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Φίλος μὲν Σοκράτης,

ἀλλὰ φιλτέρα ἀλήθεια.

— Ἀριστοτέλης

When the beard is black, take the reasoning, ignore conclusions.
When gray, take both reasoning and conclusions.

When white, just conclusions.

— Nassim Nicholas Taleb
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S O M M A R I O

La conducibilità termica κ descrive come un materiale conduce il calore,
ovvero come l’energia di un sistema fluisce in risposta ad un gradiente di
temperatura. La computazione numerica della conducibilità termica richie-
de lunghe simulazioni di dinamica molecolare e grande precisione nel cal-
colo delle interazioni fra le particelle costituenti il sistema. MB-pol è un mo-
dello classico a molti corpi introdotto recentemente, che descrive con grande
accuratezza la complicata chimica-fisica dell’acqua, dallo stato solido a quel-
lo gassoso. In questa tesi viene implementato per la prima volta il calcolo del
flusso di calore del modello MB-pol per studiarne la conducibilità termica
mediante la dinamica molecolare d’equilibrio e la teoria della risposta linea-
re di Green-Kubo. I dati vengono analizzati mediante la moderna tecnica
dell’analisi cepstrale.

A B S T R A C T

The thermal conductivity κ describes how a material conducts heat, i.e.
how the energy in the system flows in response to a temperature gradi-
ent. The numerical computation of the thermal conductivity of a material
requires long molecular dynamics simulations and high accuracy in the cal-
culation of the interactions among the particles that constitute the system.
MB-pol is a recently introduced many-body classical model, which describes
with great accuracy the complex physical-chemistry of water, from the solid
to the gaseous phase. In this thesis the calculation of the heat flux of MB-pol
is implemented for the first time to study the thermal conductivity of the
model via Equilibrium Molecular Dynamics and the Green-Kubo linear re-
sponse theory. Data are treated via the modern technique of cepstral analysis.
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I N T R O D U C T I O N

Heat flows from hot to cold as time flows from the past to the future.
This is the defining feature of the arrow of time, and a blueprint of
the second law of thermodynamics. As the principle which it lays

upon, heat transfer is ubiquitous in the physical sciences, from the micro-
scopic quantum systems to planetary science. In fact, heat flow determines
the internal temperature distribution of a body and the way it dissipates en-
ergy; hence, understanding heat transport sheds light on the life and death
of stars and planets, the thermal stability of complex systems like living or-
ganisms, the efficiency and working conditions of electronic and mechanical
tools down to the energy dissipation mechanisms in nano-scale devices that
are massively developed nowadays at the industrial level. Mechanisms of heat transfer

The three mechanisms by which heat flows are convection, radiation and
diffusion:

• Convection is the transport of heat due to the movement of fluids. It
only occurs in liquids and gases, in which mass can flow easily and, in
geological time scales, in viscous solids such as the Earth mantle;

• Thermal radiation is the electromagnetic radiation generated by the ther-
mal motion of charged particles in matter. The presence of accelerating
charges and dipoles in a piece of matter produces an electromagnetic
field that carries energy away from the system. Another point of view
is to see the phenomenon as the transport of energy due to photons off
the surface of a system, making it mostly a surface effect;

• Diffusive conduction is the energy transported by the collective arrange-
ment of the elementary constituents of a physical system, i.e. atoms
and, in the case of metals, conduction electrons. This form of heat
transport is always present in interacting systems.

While in fluids the overall heat transport properties are due to both con-
duction and convection, in bulk solids conduction alone is responsible for
any heat transfer. A prominent example of an area in which these issues are
of great importance comes from technology: integrated electronics, where
power dissipation issues limit the performance of devices of any dimension,
from mobile phones that fit in the pocket to massive data centers that oc-
cupy entire portions of a city. In nano-scale electronics, for example, the aim
to build smaller and smaller components and keep up with Moore’s Law Moore’s Law states that the

number of transistors in
integrated electronic circuits
doubles every two years.

lead to the pursuit of well conducting materials that dissipate heat quickly.
On the other hand, the industry of heat shielding or refrigeration looks for
materials that do not disperse heat, i.e. that are bad conductors.

In the field of planetary science, the three effects that lead to heat trans-
fer may coexist but, while convection is thought to be the most important
mechanism in the cases of interest, the heat transfer among homogeneous
convecting sectors of a physical system is completely due to thermal diffu-
sion. Therefore, a solid grasp on the mechanism of thermal diffusion is of

ix
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paramount importance both for its technological applications and from the
perspective of fundamental science alone.The origin of heat conduction

The mathematical description of heat transport originates in 1811, when
Joseph Fourier proposed a phenomenological law to fit some experiments
regarding the conduction of heat in common materials, whose modern for-
mulation reads:

Jq = −κ∇T .

The heat flux Jq is a vector which describes the non-convective component
of the flow of energy across a surface element per unit time due to a tem-
perature gradient ∇T . The computation of the heat flux requires a suitable
definition of the energy density, i.e. a local description of how the energy be-
haves. The quantity κ is the thermal conductivity, and it is the fundamental
property that encompasses the macroscopic phenomenon of heat conduction.
The whole problem of describing and predicting the thermal properties of
a material can be distilled to the issue of computing the thermal conductiv-
ity. In insulating crystalline solids well away from the melting point heat
conduction is determined by the dynamics of the atomic nuclei, with the
electrons following adiabatically in the ground-state. This dynamics is well
described by the Boltzmann transport equation in a quasi-harmonic approx-
imation but, when temperature increases, anharmonicities arise and break
down this simplified picture.The modern approach to the

computation of heat
conductivity

The simulation of thermal transport in high temperature crystals, dis-
ordered glassy systems and liquids requires a different and more general
picture: the theory of hydrodynamic fluctuations, together with the Green-
Kubo theory of linear response. The main result concerning heat transport
theory within this approach is a formula to compute the conductivity κ from
the equilibrium time-correlations of the heat flux Jq:

κ ∝
∫ ∞

0

⟨
Jq(t) · Jq(0)

⟩
d t,

where the angle brackets denote an ensemble average over initial conditions.
Such quantities are, in principle, accessible in Molecular Dynamics simula-
tions; since the advent of computation as a powerful tool in the hands of
physicists, it has been widely used to carry out numerical experiments and
predictions of the thermal conductivity of materials. Despite being intu-
itively easy to grasp, thermal conductivity has proven to be difficult to com-
pute, since very long molecular dynamics trajectories are needed to collect
sufficient statistics and obtain satisfying results. The Green-Kubo approach
is widely used for simple classical systems, where low-computational cost
inter-atomic potentials are available and it is viable to produce long simula-
tions with many particles.Gauge invariance and a

revived enthusiasm towards
heat transport theory

For ab initio liquids and disordered systems, the Green-Kubo method was
thought to be ill-defined, due to the impossibility to decompose the total en-
ergy of a system into atomic contributions from a first-principle perspective.
Recent works on the topic, e.g. Marcolongo et al., 2015, exposed that even in
a classical picture the same indeterminacy is present but, nevertheless, this
ill-definiteness at the microscopic level has no consequence on the macro-
scopic and measurable property, i.e. the thermal conductivity: there exists a
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gauge invariance on the functional form of the heat flux that does not affect
κ. This remarkable result has renewed the interest in the theory of thermal
transport, and stimulated the research of affordable ways to compute the
conductivity from molecular dynamics simulations enhanced with Density
Functional Theory (DFT), one of the most valid schemes to handle ab initio
computation of the properties of materials. The relatively short simulations
produced with these expensive techniques require appropriate care to be
dealt with efficiently. The struggle to exploit the data in the most extensive
manner has blossomed into the state-of-the-art of the statistical analysis of
heat flux times-series: cepstral analysis [Ercole, Marcolongo, et al., 2017]. This
approach has proven to be able to reduce considerably the cost of computing
the heat conductivity using the Green-Kubo machinery. Water: a pervasive substance

that keeps surprisingA substance which is not easy to model is water. Despite having a fairly
simple chemical structure, water properties are non-trivial and still nowa-
days not completely understood. In fact, water presents many peculiar prop-
erties that are so uncommon to be classified as anomalies. The most paradig-
matic example is water density: in contrast with simple liquids, whose den-
sity decreases monotonically when temperature increases, water density is
maximum at about 4◦C and drops for smaller temperatures. When water
solidifies, the hydrogen bond structure prevents the molecules from pack-
ing too closely, and density is even lower: this feature allows ice to float on
liquid water instead of sinking, a necessary condition for water-based life
on Earth. The other way around would make the ocean floor an immense
inhospitable glacier, where microscopic primordial organisms would have
never proliferated. Other distinctive departures from the usual behavior of
simple liquids are the functional dependence on temperature of thermody-
namic susceptibilities, for instance: specific heat, isothermal compressibility
and thermal expansion coefficient. The former two increase dramatically be-
low a specific temperature, while the latter decreases; in contrast, in a simple
liquid they would increase linearly. On top of these properties, that regard
the most common physical states of this substance, under extreme thermo-
dynamics conditions water may behave in interesting ways: in giant planets’
core, where pressure and temperature are huge, water is thought to be in
the superionic phase, i.e. a ionic compound of oxygens and hydrogens that
was theoretically predicted by numerical simulations and that has now some
experimental evidence [Millot et al., 2018]. An intricate network of

hydrogen bonds molds the
structure and behavior of
bulk water

The complex properties of water are mainly due to the intricate network
of hydrogen bonds1 that form between molecules. The hydrogen bond is the
attraction between the electronegative oxygen atom and a hydrogen atom. It
is due to the dipole-dipole interaction, but it is firmly directional like a co-
valent bond. This type of bond is fairly strong (≈ 20kJ/mol), if compared
to Van der Waals forces (≈ 1kJ/mol). A hydrogen atom attached to the oxy-
gen in another molecule is the donor of the bond, while the oxygen atom
is the acceptor. A molecule can host both donor and acceptor, thus promot-
ing the formation of hydrogen bond structures. Moreover, hydrogen bonds
have a cooperative nature: when two water molecules participate in a hydro-
gen bond, the subsequent redistribution of charge is such that the acceptor

1 This is true at sub-critical conditions, i.e. at temperatures under 647K and pressure under
218atm. Above the critical point, hydrogen bonds are less important.



xii introduction

becomes a better donor for another molecule. The concerted action of the
water molecules driven by hydrogen bonds emerges in all its splendor in the
most common form of ice: hexagonal ice Ih. However, even the liquid state
is influenced by the incessant formation and dissolution of hydrogen bonds,
whose lifetime is of ≈ 1ps at room temperature.

The relevance of water for humanity cannot be stressed enough: it is the
fundamental requirement for the existence of life as we know it. For its ut-
termost importance, the study of the physical properties of water has been,
and currently is, a very active field of research. The will to simulate unbi-
asedly the properties of materials in a wide range of physical conditions,
e.g. pressure and temperature, spurs to pursue the way of quantum simu-
lations that, being first principle calculations, do not rely upon macroscopic
approximations like classical potentials. Density Functional Theory, while
making accessible the computation of bulk properties of material, is not the
most accurate tool to simulate the correlated nature of the hydrogen bonds.
Instead, Quantum Chemistry methods such as Coupled-Cluster (CC) calcu-
lations allow to obtain very precise quantum-mechanical forces among small
clusters of molecules. Extended simulations with many molecules are stillAtomistic simulations are

among the preferred ways to
investigate complex system

made of microscopic
constituents

too expensive: the preferred route is to elaborate a classical model, whose
equation of motion are of far easier resolution, that mimics the quantum
behavior of desired system. This is the field of atomistic simulations, where
the constituents are point atoms, molecules or ions whose interactions are
described via so-called force-fields, i.e. the functional form and the set of
parameters used to compute the potential energy of a system of interacting
particles. The aim is to keep the computational costs low, while at the same
time exploiting the accuracy of quantum-mechanical calculations.

In the case of water, there have appeared a myriad of different models:
from coarse grained descriptions of bare molecules, to atomically resolved
rigid molecules, to sophisticated flexible models that account for polariza-
tion. Nonetheless, it is difficult to find a model able to reproduce the
plethora of strange properties of water. A recently developed model called
MB-pol has proven to be very accurate in the description of water properties
from the gaseous to the condensed phases [Reddy et al., 2016]. While many
models are designed to fit a particular property of water, or a few proper-
ties, MB-pol aspires to universality. It is one of the few models that correctly
describe the density anomaly of water and other bulk properties and, at the
same time, cluster structure and energies or the properties of crystalline and
amorphous ice. The cost for its astounding accuracy is the great complex-
ity of the analytical form of the potential energy, which involve many-body
terms and the self-consistent computation of molecular polarization. A fea-
ture that is currently lacking in its implementation is the computation of the
heat flux Jq, the fundamental ingredient to determine the thermal conduc-
tivity κ. The heat flux requires the distribution of the total energy and the
forces among the atoms in the system: an easy task in weakly interacting
materials, when the configurational energy is modeled through pair poten-
tials like Lennard-Jones, but a complicated and not completely settled issue
in the presence of many-body forces.

The purpose of this thesis is to compute for the first time the thermal
conductivity of the MB-pol water model in the liquid state. This requires
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the implementation of a computer code to calculate the heat flux for this
model, to perform Molecular Dynamics simulations to gather the time-series
of values of the heat flux, and to analyze its fluctuations to obtain the value
of κ. The ability to compute the heat flux will open the way to perform more
advanced and useful calculations such as the conductivity of the various
phases of ice, that are also very well described by MB-pol, and of water
under extreme thermodynamic conditions.

This thesis is structured as follows:

in the first chapter the heat transport theory will be reviewed, from the
hydrodynamic theory to the Green-Kubo formula of heat conductivity;
the gauge invariance of thermal conductivity will be discussed.

the second chapter regards how the MB-pol water model is structured.

in the third chapter, after a brief review of some topics in statistics, the
main techniques used to analyze the data obtained from the numerical
simulations are presented.

the fourth chapter covers the code implementation of the heat flux for-
mula for the MB-pol model into the MD package DL_POLY.

in the fifth chapter the results of the numerical simulations are pre-
sented.

the last chapter contains discussions, conclusions and future perspec-
tives.





1 H E AT T R A N S P O R T T H E O R Y

Heat transport in classical fluids is described by the theory of hy-
drodynamic fluctuations [Kadanoff and Martin, 1963]. The phe-
nomenological theory of Onsager [Onsager, 1931a] provides the

physical foundation, while the complete formalization of Linear Response
Theory (LRT) is due to Green and Kubo [Green, 1952, 1954] [Kubo, 1957;
Kubo et al., 1957]. A Green-Kubo formula relates the thermal conductivity
κ, a non-equilibrium dissipative quantity, to the time integrated equilibrium
autocorrelations of the heat flux Jq:

κ ∝
∫ ∞

0

⟨
Jq(t) · Jq(0)

⟩
eq dt. (1.1)

1.1 hydrodynamic variables

Extensive quantities appear often in condensed matter physics. They are
defined as physical properties which are additive for subsystems. An addi-
tive quantity of a system is such that its value is the sum of contributions due
to the different subsystems. The additivity property allows one to express
an extensive quantity as the integral of its density; for an extensive variable
A[Ω] associated to a system of volume Ω, let a(x) be the density of A, i.e.:

A[Ω] =

∫

Ω
a(x) d3x. (1.2)

This statement provides the mathematical definition of extensivity: in fact,
it asserts that A is the sum of small contributions a(x) d3x associated to the
infinitesimal subsystem of volume d3x located at the spatial point x.

