), ground
based

> Clover (UK, ...)

> Brain g

> ... 3

~ Complete list available at [B
lambda.gsfc.nasa.gov. o

> Time scale: approximately one

1000 2000 3000

year for test launches =




Cosmic vision beyond Einstein

: ‘ Cosm‘ic vision program Iogio
> NASA and ESA put out kTR R S e
separate calls of opportunity EAPRAIecs” Y
for a polarization oriented Tl ., : |
future (2020 or so) CMB
satellite

> Technologies, design, options
for joint or separate missions
are Iin proposals which have
been submitted in these weeks

> Promises: gravity waves,
lensing and high redshift dark
energy, inflationary non-
Gaussianity

Beyond einstein logo

o



Challenges for future CMB



Challenges for future CNMB

Jarosik et al. 2006
. -’

> The sensitivity can be
Increases with the
detector number ©

> The systematics from the
Instrument must be
controlled at the level of
the signal ®

> The emission from
foregrounds may cover
the B signal over the all
sky, at all frequency ®

C)




Challenges for future CMB:
systematics from beam shape

> Asymmetric beams
cause unwanted
polarization from total
Intensity, leakage of E
modes into B, ...

> No way to circularize
the beams, rather the
beam shape has to
be reconstructed In
flight to subtract the
bias from the signal

<




Challenges for future CMB:
foreground emission

ennett et al. 2006

s
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> In  total Intensity, at
frequencies between 60
and 90 GHz, after cutting
out the brighest part of |
the Galactic emission, the
sky is dominated by CMB



Challenges for future CMB:
foreground emission

: Bennett et al. 2006

> In  total Intensity, at

frequencies between 60
and 90 GHz, after cutting
out the brighest part of
the Galactic emission, the
sky is dominated by CMB

In polarization, at
frequencies between 60
and 90 GHz, after cutting
out the brighest part of
the Galactic emission, the
sky is dominated by CMB

—
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Page et al. 2006



Challenges for future CMB:
foreground emission

Bennett et al. 2006

> In  total Intensity, at
frequencies between 60
and 90 GHz, after cutting
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Challenges for future CMB:
foreground emission

simulated signal outside P06, 30, 44, Y0 and 100 GHz
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Are there foreground clean regions
at all in polarization

Page et al. 2006

> WMAP has no detection
In large sky areas In
polarization

> \Very naive estimates may
be attempted In those
areas, indicating that the
foreground level might be
comparable to the
cosmological B' mode at
all frequencies, in all sky
regions




Living with foregrounds:
component separation




Living with foregrounds:
component separation
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Living with foregrounds:
component separation

x = As+n

Invert for s!



Living with foregrounds:
component separation

x = As+n

Non-blind approach: use prior knowledge on A and s in order to stabilize the
inversion, likely to be suitable for total intensity

Blind approach: do not assume any prior either on A or s, likely to be used in
polarization

Parametrization: introduce extra cosmological parameters” parametrizing the
foreground unknowns, and fit the data with those in, marginalizing afterwards,
prosmising results in total intensity, to be tested in polarization

Relevant literature from Brandt et al. 1994, to Maino et al. 2006, successful
applications to COBE, BEAST, WMAP



Component separation in polarization

> Component separation studies how to
separate CMB and foregrounds in
astrophysical multi-frequency observations

> The Iindependent component analysis
exploits the statistical differences between
the almost Gaussian CMB and the strongly
non-Gaussian foregrounds

> Results are encouraging, although obtained
so far without instrumental systematics
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The science goals of the
Planck satellite

Source: Planck scientific program bluebook,
available at www.rssd.esa.int/Planck



Planck

> Hardware: third generation
CMB probe, ESA medium
size mission, NASA (JPL,
Pasadena) contribution

> Software from 400
collaboration members In
EU and US

> Iwo data processing
centers (DPCs): Paris +
Cambridge (laP + IoA),
Trieste (OAT + SISSA)
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Planck data deliverables

All sky maps in total
iIntensity and polarization,
at 9 frequencies between
30'and 857 GHz

Angular resolution from
33" to 7’ between 30 and

143 GHz, 5 at higher
frequencies

S/N = 10 for CMB in total
iIntensity, per resolution
element

Catalogues with tens of
thousands o) f extra-
Galactic sources

PLANCK GALAXY SURVEYS

FREQUENCY [GHz|

43 17 B 50

Confusion limit mJy. 3] ... 63 141 M7 112

Planck All Sky
Planck Deep S

Number of galaxies jall sky]...................
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Planck scientific deliverables: CMB
total intensity and the era of imaging

residual (uk’)
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Planck and polarizationi CMB B modes




Planck scientific deliverables:
cosmological parameters
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Non-CMB Planck scientific deliverables

> IThousands of galaxy clusters

> lens of thousands of radio and infrared
extra-Galactic sources

> I'emplates for the diffuse gas in the
Galaxy, from 30 to 857 GHz

> ...



>

>

Conclusions

The CMB will'be the best signal from the early universe
for long

We have some knowledge of the two point correlation
function, but most of the signal is presently unknown

If detected, the hidden signatures might reveal mysteries

for phySICS like gravitational waves, or the machanism of
cosmic acceleration

We don't know if we will ever see those things,
systematics and foregrounds might prevent that

But we've no other way to get close to the Big Bang, so
let’s go for it and see how far we can go

First go/no go criteria from Planck and other probes: in
just a few years, possible scenarios...



®

> Polarized foreground too
Intense, no sufficient
cleaning, systematics out
of control

> Increase by one digit the
cosmological parameters
measurement, mostly
from Improvements in
total Intensity
measurements

> Time scale: few years String theorist

_/
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Modest or controllable
foreground emission,
systematics under control

Cosmological gravity waves
discovered from CMB B
modes! Expected precision
down to one thousandth of the
scalar amplitude

Percent measurement of the
dark energy abundance at the
onset of acceleration, from
CMB lensing

Time scale: from a few to 20
years

>

String theorist

Cosmological
tensors
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