When such a quantity is locally conserved, i.e. there are neither sources
nor sinks, a continuity equation relates the time derivative of the density and
a suitably defined current density j(x, t):

∂a(x, t)

∂t
= −∇ · j(x, t). (1.3)

The density of a locally conserved quantity will be referred to as a conserved
density, while the current as a conserved current. By Fourier-transforming in
space, one finds

˙̃a(q, t) = −iq · j̃(q, t), (1.4)

where the dot indicates the time derivative, the tilde indicates the spatial
Fourier-transform and q is a reciprocal-space vector. Since the wavelength
of the Fourier mode of wave-vector q is

λ ∝ 1

|q| ,

1



2 heat transport theory

it is found that the longer is the wavelength, the slower is the time evolution
of the conserved density. In an atomistic framework, where the properties
of the system arise from the statistical behavior of a huge number of rapidly
moving elementary constituents, a long enough wavelength ensures the con-
served density dynamics to be adiabatically decoupled from the motion of
the atoms. The hydrodynamic variables are defined as the long wavelength
modes of conserved densities.

local thermal equilibrium The adiabatic decoupling of the hydro-
dynamics variables with respect to the atomic motion means that, off-
equilibrium, the wavelengths and timescales of the disturbances are so
long that a local notion of equilibrium can be established, i.e. local in-
tensive thermodynamic properties such as temperature, pressure and
chemical potential can be defined in a small enough (but macroscopi-
cally large with respect to interatomic distances) neighborhood of the
point (x, t). Such a construct is called local thermal equilibrium (LTE).

Let us suppose the system to have a number M of conserved extensive
variables {Al}Ml=1, e.g. number of particles, energy, momentum etc., such
that local thermal equilibrium is established. Without loss of generality, let
us suppose the equilibrium values of such quantities to be zero. Thus, the
associated conserved densities {al}Mi=1 and currents {jl}Ml=1 will represent the
deviations from equilibrium. If the deviations from equilibrium are small
enough, one can suppose the time derivative of the density to be a linear
combination of the densities themselves. In both time and space Fourier
domain1 this reads:

−iωãl(q,ω) =
∑

j

Λ̃lj(q,ω)ãj(q,ω), (1.5)

where Λ̃lj(q,ω) are suitably defined coefficients. By combining the last equa-
tion with (1.4), the constitutive equations are found:

−iq · ȷ̃l(q,ω) =
∑

j

Λ̃lj(q,ω)ãj(q,ω), (1.6)

so that, for the longitudinal component of the conserved current, it holds:

ȷ̃l(q,ω) = i
q

q2

∑

j

Λ̃lj(q,ω)ãj(q,ω). (1.7)

When a system is isotropic, i.e. its properties do not depend on the direc-
tion considered, the quantities Λ̃ are spherically symmetric in q, and their
q=0 value is zero, otherwise the long-range modes of the currents would
be coupled to the density fluctuations, which conflicts with our hypothe-
sis of local thermal equilibrium. Let us suppose that the long-wavelength,
small-frequency form of such quantities is

Λ̃lj(q,ω) ∼ q2λlj . (1.8)

1 The Fourier transform of a time derivative yields a multiplicative factor of −iω:

˙̃a(q, t) Fourier↦→ −iωã(q,ω).
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Then, the normalized volume-integral of the stationary (ω=0) microscopic
current, i.e. the q=0 component of the Fourier-space current

Jl =
1

Ω

∫

Ω
jl(x) d3x

= lim
q→0

ȷ̃l(q,ω = 0)
(1.9)

is related to the density gradients Dl = Ω−1
∫
∇al d3x:

Jl = lim
q→0

i
q

q2

∑

j

q2λlj ãj(q,ω = 0)

= lim
q→0

∑

j

λljiqãj(q,ω = 0)

=
∑

j

λlj lim
q→0

1

Ω

∫

Ω

∇aj(x,ω = 0)e−iq·x d3x

=
∑

j

λljDj .

(1.10)

The macroscopic quantity J associated to a current density j(x), i.e. its
normalized volume-integral, is called a flux.

The intensive thermodynamic variables conjugate to the extensive vari-
ables Al are defined as the derivatives of the thermodynamic potential, in
the microcanonical case the entropy S(Al), with respect to its arguments:

ζ l =
∂S

∂Al
, (1.11)

while the susceptibilities are:

χlj =
1

Ω
∂Al

∂ζj
. (1.12)

Under the hypothesis of LTE, local values of the intensive variables ζi can be
defined, and the integrals of their gradients are called thermodynamic forces:

Fl def
=

1

Ω

∫

Ω

∇ζ l(x) d3x. (1.13)

From (1.13), a relationship between the density gradients and the thermody-
namic forces is found, the two quantities being coupled via the susceptibili-
ties:

Dl =
∑

j

χljFj . (1.14)

Plugging (1.14) into (1.10) yields

Jl =
∑

j

LljFj , (1.15)

where Llj =
∑

k λ
lkχkj . This equation states a linear relation between the

fluxes Jl of conserved extensive variables and the thermodynamic forces
Fl. The phenomenological coefficients Llj have been found by Onsager [On-
sager, 1931a,b] to fulfill a reciprocity relation

Llj = Ljl.
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1.2 linear response theory

Linear response theory allows to systematically evaluate the Onsager’s
coefficients Llj . Let us consider a classical system of N atoms described by
the Hamiltonian

H0(Γ) =
N∑

i=1

P 2
i

2Mi
+ Φ(R1,R2, . . . ,RN ), (1.16)

where Mi, Ri and Pi are the mass, position and momentum of the i-th atom
in the system and Φ is the inter-atomic potential energy2. The phase-space
variables will be denoted by the short-hand notation Γ = {Ri,Pi}.

Let us suppose that a time-dependent external perturbation is linearly
coupled to the conserved densities of the system:

Φ′(Γ, t) =
∑

l

∫
vl(x, t)al(x; Γ) d3x, (1.17)

where {vl(x, t)} are the coupling fields, and al(x; Γ) is a phase-space func-
tion such that its ensemble average is a conserved density, i.e.:

a(x) = ⟨a(x; Γ)⟩eq

=

∫
a(x; Γ)P0(Γ)dΓ,

(1.18)

where P0 is the equilibrium phase-space probability distribution, i.e. the
Boltzmann distribution

P0(Γ) ∝ e−H0/kBT , (1.19)

with kB the Boltzmann constant and T the system temperature. The system
is assumed to be at equilibrium at t = −∞, thus the coupling fields are such
that vi(x, t = −∞) = 0∀i,x. Conserved currents are also ensemble averages
of phase-space dependent fields:

j(x) = ⟨j(x; Γ)⟩ ,

and the functions j(x; Γ) are called phase-space samples of the current (or of
the density). A phase-space trajectory is denoted by Γt; the realization along
a classical trajectory of a conserved density or current depends on time and
on the initial conditions that uniquely determine the Hamiltonian evolution
of the system. A canonical average over the initial conditions yields the time
dependent expectation value of the density (or current):

a(x, t) =
⟨
a(x; Γ′

t)
⟩

eq

=

∫
a(x; Γ′

t)P0(Γ0)dΓ0,
(1.20)

where Γ′
t indicates that the time evolution is driven by the perturbed Hamil-

tonian H = H0 + Φ′. The symbol Γt will denote the unperturbed phase-
space trajectory.

2 No external potential is considered.
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Green-Kubo theory states that the linear response to a perturbation of the
α component of a conserved current ji is

jlα(x, t) =
1

kBT

∑

j

∫ t

−∞
dt′
∫

d3x′
⟨
jlα(x; Γt)ȧ

j(x′; Γt′)
⟩

eq
vj(x′, t′)

=− 1

kBT

∑

j

∑

β

∫ t

−∞
dt′
∫

d3x′

⟨
jlα(x; Γt)

∂jjβ
∂x′β

(x′; Γt′)

⟩

eq

vj(x′, t′)

=
1

kBT

∑

j

∑

β

∫ t

−∞
dt′
∫

d3x′
⟨
jlα(x; Γt)j

j
β(x

′; Γt′)
⟩

eq

∂vj(x′, t′)

∂x′β
,

(1.21)

where xβ is the β Cartesian component of the position vector x, and where
the continuity equation and integration by parts have been used.

Last equation can be averaged to recover the macroscopic flux as in
eq. (1.9), i.e. by Fourier-transforming the space-time dependent current and
letting both q and ω go to zero. Under the assumption of space and time
homogeneity, the equilibrium average in eq. (1.21) can be written as

Glj
αβ(x− x′; t− t′) =

⟨
jlα(x; Γt)j

j
β(x

′; Γt′)
⟩

eq
; (1.22)

then, both the space and time integrals are convolutions. By the convolution
theorem, the Fourier transform of a convolution of two functions is the prod-
uct of their Fourier transforms. This allows the factorization of the volume
integral in eq. (1.21) into two integrals, and one obtains eq. (1.15), with

J l
α(Γ) =

1

Ω

∫
jlα(x, Γ) d3x, (1.23)

F l
α =

1

ΩT

∫∫
∂

∂xα
vl(x, t) d3xdt, (1.24)

Llj
αβ =

Ω
kB

∫ ∞

0

⟨
J l
α(Γt)J

j
β(Γ0)

⟩
eq
dt. (1.25)

Last equation, known as a Green-Kubo formula, relates a non-equilibrium
property, the expectation value of a quantity whose evolution is driven by
a perturbed Hamiltonian, to its fluctuations at equilibrium: this connection
between fluctuations and dissipation3 allows us to compute the transport co-
efficient in eq. (1.1) from the equilibrium correlations of the volume integral
of suitably defined conserved currents.

1.3 heat transport

The phenomenology of heat transport is described by the Fourier’s law of
heat conduction [Fourier, 1822]:

Jq = −κ∇T , (1.26)

3 This is, in fact, tightly related to the so called Fluctuation-Dissipation Theorem.
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i.e. it is due to an effective temperature gradient. Here the macroscopic heat
flux Jq is the volume integral of the microscopic heat flux

Jq =
1

Ω

∫
jq(x) d

3x. (1.27)

The theory of section 1.2 allows one to compute the linear response coeffi-
cient to a mechanical perturbation, but a temperature gradient is not due
to any mechanical perturbation. Anyway, when a LTE is defined, a scalar
temperature field can be defined:

T (x) = T + ∆T (x), with ∆T (x) ≪ T . (1.28)

This notion of local thermal equilibrium provides a way to treat the ther-
mal disturbance as a mechanical perturbation, i.e. as a perturbation to the
Hamiltonian of the form of eq. (1.17):

P(Γ) ∝ exp

(
−
∫

e(x; Γ)
kBT (x)

d3x

)

≡ exp

(
−H0(Γ) + Φ′(Γ)

kBT

)
,

(1.29)

where the energy density e(x; Γ) is defined in such a way that

∫
e(x; Γ) d3x = H0(Γ).

The equivalent perturbation Φ′ of equation (1.17) derived from eq. (1.29) is,
up to linear order in ∆T :

Φ′(Γ) = − 1

T

∫
∆T (x)e(x; Γ) d3x+O(∆T 2). (1.30)

Through the constitutive equation given by Fourier’s law (1.26), one can
express the thermal conductivity tensor4 καβ as the Onsager’s coefficient
associated to the heat flux divided by the temperature squared:

καβ =
LEE
αβ

T 2

=
Ω
kBT 2

∫ ∞

0

⟨
Jqα(Γt)Jqβ(Γ0)

⟩
eq
dt.

(1.31)

1.4 heat current density in molecular dynamics

The formula for the heat flux can be obtained, up the linear order, from
equation (1.4) on page 1. In the limit of small but finite wavelength one

4 In general, considering the cases in which there are inequivalent heat currents, one can speak
of a conductivity tensor, instead of a scalar. This is the case, for example, of anisotropic
media.
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can keep the leading terms in the Taylor expansion in q of the continuity
equation in Fourier space:

˙̃e(q = 0, Γt) +∇q
˙̃e(q, Γt)

⏐⏐
q=0

+ iq · j̃q(q = 0, Γt) +O(q2) = 0 (1.32)

⇒ 1

Ω
d

dt

∫
e(x, Γt) d

3x+

− iq ·
[
1

Ω

∫
xė(x, Γt) d

3x− 1

Ω

∫
jq(x, Γt) d

3x

]
+O(q2) = 0;

(1.33)

in the thermodynamic limit, the first term is the time-derivative of the
total energy which, being a constant of motion, does not vary in time. So,
up to linear order in q:

Jq(Γt) =
1

Ω

∫
jq(x, Γt) d

3x

=
1

Ω

∫
xė(x, Γt) d

3x,

(1.34)

i.e. the heat flux is the first moment of the time-derivative of the energy
density. The energy density depends on time through the atomic positions
and momenta, so one can use the chain rule to obtain

Jq(Γt) =
1

Ω

∫ [∑

i

∂e(x; Γt)

∂Ri
·Vi +

∂e(x; Γt)

∂Pi
·Fi

]
x d3x, (1.35)

where Vi is the velocity of the i-th atom and Fi the total force on the i-th
atom. The energy density in molecular dynamics can be defined as

e(x, Γt) =
∑

j

ϵjδ(x−Rj), (1.36)

i.e. the total energy is distributed among the point-like atoms in the system.
While the atomic kinetic energy is a well-defined quantity

ϵkin,i =
1

2Mi
P 2
i , (1.37)

there is no a priori way to decompose the potential energy of a system of
interacting particles into atomic contribution. However, let us suppose to
have defined an energy decomposition5

Φ =
∑

i

Φi, (1.38)

so that the the atomic energies are given by

ϵi =
1

2Mi
P 2
i + Φi. (1.39)

The gradients appearing in eq. (1.35) are evaluated as

∂e(x; Γt)

∂Ri
=
∑

j

[
∂Φj

∂Ri
δ(x−Rj)− δijϵj∇δ(x−Rj)

]
(1.40)

∂e(x; Γt)

∂Pi
= Viδ(x−Ri), (1.41)

5 This issue will be addressed in section 1.5.
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so that the heat flux becomes

Jq(Γt) =
1

Ω

∫ ∑

i,j

[
∂Φj

∂Ri
·Viδ(x−Rj)−

∂Φj

∂Ri
·Viδ(x−Ri)+

− ϵiVi∇δ(x−Rj)]x d3x. (1.42)

Integrating by parts the last summand and using the properties of the Dirac-
delta, one finds:

Jq(Γt) =
1

Ω

∑

i

⎡
⎣ϵiVi −

∑

j

∂Φj

∂Ri
·Vi (Ri −Rj)

⎤
⎦ . (1.43)

This formula is well-defined in periodic boundary conditions, since it only
depends on the atoms’ relative positions. For this reason it is suitable for
molecular dynamics simulations of bulk systems. The first term in equa-
tion (1.43) is called kinetic heat flux or convective heat flux, while the second is
often called virial heat flux.

1.5 gauge invariance of the heat flux

The potential energy of a system of interacting particles is a global prop-
erty: in general, it depends on all the atomic coordinates at once. For this
reason, there is no a priori correct decomposition of the energy as a sum over
atomic contributions. In the simplest non-trivial case, i.e. when all the forms
of interaction are pair potentials, the natural choice is to split the potential
energy of a pair of atoms into two equal parts, and assign half of the energy
to each atom. When a particular form of interaction involves three atoms,
the same prescription would suggest to divide the energy equally among
the three participants. Let us show that, whatever the choice of the energy
decomposition of eq. (1.38), the physics remains unchanged.

Let us suppose to choose a particular potential energy decomposition with
the only constraint that the sum of the atomic energies is the total potential
energy of the system, i.e. the quantity one measures6:

Φ({R}) =
∑

i

Φi({R}). (1.44)

The total potential energy is evidently invariant if one adds a quantity which
is zero:

Φ =
∑

i

Φi({R}) +
∑

i,j

ξij({R}),

where ξij({R}) = −ξji({R}).
(1.45)

Equation (1.45) is effectively a redefinition of the atomic potential energy:

Φ =
∑

i

Φ′
i({R}), (1.46)

Φ′
i({R}) = Φi({R}) +

∑

j

ξij({R}). (1.47)

6 Of course even the total potential energy is defined up to a constant, i.e. its value is not
absolute.
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Let us see how the heat flux changes under the new definition of the poten-
tial energy per atom. The energy density e becomes

e′(x, t) =
∑

i

⎛
⎝ϵi +

∑

j

ξij

⎞
⎠ δ(x−Ri(t)); (1.48)

the same mathematical steps that led from (1.36) to (1.43) now yield:

Jq
′(Γt) = Jq(Γt) +

1

2Ω

∑

j,k

[
ξjk({R})(Vj −Vk)+

+
∑

i

(
Vi ·

∂ξjk
∂Ri

)
(Rj −Rk)

]

= Jq(Γt) +
d

dt

⎡
⎣ 1

2Ω

∑

j,k

ξjk({R})(Rj −Rk)

⎤
⎦

= Jq(Γt) +
d

dt
Ξ(Γt),

(1.49)

where Ξ({R}) def
=

1

2Ω

∑

j,k

ξjk({R})(Rj −Rk). (1.50)

Under the transformation (1.47), the change in the heat flux is the total time
derivative of a vector Ξ. Let us assume that Ξ is bounded from above: then
a more general transformation of the energy density can be defined so that
the heat flux changes by a time-derivative:

e(x, t) ↦→ e′(x, t) = e(x, t)− 1
3∇ · ξ(x, t),

where Ξ(t) =
1

Ω

∫
ξ(x, t) d3x.

(1.51)

In fact, the divergence of the vector field with compact support ξ can be
integrated by parts in equation (1.34) to obtain equation (1.49).

Let us now prove that the quantity measured in the laboratory, i.e. the
heat conductivity κ, is invariant under the transformation (1.51). To do so,
let us show that the Green-Kubo integral in equation (1.31) is insensitive of
the transformation:

κ′ = const×
∫ ∞

0

⟨
Jq

′(Γt) · Jq
′(Γ0)

⟩
eq dt

= const×1
2

∫ ∞

−∞

⟨(
Jq(Γt) + Ξ̇(t)

)
·
(
Jq(Γ0) + Ξ̇(t)

)⟩
eq dt

=κ+ const×
[⟨

Ξ(t) · Ξ̇(0)
⟩

eq

⏐⏐⏐
∞

−∞
+
⟨
Ξ̇(t) · Jq(0)

⟩
eq

⏐⏐⏐
∞

−∞

]
.

(1.52)

The equilibrium correlations in equation (1.52) are evaluated at large time
difference, so that the mean of the product equals the product of the means.
Since the equilibrium expectation of a total time-derivative vanishes, all the
terms inside the square brackets are zero.

The considerations above can be fashioned into a general statement about
heat trasport theory, that let us escape the unpleasant dilemma of having to
decide how to distribute energy among particles [Marcolongo et al., 2015]:
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gauge invariance of the heat flux The Green-Kubo heat conduc-
tivity κ of a system of interacting particles with energy density e(x, t) is
invariant under the transformation

e(x, t) ↦→ e′(x, t) = e(x, t)− 1
3∇ · ξ(x, t),

where ξ(x, t) is a bounded vector field. In other words, the heat fluxes
Jq(t) obtained from e(x, t) and Jq

′(t) obtained from e′(x, t) yield the
same value for the heat conductivity.

1.6 multi-component fluids

Multi-component fluids are made of different species of particles, say M

species. Each of the species has a number of particles that does not change in
time; then the conserved quantities are the total energy, the total momentum
and, for each species, the number of particles. The flux associated with the
number of particles is proportional to the total momentum of that species,
so the conserved fluxes will be the energy flux, the total momentum and the
momenta per species. The conservation of total momentum imposes a linear
constraint on the momenta-per-species, reducing the number of independent
conserved fluxes from M + 1 to M .

The matrix made of Onsager’s coefficients, called Onsager matrix, is a
M ×M square matrix of entries Lij . The heat flux is the non-convective
contribution to the energy flux, i.e. the value of the energy flux when there
is no mass transport: this condition means that all the mass fluxes must
vanish. Let us write eq. (1.15) in matrix form, and order the vector of the
fluxes so that the first entry is the energy flux JE:

⎛
⎜⎜⎜⎝

JE

J2

...
JM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

LEE LE2 · · · LEM

LE2 L22 · · · L2M

...
...

. . .
...

LEM LM2 · · · LMM

⎞
⎟⎟⎟⎠

  
L̂

⎛
⎜⎜⎜⎝

∇(1/T )
∇(µ2/T )

...
∇(µM/T )

⎞
⎟⎟⎟⎠ , (1.53)

where the thermodynamic forces F i are the gradients of the chemical poten-
tials µi of the different atomic species divided by the temperature T , and Ji

are the respective mass fluxes. Heat flux is the non-convective contribution
to the energy flux, i.e. what is obtained by neglecting the contribution given
by transport of mass. This is the equivalent of imposing the vanishing of the
mass currents in equation (1.53), i.e.:

⎛
⎜⎜⎜⎝

JE

J2

...
JM

⎞
⎟⎟⎟⎠ ↦→

⎛
⎜⎜⎜⎝

Jq

0
...
0

⎞
⎟⎟⎟⎠ . (1.54)
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Inspection of the first equation of the linear system (1.53) under condi-
tion (1.54) yields

Jq = LEE∇(1/T ) +
M∑

i=2

LEi∇(µi/T ). (1.55)

Being κ the proportionality factor between Jq and ∇T , one would like to
get rid of the ∇(µi/T )’s by expressing them with respect of other known
quantities. This means to solve the linear system (1.53) with respect to the
F i’s. Let us apply Cramer’s rule:

F i =
det(L̂i)

det(L̂)

= det

(i-th)
⎛
⎜⎜⎝

⎞
⎟⎟⎠

LEE · · · Jq · · · LEM

LE2 · · · 0 · · · L2M

...
...

...
. . .

...
LEM · · · 0 · · · LMM

/
det(L̂) ,

(1.56)

where L̂i is the matrix formed by replacing the i-th column with the vector
of fluxes. The determinant det(L̂i) is easily computed with respect to the
i-th column: it is sufficient to multiply (−1)i+1Jq by the (1, i)-minor

[
L̂
]
Ei

of the matrix L̂, i.e. the determinant of the matrix obtained deleting the first
row and the i-th column from L̂. The expression of F i becomes:

F i =
(−1)i+1Jq

[
L̂
]
Ei

det(L̂)
. (1.57)

Replacing the above result in eq. (1.55), one finds:

Jq

(
det(L̂)−

M∑

i=2

(−1)i+1LEi
[
L̂
]
Ei

)
= det(L̂)LEE∇

(
1

T

)
. (1.58)

By expanding the determinant of the Onsager matrix with respect to the first
row, the above expression simplifies:

det(L̂) =
M∑

i=1

(−1)i+1LEi
[
L̂
]
Ei

=LEE
[
L̂
]
EE

+
M∑

i=2

(−1)i+1LEi
[
L̂
]
Ei

,

(1.59)

JqL
EE
[
L̂
]
EE

= LEE det(L̂)∇
(
1

T

)
, (1.60)

that means:

Jq =
det(L̂)[
L̂
]
EE

∇
(
1

T

)
. (1.61)

From the definition of inverse matrix, i.e.

(L̂−1)ij =
(−1)i+j

[
L̂
]
ji

det L̂
,
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we obtain the final result:

Jq =
1

(
L̂−1

)EE
∇
(
1

T

)
= − 1

T 2
(
L̂−1

)EE
∇T , (1.62)

κ =
1

T 2
(
L̂−1

)EE
(1.63)

In the simplest case, i.e. M = 2, eq. (1.63) reads:

Jq =

(
LEE − (LE2)2

L22

)
∇
(
1

T

)

=− 1

T 2

(
LEE − (LE2)2

L22

)
∇T .

(1.64)

The last equation expresses the thermal conductivity κ in terms of the On-
sager’s coefficients in the case of a two-components fluid.

1.6.1 Molecular fluids

Water is a one-component molecular fluid, i.e. a multi-component fluid
in which the different atomic species are bound together in a definite way7.
This property imposes some constraints in the way the mass fluxes and the
energy flux interact. Let us define, for each atomic species X (in this case
X =H, O) in a molecule of chemical formula ANA

BNB
, a normalized number

flux as

JX =
1

NX

∑

n∈X
Vn. (1.65)

The conservation of total momentum in the center-of-mass reference frame
leads to the condition

∑

X

MXNXJX = 0, (1.66)

where MX is the atomic mass of species X .

Another flux can be defined as the difference between a pair of normalized
number fluxes:

JXY = JX − JY (1.67)

7 Of course, in nature molecules can dissociate. In such a case, there is a net contribution to
the thermal diffusivity due to the mass current, and the fluid is genuinely multi-component.
In this section, molecular dissociation will not be considered.
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which, for molecular fluids, is the total time-derivative of a bounded vector:

JXY =
1

NX

∑

n∈X
Vn −

1

NY

∑

m∈Y
Vm

=
Nmol∑

i=1

(
VX,i

NX
− VY ,i

NY

)

=

Nmol∑

i=1

(⟨VX,i⟩ − ⟨VY ,i⟩)

=
d

dt

Nmol∑

i=1

(⟨RX,i⟩ − ⟨RY ,i⟩) ,

(1.68)

where, in this case, the angle brackets indicate the arithmetic average. The
flux inside the time derivative is obviously bounded because the molecules
do not dissociate, hence the distance between every pair of atoms within the
same molecule remain finite. This implies that JXY is of the form of Ξ in
equation (1.51), i.e. it does not contribute to the thermal conductivity: its
Onsager’s coefficients are zero. Let us call these fluxes non-diffusive. Any
flux JX can be written as a linear combination of non-diffusive fluxes of the
form JXY and the total momentum. For this reason, all the JX are non-
diffusive as well. Thus, the only flux that contributes to heat conductivity is
the energy flux, and the description made in section 1.3 leads to the correct
result.

This digression has not been purposeless: despite being theoretically cor-
rect, the one-component procedure lays on the hypothesis that the time inte-
grals appearing in equations (1.25) are calculated up to infinity. In a molec-
ular dynamics simulation this is obviously unfeasible: the finiteness of the
computation always introduces cutoff errors of some sort. Collecting a suf-
ficiently long trajectory up to the so-called convergence means to reduce the
cutoff error below the limit of detectability. The convergence time, i.e. the
simulation time after which the cutoff error is negligible and the value of
the conductivity calculated via the integration of the time-correlation of the
heat flux remains unchanged, depends strongly on the system under exam.
As a rule of thumb, the more complex is the interaction, the larger is the
convergence time.

To avoid wasting computation time to wait for convergence, one could
treat the non-diffusive fluxes as if they were diffusive and include them in
the Onsager analysis as in equation (1.53). In fact, the Onsager coefficient
of a non-diffusive flux is zero in the infinite time limit but, in general, it is
greater than zero when the time-integral is calculated up to a finite time. The
multi-component analysis allows to discard the other interacting fluxes and
achieve convergence faster. Moreover, this cannot lead to overestimation of
the thermal conductivity: from formula (1.64) it is evident that the second
summand in the right-hand side is necessarily positive. The global positivity
of κ completes the argument. The experimental verification of these claims
will be shown in chapter 5.





2 T H E M O D E L

The accurate description of intermolecular interactions in water re-
quires computationally heavy calculations with ab initio methods.
This is mainly due to the presence of an hydrogen-bond network

formed by the molecules, in which bonds form and break continuously
with variable strength. The variability of the hydrogen-bonds is the result
of the interplay between entropic and energetic effects, as well as the im-
portant presence of nuclear quantum effects. The high computational cost
of the fully ab initio methods, i.e. techniques that use a quantum mechan-
ical description of the system under study, prevents from computing the
properties of large systems or to make long ab initio molecular dynamics
(AIMD) simulations. These practical problems led to the development of
many classical1 water models with a spectrum of levels of sophistication,
ranging from coarse-grained description with no atomistic resolution, to
flexible and polarizable models with a sufficiently good level of accuracy.
However, despite the great effort in finding a compromise between accu-
racy and computational cost, none of the models is able to reproduce the
experimental results from the gaseous to the condensed phases at the same
time.

The MB-pol (Many Body-polarization) water model [Babin, Leforestier, et
al., 2013; Babin, Medders, et al., 2014; Medders et al., 2014] addresses the
problem of the description of a collection of water molecules by splitting
the total energy calculation into different many-body contributions. Let us
consider a system of N water molecules; the energy of the system can be
written as a sum of n-body terms, where n ≤ N , i.e.:

E(x1, . . . ,xN ) =
N∑

a=1

V (1B)(xa) +
∑

a>b

V (2B)(xa,xb)+

+
∑

a>b>c

V (3B)(xa,xb,xc) + . . .+ V (NB)(x1, . . . ,xN ), (2.1)

where xi are collective variables used as a shorthand notation to refer to a
whole water molecule (they include e.g. the atomic coordinates).

For water, this many-body expansion has been found to rapidly converge,
so that one can keep only few body terms and still obtain results that are in
good agreement with the experimental data available.

1 In this context classical means that the dynamics is given by the Newton’s equation, rather
than Schrödinger’s equation. However, the form of the interactions may be derived from
quantum mechanical considerations and rendered as an effective classical interaction.

15



16 the model

2.1 the form of the potential

In the MB-pol potential there are explicit n-body terms up to order three,
while the rest of the interactions are taken into account through a many-body
term. The form of the potential is:

EN (x1, . . . ,xN ) =
N∑

a=1

V (1B)(xa) +
∑

a>b

V (2B)(xa,xb)+

+
∑

a>b>c

V (3B)(xa,xb,xc) + V (MB)(x1, . . . ,xN ), (2.2)

where the caption “MB” stands for “Many Body”. In the following sections
we will describe in detail every term in equation (2.2).

2.2 one-body term

The monomer term V (1B)(x) is the energy associated to the intra-molecular
distortions of each water molecule. It is represented by the Potential Energy
Surface (PES) developed by Partridge and Schwenke, 1997. The PES is con-
structed by an ab initio term modified empirically to fit the experimental
data.

2.2.1 Analytic form of the PES

In this model, the ab initio form of the energy of an isolated water molecule
is:

V 5Z(rOH1 , rOH2 , θ) = V a(rOH1) + V a(rOH2)+

+ V b(rHH) + V c(rOH1 , rOH2 , θ), (2.3)

where the rOHi are the OH bond lengths, θ is the HOH angle, and the func-
tional form of the terms in the sum is given by:

V a(r) =D
[
e−2a(r−r0) − 2e−a(r−r0)

]
, (2.4a)

V b(r) =Ae−br, (2.4b)

with rHH the HH distance, and

V c(rOH1 , rOH2 , θ) = c000 + e−β[(rOH1
−re)2+(rOH2

−re)2]×
×
∑

ijk

cijk [(rOH1 − re)/re]
i [(rOH2 − re)/re]

j ×

× [cos(θ)− cos(θe)]
k . (2.5)

The other quantities are parameters, either obtained by fitting the function
to experimental data or preliminarily fixed.
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Figure 2.1: Water molecule with the additional M and L sites.

2.2.2 Empirical corrections

The fit to ab initio data is not practically feasible in its entirety, so this PES
does not perfectly agree with experiments. In addition to that, ab initio data
used are not exact, because of the approximations made to obtain them; rel-
ativistic corrections are not taken into account, as well as mass polarization,
radiative and diagonal adiabatic modifications to the Born-Oppenheimer ap-
proximation; non-adiabatic effects and experimental errors lead to more in-
accuracy. Empirical corrections are made in attempt to get better results.
Thus, a new PES called V emp is defined:

V emp = c5ZV 5Z(rOH1 , rOH2 , θ) + ccore∆V core(rOH1 , rOH2 , θ)+

+ cbasis∆V basis(rOH1 , rOH2 , θ) + ∆V rest(rOH1 , rOH2 , θ), (2.6)

where ∆V rest = V c of eq. (2.5), and new parameters c have been introduced.

2.3 two-body term

The two-body term in the many-body expansion takes into account the
interaction of two water molecules whose coordinates are labeled xa and
xb. The different physical origin of the interaction at different separations
suggests to split the potential into short- and long-range contributions:

V (2B)(xa,xb) = V
(2B)

short(xa,xb) + V
(2B)

long (xa,xb). (2.7)

2.3.1 Long-range

The long-range term is dominated by the electrostatic interaction between
permanent and induced dipole moments associated with the charge distri-
bution of the molecules. In addition, there is a dispersion term. The chosen
form is such that:

V
(2B)

long (xa,xb) = V
(2B)

TTM,elec(xa,xb) + V
(2B)

TTM,ind(xa,xb) + V
(2B)
6 (xa,xb), (2.8)

where each term is described as follows. For a more detailed description of
the electrostatic interaction, see the appendix A at page 73:

the permanent dipoles are modeled through point charges placed on
the two H atoms and in the M site, placed near the middle of the segment
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joining the hydrogens in such a way to optimize the quadrupole moment
of an isolated molecule (see fig. 2.1). The effective contribution is only a
charge-charge term. The functional form of the interaction is the TTM4-F
model:

V
(2B)

TTM,elec(xa,xb) =
1
2

∑

a̸=b

qaqbA
−1
ab λ1(uab), (2.9)

where qa are the charges, uab = rab/Aab, rab = |ra − rb| is the distance be-
tween interaction sites a and b, Aab = (αaαb)

1/6 and αn are the dipole po-
larizabilities. Functions λn(u) implement the screened interactions by as-
suming a particular density in place of the point charges. They are defined
recursively as:

λn+2(u) = − 1

un

∂

∂u
λn(u), (2.10)

λ1(u) =
1

u
(1− e−aum

) + a1/mΓ
[
1− 1

m , aum
]
, (2.11)

where Γ(a,x) is defined as:

Γ(a,x) =

∞∫

x

dt ta−1e−t, (2.12)

and m = 4 in the TTM4-F model.

the induced dipoles are described by point dipoles placed on the oxy-
gen (O) and on the hydrogens (H). An additive damping factor between the
hydrogen within the same molecule has been included. The functional form
of the interaction is:

V
(2B)

TTM,ind(xa,xb) = −1
2

∑

a

µa ·Ea, (2.13)

where µa is the induced dipole moment at the interaction site a and Ea is
the Thole-smeared electric field at site a due to the charges and the dipoles.

the long-range dispersion contribution is represented by damped
r−6 terms associated to all pairs of atoms:

V
(2B)
6 (xa,xb) = −

∑

i∈a,j∈b
f6(δ

(ij)
6 rij)C

(ij)
6

1

r6ij
, (2.14)

where i and j in the sums run over all atoms belonging to molecules a and
b, rij denotes the distance between atom i and atom j and fn(ξ) are the
Tang-Toennies damping functions:

fn(ξ) = 1− e−ξ
n∑

k=0

ξk

k!
, (2.15)

and the quantities δ and C are parameters.
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2.3.2 Short-range

The short range part of the interaction represents a quantum correction to
the classical interaction described above, due to the overlap of the monomer
electron densities. It is represented by a permutationally invariant poly-
nomial that smoothly switches to zero when the separation between water
molecules exceeds a cutoff value:

V
(2B)

short(xa,xb) = s

(
rOO − ρi
ρo − ρi

)
V2S, (2.16)

with

s(x) =

⎧
⎨
⎩

1 if x < 0

cos2
(
π
2x
)

if 0 ≤ x ≤ 1

0 if ≤ x

(2.17)

and ρi,o, the inner and outer radii of the switching function, are set to 4.5Å
and 6.5Å respectively. This provides a good compromise between accuracy
and computational efficiency. In eq. (2.17), V2S is a polynomial in functions
of the distances between all pair of atoms and two additional sites, L1 and
L2, placed symmetrically along the oxygen lone-pair direction (see fig. 2.1).
Such positions are:

r
(±)
L = rO + 1

2γ∥(rOH1
+ rOH2

)± γ⊥ (rOH1
× rOH2

) , (2.18)

where γ∥ and γ⊥ are fitting parameters that optimize the location of the L
sites, and rOH1,2 are vectors joining O and H atoms within the same molecule
of H

2
O. There are 31 possible distances between all types of sites described;

these distances dm=1−31 are used to form the same number of negative
exponential variables in the distances, divided into three groups: 6 intra-
molecular variables ξi=1−6, 9 intermolecular Coulomb-like variables ξi=7−16

and 16 intermolecular variables involving L sites ξi=17−31. With these def-
initions, V2S is constructed as a permutationally invariant polynomial in ξi.
Such a polynomial is a sum of 1153 symmetrized monomials ηl:

V2S =
1153∑

l=1

clηl, (2.19)

where ci are linear fitting parameters.

2.4 three-body term

Like the two-body term, the three-body interaction can be split into two
parts:

V (3B)(xa,xb,xc) = V
(3B)

short(xa,xb,xc) + V
(3B)

TTM,ind(xa,xb,xc), (2.20)

where V (3B)
TTM,ind is the TTM 3-body induction energy, analog to the one intro-

duced in section 2.3.1, while V (3B)
short is again a quantum correction that takes

into account the electronic overlap. Its form is:

V
(3B)

short(xa,xb,xc) = [s(tab)s(tac) + s(tab)s(tbc)+

+s(tac)s(tbc)] V
(3B)

poly (xa,xb,xc), (2.21)
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where the sum in the square brackets represents a function that smoothly
goes to zero as one of the three water molecules a, b or c moves apart
from the other two. The function s is the same as in equation (2.17), and
tmn = R

(O)
mn/ρ(3B)

cut , where R(O)
mn is the distance between the oxygen atoms of

water molecules m and n, and ρ
(3B)
cut = 4.5Å is the three-body cutoff distance.

The value has been chosen to optimize both accuracy and computational
efficiency.

The V
(3B)

poly term in equation (2.21) is a permutationally invariant polyno-
mial in exponentials of the inter-atomic distances dm=1−36 discussed above.
From these distances one can define variables ξi in a similar manner as dis-
cussed for the 2-body term.

2.5 many-body term

All the contributions to the interaction with n ≥ 4 are included as a TTM
induction correction, i.e. only the induced dipole interaction is taken into
account. The high accuracy of the MB-pol potential has been demonstrated
in the literature, e.g. [Babin, Medders, et al., 2014; Paesani, 2016].



3 DATA A N A LY S I S

In a molecular dynamics simulation what one measures is the time se-
ries of the heat flux (1.43). In the following, we will review some results
in the field of time-series analysis that will be useful in the following

chapters. Let us fix some notations:

• The expectation value of a random variable will be denoted by E [·] or
by the angle brackets ⟨·⟩;

• The variance of a random variable will be denoted by Var [·];

• The symbol ”∼“ will mean is distributed as.

3.1 a brief reminder of statistics

definition 1 (stochastic process): A stochastic process {Xt : t ∈ T } is
a collection of random variables Xt labeled by a (possibly continuous) index
t belonging to a set of indexes T which, in our case, will be thought of as
time. The values assumed by Xt will be indicated by x(t).

In the case of a numerical simulation, the process will be discrete and cor-
respond to the instantaneous value of an observable of the system. However,
the underlying physics is built upon a continuous time parameter so, when
necessary, the definitions and the examples will regard the Xt’s as continu-
ous random variables. The time-series of the realizations of the process will
often be referred to as signal or time-series.

definition 2 (wide-sense stationary process): A stochastic process
{Xt} is said to be wide-sense stationary if its expectation value do not vary
with respect to time, and its autocorrelation function only depends on time
differences, i.e.:

mX(t)
def
= E [Xt] = mX(t+ τ ) ∀τ ∈ R, (3.1)

CX(t1, t2)
def
= E [(Xt1 −mX(t1)) (Xt2 −mX(t2))] = CX(t1 − t2, 0), (3.2)

A stronger notion of stationarity would require the cumulative distribution
function of the whole process to be insensitive of time translations; however,
for our purposes such a restriction is not required.

An important tool that will be useful to analyze the data is the power
spectral density:

definition 3 (power spectral density): Given a stochastic process {Xt},
its truncated power spectral density ST is defined as the expectation value of the

21
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modulus squared of its truncated Fourier transform divided by the width of
the truncation window:

ST (f)
def
=

1

T

⟨⏐⏐⏐⏐⏐

∫ T /2

−T /2
e2πiftx(t) dt

⏐⏐⏐⏐⏐

2⟩
=

1

T
⟨
|x̃T (f)|2

⟩
, (3.3)

where the truncated Fourier transform x̃T (f) has been defined in the last
equality. The power spectral density or power spectrum of the process is defined
as the limit for large T of the truncated power spectral density1:

S(f)
def
= lim

T →∞
ST (f) = lim

T →∞

1

T
⟨
|x̃T (f)|2

⟩
. (3.4)

The power spectrum turns out to be useful in the analysis of the heat flux
time series because of the following theorem:

theorem 1 (wiener-kintchine): Let Xt be a stochastic process whose re-
alizations will be denoted by the signal x(t), and let C(τ ) = ⟨x(t)x(t+ τ )⟩
be its autocorrelation function. Then, when the Fourier transform of C(τ ) is
well defined, it is equal to the power spectrum S(f) of the signal, i.e.:

S(f) =

∫ ∞

−∞
C(τ )e2πifτ dτ (3.5)

Proof. Let us write explicitly the expectation value of the modulus squared
of the truncated Fourier transform of the process:

⟨
|x̃T (f)|2

⟩
=

∫ T /2

−T /2

∫ T /2

−T /2
⟨x(t)x(s)⟩ e2πi(t−s)f dtds

=

∫ T /2

−T /2

∫ T /2

−T /2
C(t− s)e2πi(t−s)f dtds.

(3.6)

The integral can be simplified using the simple lemma:

lemma 1: The following formula holds:
∫ T /2

−T /2

∫ T /2

−T /2
f(t− s) dtds =

∫ T

−T
f(τ )(T − |τ |) (3.7)

Proof. The proof is simply a matter of calculus:

I ≡
∫ T /2

−T /2

∫ T /2

−T /2
f(t− s) dtds =

∫ T /2

−T /2

∫ T /2−t

−T /2−t
f(τ ) dτdt

=

∫ T /2

−T /2

[∫ T

−T
f(τ ) dτ −

∫ −T /2−t

−T
f(τ ) dτ −

∫ T

T /2−t
f(τ ) dτ

]
dt

=T
∫ T

−T
f(τ ) dτ −

∫ 0

−T
f(τ )

∫ −T /2−τ

−T /2
dtdτ −

∫ T

0
f(τ )

∫ T /2

T /2−τ
dtdτ

=T
∫ T

−T
f(τ ) dτ −

∫ 0

−T
f(τ )(−τ ) dτ −

∫ T

0
f(τ )τ dτ

=

∫ T

−T
f(τ )(T − |τ |) dτ .

(3.8)

1 The limit may not exist. However, for weakly stationary processes such as the ones we are
interested in, it happens to exist.
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Let us apply the formula to f(τ ) = C(τ )e2πiτf :

⟨
|x̃T (f)|2

⟩
=

∫ T

−T
C(τ )e2πiτf (T − |τ |) dτ . (3.9)

Dividing by T and letting T go to infinity one gets:

S(f) = lim
T →∞

1

T
⟨
|x̃T (f)|2

⟩
=

∫ T

−T
C(τ )e2πiτf

(
1− |τ |

T

)
dτ

= lim
T →∞

∫ ∞

−∞
C(τ )e2πiτf +O

(
1

T

)
.

(3.10)

When the autocorrelation function is even in time, as in the case of the
processes we are interested in, the integral can be rewritten as

S(f) = 2

∫ ∞

0
C(τ )e2πiτf . (3.11)

The Wiener-Kintchine theorem allows to express the Green-Kubo thermal
conductivity as the zero-frequency value of the power spectrum of the heat
flux:

κ =
Ω
kBT 2

∫ ∞

0
CJqJq(t)dt (3.12)

=
Ω

2kBT 2
S(f = 0), (3.13)

where Ω is the volume of the system, kB is the Boltzmann constant and T is
the temperature.

Eventually, a concept in statistics that allows to infer the value of an un-
known parameter is the estimator:

definition 4 (estimator): An estimator θ̂(Xt) of a parameter θ is a func-
tion of the sample space designed to compute an estimate of the desired
parameter, given the available data. An estimator is said to be consistent if
it converges in probability to the to the quantity being estimated as sample
size (i.e. time) grows2. It is said to be unbiased when its expectation value
equals the real value of the quantity of interest.

After this brief reminder of some useful statistical tools, let us get into
how the signal obtained from the MD simulations will be analyzed.

3.2 einstein-helfand approach

The estimate of the Onsager’s coefficients via direct integration of the cor-
relation functions is usually tricky. After the correlation time, in fact, the
correlation functions are dominated by noise, and their integral behaves like
a random walk. Thus, the evaluation of the transport coefficients requires
the averaging of the correlation functions over multiple trajectories, possibly
many segments of the same long trajectory. The error estimate has to be

2 This is like saying that its variance should go to zero as the number of observations grows.
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carried out as a function of both the number of trajectories and the upper
limit of time-integration. This procedure is neither efficient nor satisfactory,
since it often leads to a poor estimate of the desired conductivity, in partic-
ular when the signal is inherently oscillatory because of the high frequency
molecular motion of the constituents of the system.

A slightly better approach that, however, does not resolve the issue of the
error estimate, is a generalization of the Einstein relation to compute the dif-
fusion coefficient in its explanation of the Brownian motion [Einstein, 1905].
Let us and consider the zero-frequency value of the function in eq. (3.10)
before evaluating the limit:

ST (0) =

∫ T

−T
⟨x(t)x(0)⟩ dt− 1

T

∫ T

−T
⟨x(t)x(0)⟩ t dt. (3.14)

The parity of ⟨x(t)x(0)⟩ allows to write

ST (0) = 2

∫ T

0
⟨x(t)x(0)⟩ dt− 2

T

∫ T

0
⟨x(t)x(0)⟩ t dt, (3.15)

which is the zero-frequency value of the truncated power spectral density.
The usual way to estimate the thermal conductivity from the heat flux

time-series computed in a molecular dynamics simulation is to wait for the
convergence of a discretized version of eq. (3.15) with respect to the simula-
tion time T . In fact, since the second integral in the above equation is finite
for all T , in the large T limit its value divided by T tends to zero. This
is known as the Einstein-Helfand method [Helfand, 1960]. When the time-
series of interest is the velocity of a particle in a fluid, the large T limit of
equation (3.15) is proportional to the diffusivity of that fluid. When the heat
flux time-series is considered, that limit becomes proportional to the thermal
conductivity of the system. The value of the thermal conductivity is found
as:

κ =
Ω

3kBT 2
lim

T →∞

⟨
D2

ϵ (T )
⟩

T , (3.16)

where the energy displacement Dϵ is defined as

Dϵ(T ) =

∫ T

0
Jq(t) dt.

As it will be clear in the next section, the idea behind cepstral analysis is to
focus on estimating the low frequency spectrum of the desired time-series,
instead that on the zero-frequency value only as in the Einstein-Helfand
method. From the analytical properties of the power spectrum, in fact, one
can gather more information and reduce the error on the estimate of the
desired transport coefficient.

3.3 cepstral analysis

Let us indicate the (scalar) time series of the heat flux as

Jn = Jq
α(t = nε), n = 0, . . . ,N − 1, (3.17)
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where ε is the sampling time, Jq
α is one of the Cartesian components of

the heat flux Jq and N is the length of the time-series. As stated above,
according to the Wiener-Kintchine theorem 1 it is possible to write κ as:

κ =
Ω

2kBT 2
S(f = 0). (3.18)

Since the signal, i.e. the time-series, is a discrete stochastic process, let us
define the convention used for discrete Fourier transforms as:

J̃k =
N−1∑

n=0

Jne
2πikn/N , k = 0, . . . ,N − 1. (3.19)

An unbiased estimator of the power spectral density is given by the peri-
odogram Ŝk:

Ŝk
def
=

ε

N

⏐⏐⏐J̃k
⏐⏐⏐
2
. (3.20)

For a real-valued signal as Jn, the discrete Fourier transform has the symme-
try property

J̃k = J̃∗
N−k, (3.21)

so that

Ŝk = ŜN−k; (3.22)

then one can simply report half of the periodogram.
The heat flux is the volume integral of the heat current; the space autocor-

relations of the latter are usually short ranged: therefore, in the thermody-
namic limit, the fluxes can be thought of as a sum of almost independent
identically distributed stochastic variables. The Central Limit Theorem then
ensures the distribution of the heat flux to be Gaussian. For this reason its
discrete Fourier transform is also a zero-mean Gaussian variable, and from
the definition (3.20) of periodogram the variance can be obtained as:

Var
[
J̃k

]
=E

[⏐⏐⏐J̃k
⏐⏐⏐
2
]

=E
[
(ReJ̃k)

2 + (ImJ̃k)
2
]

=E
[
(ReJ̃k)

2
]
+ E

[
(ImJ̃k)

2
]

=
N

ε

⟨
Ŝk
⟩
=
N

ε
S(fk),

(3.23)

where fk = k/N and the fact that the real and imaginary part of J̃k are
uncorrelated has been used. The last step follows from the fact that the
periodogram is an unbiased estimator of the true power spectrum. With this
result, one can say that the real and imaginary part of J̃k (or simply J̃k, when
it is real) are distributed as

k = 0,
N

2
: J̃k ∈ R, J̃k ∼ N

(
0,
N

ε
S(fk)

)
(3.24)

k ̸= 0,
N

2
: ReJ̃k, ImJ̃k ∼ N

(
0,
N

2ε
S(fk)

)
, (3.25)
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where N (µ,σ2) represents a Gaussian random variable with expectation

value µ and variance σ2. To understand how
⏐⏐⏐J̃k
⏐⏐⏐
2

is distributed let us mul-
tiply and divide it by its variance in the case k ̸= {0,N/2}:

⏐⏐⏐J̃k
⏐⏐⏐
2
=(ReJ̃k)

2 + (ImJ̃k)
2

=
N

2ε
S(fk)

[
N 2

1 +N 2
2

]

≡N
ε
S(fk)ξ̂k,

(3.26)

where both N1 and N2 are standard Gaussian variables. The distribution of
the sum of the squares of two standard Gaussian variables is the chi-squared
distribution with two degrees of freedom, i.e. the variables ξ̂k introduced
above are distributed as

ξ̂k ∼ 1

2
χ2
2, k ̸= 0,

N

2
; ξ̂k ∼ χ2

1, k = 0,
N

2
. (3.27)

The result for k = {0,N/2} follows straightforwardly from equation (3.26)
in the case J̃k ∈ R. Since N is large and the distribution is χ2

1 only in two
cases, we will assume that the distribution is 1

2χ
2
2 ∀k, thus introducing an

error of order O(1/N) that vanishes in the limit of N → ∞.
The final result is that the periodogram can be expressed as

Ŝk = S(fk)ξ̂k, (3.28)

with ξ̂k distributed as in (3.27). All of this is valid for a single, scalar valued
time-series. Being the heat flux a vector valued quantity, every MD simula-
tion gives three independent time-series Jqα, α = {1, 2, 3}. In the general
case, let us suppose there are ℓ different realizations of the same process.
A mean periodogram can be defined as the arithmetic mean of the ℓ peri-
odograms obtained from the different time-series:

ℓŜk
def
=

ε

ℓN

ℓ∑

p=1

⏐⏐⏐pJ̃k
⏐⏐⏐
2

=S(fk)
ℓξ̂k,

(3.29)

where ℓξ̂k are distributed as ℓξ̂k ∼ 1
2ℓχ

2
2ℓ. The mean periodogram is an unbi-

ased estimator of the power spectrum, but it is not consistent, i.e. its accuracy
does not increase for increasing N . In fact:

E
[
ℓŜk

]
= S(fk)E

[
ℓξ̂k

]
= S(fk); (3.30)

Var
[
ℓŜk

]
= S(fk)

2Var
[
ℓξ̂k

]
=

1

ℓ
S(fk)

2. (3.31)

The factor ξ̂k can be regarded as a multiplicative noise term that affects
the signal ℓŜk. An additive noise can be filtered away more easily than a
multiplicative one, so that it is better to analyze the logarithm of ℓŜk, instead
of the quantity itself. Let us define the log-mean-periodogram as

ℓL̂k = log
(
ℓŜk

)

= log(S(fk)) + log(ℓξ̂k).
(3.32)
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The logarithm of ℓξ̂k has mean and variance given by

E
[
log
(
ℓξ̂k

)]
= ψ(ℓ)− log(ℓ); (3.33)

Var
[
log
(
ℓξ̂k

)]
= ψ′(ℓ), (3.34)

where ψ is the digamma function, i.e. the logarithmic derivative of the Euler
Gamma-function:

ψ(z) =
∂ log Γ(z)

∂z
. (3.35)

The additive noise can be redefined to be the zero mean random variable ℓλ̂k
such that

E
[
ℓλ̂k

]
= 0, Var

[
ℓλ̂k

]
= ψ′(ℓ), (3.36)

so the log-mean-periodogram becomes

ℓL̂k = log(S(fk)) +
ℓΛ + ℓλ̂k, (3.37)

where ℓΛ = ψ(ℓ) − log(ℓ) is a constant added to the true log-power spec-
trum.

The whole problem of estimating the zero frequency value of the power
spectrum to obtain the heat conductivity has been recast into the issue of
denoising the low-frequency part of the log-periodogram of the heat flux
time-series. Such a signal happens to have a rather smooth behavior at large
scales (i.e. small frequencies3), while at small scales the noise dominates and
the details are indiscernible.

The idea behind the so called cepstral analysis [Ercole, Marcolongo, et al.,
2017] is to find a way to keep the Fourier components of ℓL̂k associated to
the large scale behavior, while discarding the high frequency oscillations due
to the noise. One can define the cepstrum of the time-series Jn as the inverse
Fourier-transform of the log-mean-periodogram:

ℓĈn
def
=

1

N

N−1∑

k=0

ℓL̂ke
−2πikn/N . (3.38)

In the large N limit a generalized form of the Central Limit Theorem ap-
plies [Peligrad and Wu, 2010], so that these random variables are almost
surely4 independent identically distributed zero mean Gaussian variables:

ℓĈn = δn,0
ℓΛ +Cn +

ℓµn, (3.39)

where ℓµn are zero-mean normal variables with variance given by

⟨
ℓµ2ℓ

⟩
=
ψ′(ℓ)

N
for n ̸∈ {0,N/2}

and ⟨
ℓµ2ℓ

⟩
= 2

ψ′(ℓ)

N
otherwise,

3 Here the word frequency indicates the frequency of oscillation of the new signal ℓL̂k, not the
physical frequency associated to the oscillations of the time-series of the heat flux.

4 Here almost surely means that the probability of the event not happening is zero.
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and the Cn are

Cn =
1

N

N−1∑

k=0

log (S(fk)) e
2πikn/N . (3.40)

To discard the high-frequency part of the signal ℓL̂k means to keep only the
cepstral coefficients that are significantly different from zero, i.e. to choose
an integer P ∗ such that the f = 0 component of the log-spectrum can be
estimated from

ℓL̂∗
0 =

ℓĈ0 + 2
P ∗−1∑

n=1

ℓĈn

=ℓΛ + log(S(f = 0)) + ℓµ0 + 2
P ∗−1∑

n=1

ℓµn.

(3.41)

From the properties of ℓµn it follows that ℓL̂∗
0 is normal with mean and

variance given by

E
[
ℓL̂∗

0

]
= log(S(f = 0)) + ℓΛ; (3.42)

Var
[
ℓL̂∗

0

]
= ψ′(ℓ)

4P ∗ − 2

N
. (3.43)

The quality of the signal’s feature extraction depends on how the num-
ber of significant coefficients P ∗ is chosen. Ercole, Marcolongo, et al., 2017

suggested to use Akaike’s Information Criterion [Akaike, 1974] to estimate
the number of coefficients to retain. Given a statistical model, the AIC is a
sample statistic defined as:

AIC(P ) = −2max
θ

logL (θ,P ) + 2P , (3.44)

where L (θ,P ) is the likelihood function of the set of P parameters upon
which the chosen models depends, θ = {θ1, θ2, , . . . , θP }.

The optimal number of parameters is the one that minimizes the AIC

function, i.e.:

P ∗ = argmin
P

AIC(P ). (3.45)

In our case, the parameters are the cepstral coefficients Cn of eq. (3.40). The
log-likelihood of these parameters is

2 logL (C,P ) = − N

2σ2ℓ
(C0 + Λℓ − Ĉ0)

2+

− N

σ2ℓ

P−1∑

n=1

(Cn − Ĉn)
2 − N

σ2ℓ

N/2∑

n=P

Ĉ2
n. (3.46)

Since finding the argument that maximizes a function is equivalent to find-
ing the argument that minimizes the negative of that function, the AIC of
this model can be written as:

AIC(P ) = min
C

[
N

2σ2ℓ
(C0 + Λℓ − Ĉ0)

2+

+
N

σ2ℓ

P−1∑

n=1

(Cn − Ĉn)
2 − N

σ2ℓ

N/2∑

n=P

Ĉ2
n

]
+ 2P . (3.47)



3.3 cepstral analysis 29

The minimum of the negative log-likelihood is readily found by nullifying
the squares in the above equation. Then, the AIC function becomes:

AIC(P ) =
N

σ2ℓ

N/2∑

n=P

Ĉ2
n + 2P . (3.48)

The final step is to choose P ∗ as the one that minimizes the above function
i.e., by explicitly referring to the value of σ2ℓ :

AIC(P ) =
N

ψ′(ℓ)

N/2∑

n=P

Ĉ2
n + 2P . (3.49)

3.3.1 Multi-component cepstral analysis

In the general case, say a system admits M interacting conserved fluxes,
the first being the energy flux. A cross-spectrum can be defined as a straight-
forward generalization of the power-spectrum [Bertossa et al., 2018]:

Sij(ω) =

∫ ∞

−∞

⟨
J i(t)J j(0)

⟩
eiωtd t. (3.50)

In analogy to eq. (3.18), the Onsager matrix elements Lij are proportional to
the zero frequency value of the associated cross-spectrum:

Lij =
Ω
2kB

Sij
0 , (3.51)

where Sij
0 = Sij(0).

When all the fluxes but the energy flux vanish, the thermal conductivity
can be expressed as

κ =
1

T 2(L̂−1)EE
=

Ω
2kBT 2

S′
0, (3.52)

S′(ω) = 1
/
(Ŝ−1)EE . (3.53)

The function S′(ω) takes the name of multi-component power spectrum. An
equilibrium MD simulation allows to sample M stationary stochastic pro-
cesses, one for each conserved flux. It is useful to think of each flux as a
component of a multivariate stochastic process. As in (3.29), let us assume
there are ℓ independent samples of this multivariate random process, and
let us denote its realization as

{pJ : ni}, p = 1, . . . , ℓ; i = 1, . . . ,M ; n = 0, . . . ,N − 1, (3.54)

where the independent samples can be e.g. the cartesian components of the
fluxes in an isotropic medium or different segments of a long trajectory. The
asymptotically unbiased estimator of the cross-spectrum in this case is the
cross-periodogram:

ℓM Ŝij
k

def
=

ε

ℓN

ℓ∑

p=1

(
pJ̃ i

k

)∗
pJ̃ j

k , (3.55)

⟨
ℓM Ŝij

k

⟩
= Sij(ωk). (3.56)
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In the large N limit the real and the imaginary part of pJ̃ i
k are normal ran-

dom variable uncorrelated for different k. Arranging the (i, j) components
of the cross-periodogram in a square M ×M matrix gives a realization of
the random process associated to the covariance matrix of a complex zero
mean normal deviate: the random distribution of such a process is called
Complex Wishart distribution:

ℓM Ŝk ∼ CWM (S(ωk), ℓ) . (3.57)

The parameter ℓ is the number of degrees of freedom, i.e. the number of
independent samples of the normal processes. M is the rank of the matrix,
while S is its expectation value. A matrix drawn from a Complex Wishart
distribution admits a Bartlett decomposition of the form:

ℓM Ŝk =
1

ℓ
C(ωk)RR⊤C†(ωk), (3.58)

where C(ωk) is the complex upper-triangular matrix known as the Cholesky
factor of S(ωk), with the property

S(ωk) = C(ωk)C†(ωk) (3.59)

and R is a lower-triangular random matrix of the form

R =

⎛
⎜⎜⎜⎜⎜⎝

c1 0 0 · · · 0

n21 c2 0 · · · 0

n31 n32 c3 · · · 0
...

...
...

. . .
...

nM1 nM2 nM3 · · · cM

⎞
⎟⎟⎟⎟⎟⎠

, (3.60)

where c2i ∼ χ2
2(ℓ−i+1) and nij ∼ N (0, 1). The matrix R is independent of

S(ωk), as it depends only on ℓ and M . Hence, it is independent of the
ordering of the fluxes J i.

We are interested in the EE, i.e. (1, 1), matrix element of the inverse
cross-periodogram, since it is related to the thermal conductivity. It can be
expressed ad the ratio between the (1, 1)-minor of ℓM Ŝk and the full deter-
minant of the same matrix, i.e.:

(
ℓM Ŝ−1

k

)EE
=

det
([

ℓM Ŝk
]
11

)

det
(
ℓM Ŝ−1

k

) , (3.61)

where
[
ℓM Ŝk

]
11

has been used as a short-hand notation for the (1, 1)-minor
of ℓM Ŝk. The determinant of the cross periodogram can be calculated thanks
to the properties of its Bartlett decomposition:

det
(
ℓM Ŝ−1

k

)
= det

(
1

ℓ
C(ωk)RR⊤C†(ωk)

)

=
1

ℓM
det (R) det

(
R⊤
)
det
(
C(ωk)C†(ωk)

)

=
1

ℓM
det (R) det

(
R⊤
)
det (S(ωk)) ,

(3.62)

where equation (3.59) has been used.
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The determinant of a triangular matrix is the product of its diagonal ele-
ments, thus:

det
(
ℓM Ŝ−1

k

)
=

1

ℓM
det (S(ωk)) c

2
1c

2
2 · · · c2M . (3.63)

An analogous computation yields the value of the minor determinant:

det
([

ℓM Ŝk

]
11

)
=

1

ℓM−1
det ([S(ωk)]11) c

2
1 · · · c2M−1. (3.64)

The ratio turns out to be:

(
ℓM Ŝ−1

k

)EE
=ℓ

det ([S(ωk)]11)

det (S(ωk))

1

c21

=
ℓ

c2M

(
S−1(ωk)

)EE
(3.65)

so, rearranging the terms one gets:

1
(
ℓM Ŝ−1

)EE
=

c2M

ℓ (S−1(ωk))
EE

. (3.66)

Taking the expectation value of both sides yields:

E

[
1

(
ℓM Ŝ−1

)EE

]
=

E
[
c2M
]

ℓ (S−1(ωk))
EE

=
2(ℓ−M + 1)

ℓ (S−1(ωk))
EE

=
2(ℓ−M + 1)

ℓ
S′(ωk).

(3.67)

This means that an unbiased estimator of the multi-component power spec-
trum is:

ℓM Ŝ′
k =

ℓ

2(ℓ−M + 1)

1
(
ℓM Ŝ−1

k

)EE

def
=S′(ωk)

ℓM ξ̂k,

(3.68)

where ℓM ξ̂k are random variables independent for each k and distributed as

ℓM ξ̂k ∼ 1

2(ℓ−M + 1)
χ2
2(ℓ−M+1). (3.69)

This is the direct generalization of equation (3.29). It can be easily verified
that the case M = 1 reduces consistently to the one-component procedure
outlined in section 3.3.

The definition (3.38) of the cepstrum follows straightforwardly from the
one-component case:

ℓM Ĉn
def
=

1

N

N−1∑

k=0

log
(
ℓM Ŝ′

k

)
e−2πi kn

N , (3.70)
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and the subsequent analysis yields

log (S′
0) = −Λ +

P ∗−1∑

n=−P ∗+1

ℓM Ĉn ± σ∗, (3.71)

σ∗(P ∗,N)2 = σ2
4P ∗ − 2

N
, (3.72)

where Λ = ψ(ℓ−M + 1)− log(ℓ−M + 1) and σ2 = ψ′(ℓ−M + 1). The esti-
mate of the thermal conductivity becomes, using equations (3.52) and (3.71):

κ =
Ω

2kBT 2
exp

[
P ∗−1∑

n=−P ∗+1

ℓM Ĉn −ψ(ℓ−M + 1)− log(ℓ−M + 1)

]
, (3.73)

while its statistical error:

εκ = κ

√
ψ′(ℓ−M + 1)

4P ∗ − 2

N
. (3.74)

Both the one-component and the multi-component cepstral analysis tech-
niques are implemented in the thermocepstrum open-source code [Ercole
and Bertossa, 2018].



4 I M P L E M E N TAT I O N O F T H E H E AT
F L U X C A LC U L AT I O N

The implementation of the heat flux formula (1.43) in the MD package
DL_POLY requires to choose a way to distribute the total potential
energy into atomic contributions and to calculate the derivatives of

the atomic energies with respect to the coordinates of the other atoms. Once
the atomic energies and the respective derivatives are computed, the heat
flux can be calculated and written in a file at each simulation step. The many
contributions to the total energy of the MB-pol force-field request particular
care in doing this operation: in the next sections each term that will enter
the heat flux formula will be analyzed and explained.

4.1 energy distribution

The convective contribution to the heat flux is

Jconv =
1

Ω

∑

i

ϵiVi, (4.1)

i.e. the first sum in equation (1.43). Each paragraph in this section will
contribute a term in equation (4.1). This section addresses the potential
energy distribution among atoms: for each type of interaction, a contribution
to ϵi (and, consequently, to eq. (4.1)) will be defined.

4.1.1 Water monomer energy

In this section we will review how the Partridge-Schwenke monomer en-
ergy model [Partridge and Schwenke, 1997] is implemented in DL_POLY, and
how each contribution to the monomer energy enters the heat flux formula.

Bond term

The subroutine bndfrc calculates the bond contribution to the monomer
energy, i.e. the pairwise interaction between atoms within a given water
molecule. Such contribution is the Morse-like term given in (2.4). The in-
teraction is pairwise, so the natural choice is to distribute equally the bond
energy between the two atoms involved. If Φbond

iaja
is the potential energy of

the bond between two atoms ia and ja within the same molecule a, the en-
ergy associated to each atom is 1

2Φbond
iaja

and the contribution to the convective
heat flux is

Jbond
conv =

1

Ω

Nmol∑

a=1

3∑

ia=1

∑

ja( ̸=ia)

1
2Φbond

iaja Via . (4.2)

33
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Angular term

The subroutine angfrc calculates the angular constraints acting on the
atoms within a given water molecule so that it tends to keep the HOH angle
at a fixed value. The analytic form of such contribution is given in eq. (2.5).
This contribution involves three atoms at the same time, so it is not a pair
potential, but a three-body term. The angular energy Φang

a of the three atoms
in the a-th water molecule is distributed equally among them:

Φang
ia

= 1
3Φang

a , (4.3)

where ia = 1, 2, 3 is the atomic label that runs among the three atoms in the
a-th molecule. The contribution to the convective heat flux is:

J
ang
conv =

1

Ω

Nmol∑

a=1

3∑

ia=1

1
3Φang

a Vil , (4.4)

where Nmol is the number of water molecules.

4.1.2 Water dimer energy

The computation of the dimer terms, whose mathematical form is given
in section 2.3 at page 17, is handled by the module mbpol and the subroutine
srfrce2.

Short range term

The short range part of the interaction is computed by the subroutine
do_dimer. Although being presented as a two-body term, it is actually a six-
body potential, because each of the three atoms in each molecule interacts
with the other five. The total energy Φ(2B)

ab of the dimer made of molecules a
and b is distributed equally among the six atoms:

Φ(2B)
iajb

= 1
6Φ(2B)

ab , (4.5)

so that the contribution to the convective heat flux is:

J
(2B)
conv =

1

Ω

Nmol∑

a<b

⎡
⎣

3∑

ia=1

1
6Φ(2B)

ab Via +
3∑

jb=1

1
6Φ(2B)

ab Vjb

⎤
⎦ (4.6)

Dispersion term

The Van der Waals-like dispersion energy is computed in the subroutine
srfrce2. Its expression is given in equation (2.14). The dispersion energy is
represented by a pair potential, so this contribution to the dimer energy, say
ΦVdW

iajb
, is distributed equally between the two atoms ia in molecule a and jb

in molecule b. The term to be added to the convective heat flux is

JVdW
conv =

1

Ω

Nmol∑

a<b

3∑

ia=1

3∑

jb=1

[
1
2ΦVdW

iajb
Via +

1
2ΦVdW

iajb
Vjb

]
. (4.7)
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4.1.3 Water trimer energy

The trimer term, i.e. the contribution to the total energy which involves ex-
plicitly triplets of water molecules, is computed in the subroutine do_trimer

in the module mbpol. Its mathematical form is given by eq. (2.21).
Analogously to the dimer short-range term, the trimer energy is actually

a nine-body term, being nine (three per molecule) the total number of atoms
involved in the interaction. Since none of the three molecules is privileged
in any way, the total energy should be distributed equally among the three
molecules. Then, one third of the energy of a single molecules has been
assigned to each atom in it. So the total energy Φ(3B)

abc of the trimer made of
molecules a, b, and c is equally distributed among the nine interacting atoms.
The contribution to the convective heat flux is:

J
(3B)
conv =

1

Ω

Nmol∑

a<b<c

⎡
⎣

3∑

ia=1

1
9Φ(3B)

abc Via +
3∑

jb=1

1
9Φ(3B)

abc Vjb +
3∑

kc=1

1
9Φ(3B)

abc Vkc

⎤
⎦ . (4.8)

4.1.4 Electrostatic energy

As shown in equation (A.15) in appendix A, only an effective charge-
charge electrostatic contribution and the polarization energy survives1:

Uelec,tot =
1
2

∑

i,j

qiqj
Rij

+
∑

i

µi ·µi

2αi
. (4.9)

The long range nature of the charge-charge interaction requires the Ewald
summation approach [de Leeuw et al., 1980] to reduce the computational
cost when there are periodic boundary conditions. A neutralizing Gaussian
charge distribution is added to the original set of point charges, so that the
range of the interaction becomes shorter and converges quicker; another
Gaussian charge distribution of opposite sign is also added, to compensate
for the additional charge previously put in the system. The computation of
the energy is then split into three terms:

• A direct-space part, i.e. the rapidly converging computation of the in-
teraction energy among the point-charges plus the neutralizing density
contribution;

• A reciprocal-space part, i.e. the computation of the interaction between
the point charges and the compensating charge distributions. Also
this term converges rapidly if calculated in Fourier domain, hence the
name of “reciprocal” term;

• A self-interaction correction part, which corrects for the self-interaction
contribution included in the previous term.

1 The Thole-smearing functions are not shown here for ease of notation. The calculation of the
energy terms in the presence of those functions proceeds in the same way and the result is
in eq. (A.22).
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Direct space term

The direct-space term is calculated in the subroutine ewald2p. It is due to
the interaction of the neutralized charges. The Gaussian charge distribution
at site i has the form:

ρi(x) =
η3

π3/2 qie
−η2|x−Ri|2 , (4.10)

where η is a parameter that controls the width of the Gaussian. The interac-
tion energy between the charges and the charge densities above becomes:

U
(CC)
dir = 1

2

∑′

m∈Z3

∑

i,j

qiqj
erfc(η |Rij +mL|)

|Rij +mL|
def
=
∑

i

U
(CC)
dir,i ,

(4.11)

where erfc(x) = 1− erf(x) is the complementary error function, and the
primed summation means that, when m=0, the i=j self-interaction should
be excluded. L is the linear dimension of the simulation box. Equation (4.11)
yields a natural way to distribute the energy among the atoms, with U

(CC)
dir,i

the energy associated to atom i. The convective heat flux associated to this
type of interaction is

J
(CC)dir
conv =

1

Ω

N∑

i=1

U
(CC)
dir,i Vi. (4.12)

Reciprocal space term

The reciprocal space term is calculated in the subroutine ewald1p. It is
the contribution due to the interaction of charges qi in the i-th site with
the all the periodic images of the Ewald charge densities in the other sites,
plus their own images in all the periodic cells except for the central one,
where the charge is placed. The charge qi interacts with the electrostatic
potential due to all the sources listed above. The Ewald approach consists
in Fourier-transforming the total charge density of the sources, calculating
the electrostatic potential in reciprocal space and then Fourier-transforming
back to real space to compute the electrostatic interaction energy between
the charge and the potential.

The total charge density of the sources is:

ρ(x) =
∑

j

∑

m∈Z3

η3

π3/2 qje
−η2|x−Rj+mL|2 , (4.13)

where m points at the center of one of the periodic cells and L is the length
of a side of the cell. Its Fourier-transform is:

ρ̃(k) =
1

Ω

∫

Ω
d3xρ(x)e−ik·x

=
1

Ω

∫

Ω
d3x

∑

j

∑

m∈Z3

η3

π3/2 qje
−η2|x−Rj+mL|2e−ik·x

=
∑

j

qj
Ω

∫

R3

d3xe−ik·x η3

π3/2 e
−η2|x−Rj |2 ,

(4.14)
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where additivity of the integral has been exploited, and Ω is the volume of
the simulation cell. By a change of variable x ↦→ x+Rj one obtains:

ρ̃(k) =
∑

j

qj
Ω

∫

R3

d3xe−η2x2−ik·x η3

π3/2

=
∑

j

qj
Ω
e−k2/4η2

=
1

Ω
e−k2/4η2S(k),

(4.15)

where the structure factor S(k) has been defined.
Poisson’s equation in reciprocal space reads:

k2ϕ̃c(k) = 4πρ̃(k), (4.16)

so that

ϕ̃c(k) =
4π

k2
ρ̃(k)

=
4π

k2

∑

j

qj
Ω
e−k2/4η2 .

(4.17)

Let us anti-Fourier-transform eq. (4.17) to get the direct-space electrostatic
potential due to the reciprocal term in Ewald’s summation:

ϕc(x) =
∑

k ̸=0

ϕ̃c(k)e
ik·x

=
∑

k ̸=0

4π

Ω
e−k2/4η2

k2

∑

j

qje
ik·(x−Rj).

(4.18)

The total interaction energy between the charges and the potential is:

U
(CC)
rec = 1

2

∑

i

qiϕc(Ri),

= 1
2

∑

i,j

qiqj
4π

Ω

∑

k ̸=0

e−k2/4η2

k2
eik·Rij .

(4.19)

Such expression is apparently complex (i.e. it belongs to C) but, since
eit = cos(t) + i sin(t) and since the sum over k is spherical2, only the even
term survives:

U
(CC)
rec =

∑

i,j

qiqj
2π

Ω

∑

k ̸=0

e−k2/4η2

k2
cos(k ·Rij)

=
∑

i

2π

Ω

∑

k ̸=0

∑

j

qiqj
e−k2/4η2

k2
cos(k ·Rij).

(4.20)

A natural way to define the atomic energy is, then:

U
(CC)
rec,i = qiϕc(Ri) =

2π

Ω

∑

k ̸=0

e−k2/4η2

k2
qi
∑

j

qj cos(k ·Rij), (4.21)

2 “Spherical” here means that for every k in the sum, there is also its opposite −k.
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which is the contribution given by each atom to the interaction energy ap-
pearing in the sum in equation (4.19). The contribution to the convective
heat flux of the reciprocal Ewald summation is

J
(CC)rec
conv =

1

Ω

N∑

i=1

U
(CC)
rec,i Vi. (4.22)

Self-interaction term

A self-interaction term must be included to correct for the spurious con-
tribution to the reciprocal space energy. It is calculated in the subroutine
ewald3p. Its expression can be obtained from Poisson’s equation for eq. (4.18)
in spherical coordinates3:

−1

r

∂2rϕc(r)

∂r2
=4πρ(r)

=4π
η3

π3/2 qie
−η2r2 .

(4.23)

Integration with respect to r on both sides yields:

−∂rϕc(r)
∂r

=4π

∫ r

∞
dr rρ(r′)

=4π

∫ r

∞
dr r

η3

π3/2 qie
−η2r2

=− 2qiηe
−η2r2

√
π

.

(4.24)

A second partial integration gives the result for ϕc(r):

ϕc(r) =
2qiη erf(ηr)√

π
. (4.25)

The self-interaction term is the interaction between the point charges and this
electrostatic potential at r = 0, with the minus sign since it is a correction:

Uself =
∑

i

qiϕc(0) (4.26)

=− η√
π

∑

i

q2i . (4.27)

It is already expressed as a sum over particles, so the atomic contribution is
simply:

Uself,i = − η√
π
q2i . (4.28)

The convective heat flux associated to the self-interaction correction is

Jself
conv =

1

Ω

N∑

i=1

Uself,iVi. (4.29)

3 The Gaussian charge density in the right-hand side of the Poisson’s equation is spherical,
and so must be the electrostatic potential in the left-hand side.
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Polarization energy

The polarization energy is the energy required to induce the dipoles. Its
expression is:

Upol =
∑

i

µi ·µi

2αi
, (4.30)

where αi is the polarizability of the i-th site. An immediate way to distribute
the energy over the atoms is to define:

Upol,i =
µi ·µi

2αi
. (4.31)

The contribution to the convective heat flux is

J
pol
conv =

1

Ω

N∑

i=1

Upol,iVi. (4.32)

4.2 force distribution

The virial part of the heat flux is

Jvir = − 1

Ω

∑

i,j

∂Φj

∂Ri
·Vi (Ri −Rj) (4.33)

It requires a decomposition of the total force on an atom and, in particular,
the calculation of expressions like

∑

j

−
(
∂Φj

∂Ri
·Vi

)
(Ri −Rj), ∀i. (4.34)

In the special case of a pair potential, the total force on an atom can be
decomposed into pair forces that satisfy Newton’s action-reaction law:

Φtot
pair =

∑

i

∑

j( ̸=i)

1
2ϕij(Rij), (4.35)

Fi =
∑

j( ̸=i)

Fij , (4.36)

Fij = −∂Φij

∂Rij
= −Fji. (4.37)

The gradient of the j-th atomic energy with respect to the i-th atomic coor-
dinate is

∂Φj

∂Ri
= 1

2

∂ϕij
∂Rij

− 1
2

∑

k( ̸=j)

δij
∂ϕkj
∂Rkj

. (4.38)
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The second term in the right-hand side in the above equation does not con-
tribute, once inserted in eq. (4.33): when i=j, Ri −Rj=0. Jvir for a pair
potential becomes

J
pair
vir =− 1

Ω

∑

i,j

[
1
2

∂ϕij
∂Rij

·Vi

]
(Ri −Rj)

=
1

Ω

∑

i,j

[
1
2Fij ·Vi

]
(Ri −Rj)

=− 1

Ω

∑

i

⎡
⎣−

∑

j

1
2 (Ri −Rj)⊗Fij

⎤
⎦ ·Vi

=−
∑

i

↔
Wi ·Vi

(4.39)

where
↔
Wi is the contribution to the potential virial stress due to the i-th atom.

Let us define a slightly modified version of the atomic virial stress as:

↔
Wi

def
=

1

Ω

∑

j

(Ri −Rj)⊗
∂Φj

∂Ri

≡
∑

j

↔
σij

(4.40)

where in this case the potential energy per particle is obtained from a general
many body potential, e.g. as those described in section 4.1.

In the following, the the word “stress” will refer to what is defined in
equation (4.40) so that, when the interaction is pairwise, the expression re-
duces to the one in (4.39). It is worth noting that the actual atomic virial
stress tensor for a many-body potential is not necessarily the one defined
in (4.40); however, the expression required by the heat flux formula (1.43) is
the one in equation (4.40).

In the following sections, each contribution to the virial heat flux will be
described.

4.3 water monomer stress

Let us analyze how the intra-molecular stress can be distributed to the
three atoms in a water molecule.

4.3.1 Bond term

The subroutine bndfrc calculates the pairwise bond contribution to the
stress. For each pair of interacting atoms i and j, the subroutine computes
the force Fij that one exerts on the other as the gradient of the interaction
energy (2.4) between the two atoms with respect to the position of one of the
atoms, i.e.:

Fbond
ij = −

∂Φbond
iaja

(|Ria −Rja |)
∂Riaja

. (4.41)
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The stress contribution is:

↔
σbond

iaja = − 1

Ω
Riaja ⊗ 1

2F
bond
iaja , (4.42)

The contribution to the virial heat flux is

Jbond
vir = −

Nmol∑

a=1

3∑

ia=1

⎡
⎣

3∑

ja( ̸=ia)

↔
σbond

iaja

⎤
⎦ ·Via (4.43)

4.3.2 Angular term

The subroutine angfrc calculates the contribution to the total stress due to
the angular restraints which shape the water molecules. This interaction in-
volves the three atoms in a water molecules and its functional form depends
explicitly on the hydrogen-oxygen distances and on the angle HOH:

• The force FH1 exerted by the oxygen on the first hydrogen atom is
calculated;

• The force FH2 on the second hydrogen atom is calculated;

• The force on the oxygen atom is calculated via the conservation of
linear momentum4 as

FO = −FH1 −FH2.

Here the interaction is not pairwise: the choice of the energy decomposi-
tion induces the criterion for the force decomposition. Having distributed
equally the angular energy among the three atoms in the molecule yields,
for the atomic angular virial stress

↔
σ

ang
iaja

=
1

Ω
(Ria −Rja)⊗

∂Φang
ja

∂Ria

=
1

Ω
(Ria −Rja)⊗ 1

3

∂Φang
a

∂Ria

.

(4.44)

The virial heat flux associated to the angular interaction is

J
ang
vir = −

Nmol∑

a=1

3∑

ia=1

⎡
⎣

3∑

ja( ̸=ia)

↔
σ

ang
iaja

⎤
⎦ ·Via . (4.45)

4.4 water dimer stress

In this section the contribution to the stress due to the two-molecule inter-
actions will be treated.

4 I.e., using the fact that the sum of the internal forces must be zero, being the time-derivative
of the total momentum.
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4.4.1 Short range

The short-range interaction between two water molecules due to the over-
lap of electronic orbitals is calculated by the subroutines contained in the
module mbpol. The program calculates the force exerted by a molecule to
the other via the gradient of the analytic potential (2.16). This term is a
many-body contribution, since the interaction energy is a function of all the
positions of the six atoms in the molecules. The energy has been distributed
equally among the six atoms, so the expression of the inter-atomic stress
contribution between atom ia in molecule a and atom jb in molecule b is

↔
σ

(2B)
iajb

=
1

Ω
(Ri −Rj)⊗ 1

6

∂Φ(2B)
ab

∂Ria

, (4.46)

↔
W

(2B)
ia

=
1

Ω

Nmol∑

b( ̸=a)

3∑

jb=1

(Ria −Rjb)⊗ 1
6

∂Φ(2B)
ab

∂Ria

(4.47)

and the expression of the virial heat flux to be added to the total heat flux is

J
(2B)
vir = −

Nmol∑

a=1

3∑

ia=1

↔
W

(2B)
ia

·Via . (4.48)

4.4.2 Dispersion term

The dispersion terms are pairwise interactions calculated in the subrou-
tines srfrce2 and lrcorrect. The forces on the two atoms involved are
calculated as the negative gradient of the potential, and the stress contribu-
tion is equally distributed among them as in eq. (4.42). The virial heat flux
is

JVdW
vir = −

N∑

i=1

↔
WVdW

i ·Vi. (4.49)

4.5 water trimer stress

As for the dimer term, the module mbpol addresses the computation of
the trimer energy, i.e. the explicit interaction of three water molecules con-
structed on highly accurate AIMD calculations. The form of the potential is
given by eq. (2.21). The forces on the nine atoms constituting the trimer is
calculated, and the contribution to the total stress is distributed as

↔
W

(3B)
ia

= − 1

Ω

Nmol∑

c( ̸=a)
b<c

⎡
⎣

3∑

jb=1

(Ria −Rjb)⊗ 1
9

∂Φ(3B)
abc

∂Ria

+

+
3∑

kc=1

(Ria −Rkc)⊗ 1
9

∂Φ(3B)
abc

∂Ria

⎤
⎦ , (4.50)
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so that the virial heat flux due to the three-body interaction is

J
(3B)
vir = −

Nmol∑

a=1

3∑

ia=1

↔
W

(3B)
ia

·Via . (4.51)

4.6 electrostatic stress tensor

The electrostatic stress tensor is more complicated than the other contri-
butions explained before. Since the computation of the long-range Coulomb
interaction is performed via the Ewald summation approach, even the stress
tensor calculation divided into three different components: a direct-space
term, a reciprocal-space term, and a self-interaction correction term. Since
in MB-pol water every atom has a polarizability, in presence of an electric
field an induced dipole is established; the total electrostatic energy is then
reduced to a charge-charge interaction term plus a polarization term, as ex-
plained in eq. (A.17). However, to compute forces the whole expression of
the interaction is required, i.e. one has to take into account the dipole-dipole
and charge-dipole terms too.

4.6.1 Direct-space term

The derivation of the atomic stress tensor will be divided into the three
different contributions:

• The charge-charge (CC) term;

• the charge-dipole (CD) term;

• the dipole-dipole (DD) term.

In the code, the calculation is done by the subroutine ewald2p.

CC term

Let us recall formula (4.11):

U
(CC)
dir,i = 1

2

∑′

m∈Z3

∑

j

qiqj
erfc(η |Rij + hm|)

|Rij + hm|

= 1
2

∑′

m∈Z3

∑

j

qiqj
erfc(ηRmij)

Rmij
,

(4.52)

where

h =
(
a, b, c

)
(4.53)

is the matrix of the cell (column) vectors and Rmij = Rij + hm has been
conveniently defined as a shorthand notation. The total force on the i-th
particle due to this type of interaction is given by

Fi = −
∑′

n∈Z3

∂U
(CC)
dir,i

∂Rni
. (4.54)
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It is worth calculating the derivative of the complementary error function
divided by its argument:

d(erfc(x)/x)
dx

= −2e−x2

√
πx

− erfc(x)

x2
. (4.55)

With this result we obtain, for eq. (4.54):

Fi = −1
2

∑′

n∈Z3

∑

j

qiqj

[
−2e−η2R2

nijηRnij√
π

− erfc(ηRnij)

]
Rnij

R3
nij

=
∑′

n∈Z3

∑

j

1
2qiqj

[
2e−η2R2

nijηRnij√
π

+ erfc(ηRnij)

]
Rnij

R3
nij

≡
∑′

n∈Z3

∑

j

Fnij ,

(4.56)

where Fnij is the force exerted on particle i by the image of particle j in the
image cell placed in hn. The stress tensor contribution is, then:

W
(CC)
dir,i,αβ = − 1

Ω

∑′

n∈Z3

∑

j

Rnij,αFnij,β

= − 1

2Ω

∑′

n∈Z3

∑

j

qiqj

[
2e−η2R2

nijηRnij√
π

+

erfc(ηRnij)

]
Rnij,αRnij,β

R3
nij

.

(4.57)

CD term

The charge-dipole interaction energy in the Ewald framework has not been
calculated above, since it is not explicitly computed by the program. How-
ever, it is easily obtained from (4.52) by mapping one of the two charges in
the sum as

qk ↦→ µk ·
∂

∂Rnk
. (4.58)



4.6 electrostatic stress tensor 45

To obtain a nice formula it is expedient to consider half of the interaction
energy as due to the interaction of charges with dipoles, and half as due to
the interaction of dipoles and charges:

U
(CD)
dir,i = 1

4

∑′

m∈Z3

∑

j

qi

(
µj ·

∂

∂Rmj

)
erfc(ηRmij)

Rmij
+

+ 1
4

∑′

m∈Z3

∑

j

qj

(
µi ·

∂

∂Rmi

)
erfc(ηRmij)

Rmij

= −1
4

∑′

m∈Z3

∑

j

qi (µj ·Rmij)

[
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

]
+

+ 1
4

∑′

m∈Z3

∑

j

qj (µi ·Rmij)

[
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

]

= −1
4

∑′

m∈Z3

∑

j

[qi(µj ·Rmij)+

− qj(µi ·Rmij)]

(
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

)
.

(4.59)

The force, calculated as in (4.54), is

Fi =
1
4

∑′

m∈Z3

∑

j

(qiµj − qjµi)

(
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

)
+

− 1
4

∑′

m∈Z3

∑

j

[qi(µi ·Rmij)− qj(µi ·Rmij)]×

×
(
2ηRmije

−η2R2
mij (1+ η2R2

mij)√
π

+ erfc(ηRmij)

)
2Rmij

R4
mij

, (4.60)

which is again possible to express as a sum of pairwise terms. The stress
contribution will be

W
(CD)
dir,i,αβ = − 1

Ω

∑′

n∈Z3

∑

j

Rnij,αFnij,β

= − 1

4Ω

∑′

m∈Z3

(qiµjβ − qjµiβ)

(
2e−η2R2

mijηRmij√
π

+

erfc(ηRmij)

)
Rmijα+

− 1
4

∑′

m∈Z3

∑

j

[qi(µi ·Rmij)− qj(µi ·Rmij)]×

×
(
2ηRmije

−η2R2
mij (1+ η2R2

mij)√
π

+

+ erfc(ηRmij))
2RmijαRmijβ

R4
mij

.

(4.61)
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DD term

The dipole-dipole interaction energy is obtained from (4.52) by mapping
both charges as in (4.58):

U
(DD)
dir,i = 1

2

∑′

m∈Z3

∑

j

(
µi ·

∂

∂Rmi

)(
µj ·

∂

∂Rmj

)
erfc(ηRmij)

Rmij
. (4.62)

The calculation goes on similarly as before, and the result is:

U
(DD)
dir,i = 1

2

∑′

m∈Z3

∑

j

{[
µi ·µj

R3
mij

− 3
(µi ·Rmij)(µj ·Rmij)

R5
mij

]
×

×
(
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

)
+

− (µi ·Rmij)(µj ·Rmij)

R3
mij

4η3e−η2R2
mijRmij√
π

}
. (4.63)

The computation of the associated stress is tedious, but straightforward, so
only the result will be given:

W
(DD)
dir,i,αβ = − 1

2Ω

∑′

m∈Z3

∑

j

{[
(µi ·µj)

3RmijαRmijα

R5
mij

+

−
(
15

(µi ·Rmij)(µj ·Rmij)

R7
mij

RmijαRmijβ+

− 3
µj ·Rmij

R5
mij

Rmijαµiβ

)](
2e−η2R2

mijηRmij√
π

+ erfc(ηRmij)

)

+

[
µi ·µj

R3
mij

− 3
(µi ·Rmij)(µj ·Rmij)

R5
mij

]
4e−η2R2

mijη3Rmij√
π

RmijαRmijβ+

+

[
3RmijαRmijβ(µi ·Rmij)(µj ·Rmij)

R5
mij

+

+ −Rmijα (µiβ(µj ·Rmij) + µjβ(µi ·Rmij))

R3
mij

]
×

× 4e−η2R2
mijη3Rmij√
π

+
(µi ·Rmij)(µj ·Rmij)

R3
mij

×

×
(
4e−η2R2

mijη3√
πRmij

− 8
e−η2R2

mijη5Rmij√
π

)
RmijαRmijβ

}
. (4.64)

The total direct space atomic electrostatic stress tensor is the sum of the three
contributions of eq. (4.57), (4.61) and (4.64):

↔
Wdir,i =

↔
W

(CC)
dir,i +

↔
W

(CD)
dir,i +

↔
W

(DD)
dir,i . (4.65)

The virial heat flux associated to the direct-space electrostatic interaction is

Jdir
vir =

N∑

i=1

↔
Wdir,i ·Vi. (4.66)
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4.6.2 Reciprocal-space term

The reciprocal space term is due to the Ewald summation method to han-
dle the long-range part of the electrostatic interaction. As for the direct space
part, there are three contributions.

The atomic stress tensor cannot be calculated as usual, because it is im-
possible to write the total force on an atom into a sum of pair terms and the
interaction is long-ranged. To circumvent this problem, the thermodynamic
definition of stress will be used, i.e.:

Wαβ = − 1

Ω

∑

γ

∂Φ
∂hαγ

hβγ , (4.67)

where hαβ are the matrix elements of (4.53), i.e. the components of the
simulation cell vectors.

In the code, the reciprocal space contribution to the stress tensor is cal-
culated by the subroutine ewald1p. Before explicitly computing the Ewald
contribution to the atomic stress tensor, some useful preliminary results will
be obtained.

derivative of the volume. The simulation cell volume is calculated as

Ω = (a× b) · c = det(h). (4.68)

The derivative of the volume with respect to an element of h reads:

∂Ω
∂hαβ

=
∂ det(h)

∂hαβ
. (4.69)

This can be computed via Jacobi’s formula i.e., for a square matrix A of
elements Aij :

∂ det(A)

∂Aij
= Cij(A), (4.70)

where Cij(A) is the cofactor matrix of A. In the present case:

∂ det(h)

∂hαβ
=
[
(det(h)h−1)T

]
αβ

= det(h)h−1
βα

= Ω(h−1)βα ≡ Ωh−1
βα,

(4.71)

where the formula for the inverse matrix A−1 = det(A)−1CT(A) has been
used.

derivative of a reciprocal space vector. The reciprocal space vec-
tors are defined as to be orthogonal to the simulation cell vectors, the prod-
uct being normalized to 2π:

k = 2π(h−1)T

⎛
⎝
l

m

n

⎞
⎠ , l,m,n ∈ Z. (4.72)
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Then the derivative of a component of k is, with K = (l,m,n):

∂kα
∂hµν

=2π
∂

∂hµν

∑

β

h−1
βαKβ

=2π
∑

β

∂h−1
βα

∂hµν
Kβ.

(4.73)

To find the derivative of the inverse of h one can differentiate the identity,
i.e.:

0 =
∂δαβ
∂hµν

=
∂

∂hµν

∑

γ

hαγh
−1
γβ

=
∑

γ

(
∂hαβ
∂hµν

h−1
γβ + hαγ

∂h−1
γβ

∂hµν

)

=
∑

γ

(
δαµδγνh

−1
γβ + hαγ

∂h−1
γβ

∂hµν

)

= δαµh
−1
νβ +

∑

γ

hαγ
∂h−1

γβ

∂hµν
,

(4.74)

so that

∑

γ

hαγ
∂h−1

γβ

∂hµν
= −δαµh−1

νβ . (4.75)

By inspection it is evident that the tensor satisfying eq. (4.75) is:

∂h−1
γβ

∂hµν
= −h−1

γµh
−1
νβ . (4.76)

The derivative in eq. (4.73) then becomes

∂kα
∂hµν

=− 2π
∑

β

h−1
βµh

−1
ναKβ. (4.77)

invariance of k ·R . Let us write a generic atomic position vector as

R = h s, (4.78)

where s is the scaled position in the simulation box, i.e. a quantity which
is invariant under cell reshaping. The scalar product k ·R can be written,
using (4.72), as

k ·R =
(
2π(h−1)TK

)
· (h s)

= 2π
∑

α

(∑

γ

h−1
γαKγ

)(∑

λ

hαλsλ

)

= 2π
∑

γ,λ

(∑

α

h−1
γαhαλ

)
Kγsλ

= 2π
∑

γ,λ

δγλKγsλ

= 2πK · s.

(4.79)
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The expression in (4.79) does not depend on the simulation cell matrix (4.53),
so its derivatives with respect to the cell vectors components will be zero.

With the results (4.71), (4.77) and (4.79), we are ready to compute the
atomic stress due to reciprocal space calculations.

CC term

The reciprocal space contribution to the charge-charge Coulombic energy
per atom is:

U
(CC)
rec,i =

2π

Ω

∑

k ̸=0

Q(k)qi
∑

j

qj cos(k ·Rij), (4.80)

where Q(k) is

Q(k) =
e−k2/4η2

k2
.

The CC stress tensor is, then:

W
(CC)
rec,i,αβ = − 1

Ω

∑

γ

∂U
(CC)
rec,i

∂hαγ
hβγ

=
2π

Ω3

∑

γ

∂Ω
∂hαγ

hβγ
∑

k ̸=0

Q(k)qi
∑

j

qj cos(k ·Rij)+

− 2π

Ω

∑

k ̸=0

∑

γ

∂Q(k)

∂hαγ
hβγqi

∑

j

qj cos(k ·Rij)

=
2π

Ω2

∑

γ

h−1
γαhβγ

∑

k ̸=0

Q(k)qi
∑

j

qj cos(k ·Rij)+

− 2π

Ω

∑

k ̸=0

∑

γ

∂Q(k)

∂hαγ
hβγqi

∑

j

qj cos(k ·Rij)

=
2π

Ω2
δαβ

∑

k ̸=0

Q(k)qi
∑

j

qj cos(k ·Rij)+

− 2π

Ω

∑

k ̸=0

∑

γ

∂Q(k)

∂hαγ
hβγqi

∑

j

qj cos(k ·Rij).

(4.81)

The derivative in (4.81) reads:

∑

γ

∂Q(k)

∂hαγ
hβγ =

∂Q(k)

∂(k2)

∂(k2)

∂hαγ
hβγ

= −Q(k)
(

1

k2
+

1

4η2

)∑

λ,γ

hβγ
∂(k2λ)

∂hαγ

= −Q(k)
(

1

k2
+

1

4η2

)∑

λ,γ

2kλ
∂kλ
∂hαγ

hβγ ,

(4.82)

where chain differentiation has been used. By using formula (4.77) we get:

∑

γ

∂Q(k)

∂hαγ
hβγ = −Q(k)

(
1

k2
+

1

4η2

)∑

λ,γ

2kλ

(
−2π

∑

µ

h−1
µαh

−1
γλKµ

)
hβγ .

(4.83)
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The fact that the product of the cell matrix with its inverse is the identity
yields:

∑

γ

∂Q(k)

∂hαγ
hβγ = −Q(k)

(
1

k2
+

1

4η2

)∑

λ,µ

2kλ
(
−2πh−1

µαδβλKµ

)

= −Q(k)
(

1

k2
+

1

4η2

)∑

µ

2kβ
(
−2πh−1

µαKµ

)

= −Q(k)
(

1

k2
+

1

4η2

)
2kβ (−kα)

= 2Q(k)

(
1

k2
+

1

4η2

)
kαkβ.

(4.84)

Putting things together we find

W
(CC)
rec,i,αβ =

2π

Ω2

∑

k ̸=0

Bαβ(k)Q(k)qi
∑

j

qj cos(k ·Rij), (4.85)

where the auxiliary tensor B has components

Bαβ = δαβ − 2kαkβ

(
1

k2
+

1

4η2

)
. (4.86)

CD term

The reciprocal space contribution to the charge-dipole energy per atom is:

U
(CD)
rec,i =

2π

Ω

∑

k ̸=0

Q(k)qi
∑

j

(k ·µj) cos(k ·Rij)+

− 2π

Ω

∑

k ̸=0

Q(k)(k ·µi)
∑

j

qj cos(k ·Rij).
(4.87)

The associated stress tensor is, then:

W
(CD)
rec,i,αβ = − 1

Ω

∑

γ

∂U
(CD)
rec,i

∂hαγ
hβγ

=
2π

Ω2

∑

k ̸=0

Bαβ(k)Q(k)

⎡
⎣qi

∑

j

(k ·µj) cos(k ·Rij) +

− (k ·µi)
∑

j

qj cos(k ·Rij)

⎤
⎦+

2π

Ω2

∑

k̸=0

Bαβ(k)Q(k)×

×

⎡
⎣qi

∑

j

∑

γ

∂(k ·µj)

∂hαγ
hβγ cos(k ·Rij)+

−
∑

γ

∂(k ·µi)

∂hαγ
hβγ

∑

j

qj cos(k ·Rij)

⎤
⎦ .

(4.88)
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The derivative of the scalar product in (4.88) reads:

∑

γ

∂(k ·µi)

∂hαγ
hβγ =

∑

γ,λ

∂(kλµiλ)

∂hαγ
hβγ

=
∑

γ,λ

µiλ
∂kλ
∂hαγ

hβγ

=
∑

γ,λ

µiλ

(
−2π

∑

ρ

h−1
ραh

−1
γλKρ

)
hβγ

=
∑

λ,ρ

µiλ
(
−2πδβλh

−1
ραKρ

)

=µiβ
∑

ρ

(
−2πh−1

ραKρ

)

=kαµiβ .

(4.89)

Plugging this result into (4.88) we obtain

W
(CD)
rec,i,αβ =

2π

Ω2

∑

k ̸=0

Bαβ(k)Q(k)

⎡
⎣qi

∑

j

(k ·µj) cos(k ·Rij) +

− (k ·µi)
∑

j

qj cos(k ·Rij)

⎤
⎦+

2π

Ω2

∑

k̸=0

Q(k)×

×

⎡
⎣qi

∑

j

kαµjβ cos(k ·Rij)− kαµiβ
∑

j

qj cos(k ·Rij)

⎤
⎦ . (4.90)

DD term

The reciprocal space contribution to the dipole-dipole energy per atom is:

U
(DD)
rec,i =

2π

Ω

∑

k ̸=0

Q(k)(k ·µi)
∑

j

(k ·µj) cos(k ·Rij). (4.91)

Using the preliminary results calculated above we can readily compute the
contribution to the stress tensor:

W
(DD)
rec,i,αβ =

2π

Ω2

∑

k ̸=0

Bαβ(k)Q(k)

⎡
⎣(k ·µi)

∑

j

(k ·µj) cos(k ·Rij)

⎤
⎦+

+
2π

Ω2

∑

k ̸=0

Q(k)
∑

j

[
kαµiβ (k ·µj) + (k ·µi)kαµjβ

]
cos(k ·Rij). (4.92)

The total reciprocal space atomic electrostatic stress tensor is the sum of the
three contributions of eq. (4.85), (4.90) and (4.92).

↔
Wrec,i =

↔
W

(CC)
rec,i +

↔
W

(CD)
rec,i +

↔
W

(DD)
rec,i . (4.93)

The virial heat flux associated to the reciprocal space electrostatic interaction
is

Jrec
vir = −

N∑

i=1

↔
Wrec,i ·Vi. (4.94)
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4.6.3 Self-interaction term

The correction term due to double counting is a pairwise term in which
the pair-forces are calculated from the analytic potential. This implies that

the contribution to the atomic stress tensor
↔
Wself,i will be the trivial one as

in eq. (4.42). The virial heat flux due the self-interaction correction is

Jself
vir = −

N∑

i=1

↔
Wself,i ·Vi. (4.95)

4.6.4 TTM4-F model correction

In the MB-pol model the electrostatic interaction is actually implemented
à la Thole, i.e. a damping function accompanies both charges and dipoles,
as explained in 2.3.1 and in A.5.

The TTM contribution to the stress tensor contains terms of the form

∂λn(uij)

∂Rmi
=
∂λn(u)

∂u

∂uij
∂Rmi

=− nuijλn+2(uij)
1

Aij

∂Rmij

∂Rmi

=− n
λn+2(uij)

A2
ij

Rmij ,

(4.96)

wherever charge-charge (λ3), charge-dipole (λ5) or dipole-dipole (λ7) prod-
ucts appear. In the derivation of (4.96), the recursive definition (A.19) at
page 76 has been used to express the derivative of the λ function with re-
spect to uij .

The λn functions that appear in the formula of atomic stress are (with
m = 4):

λ1(u) = −e−au4

u
+ 4

√
a Γ
(
3

4
, au4

)
+

1

u
, (4.97)

λ3(u) = −4aue−au4 − e−au4

u3
+

4 4
√
ae−au4 (

au4
)3/4

u2
+

1

u3
, (4.98)

λ5(u) =
16

3
a5/4e−au4 (

au4
)3/4 − 16

3
a2u3e−au4 − 4 4

√
ae−au4 (

au4
)3/4

3u4
+

− e−au4

u5
+

1

u5
,

(4.99)

λ7(u) =
64

15
a9/4u2e−au4 (

au4
)3/4 − 64a5/4e−au4 (

au4
)3/4

15u2
− 64

15
a3u5e−au4

+

+
16

5
a2ue−au4 − e−au4

u7
− 4 4

√
ae−au4 (

au4
)3/4

15u6
− 4ae−au4

5u3
+

1

u7
.

(4.100)
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The complete formula for the stress tensor is huge and not very eloquent,
so it will not be shown here; the virial heat flux associated to the Thole
corrections is

JThole
vir =

N∑

i=1

↔
WThole

i ·Vi, (4.101)

where
↔
WThole

i is the atomic contribution to the stress tensor due to the Thole
smeared charge densities. The Thole-corrections are calculated by the sub-
routine qdforce.

4.7 heat flux vector in the mb-pol model

Gathering all the pieces found in the sections above, the formula of the
heat flux in the MB-pol model is finally obtained:

Jq
MB-pol =

N∑

i=1

1
2MiV

2
i Vi + Jbond

conv + J
ang
conv+

+ J
(2B)
conv + JVdW

conv + J
(3B)
conv+

+ Jdir
conv + Jrec

conv + Jself
conv + J

pol
conv+

+ Jbond
vir + J

ang
vir +

+ J
(2B)
vir + JVdW

vir + J
(3B)
vir +

+ Jdir
vir + Jrec

vir + Jself
vir + JThole

vir . (4.102)





5 S I M U L AT I O N S

The computer simulations are conducted via the MD package DL_POLY,
whose version 2 source code has been modified by the research group
of Prof. Francesco Paesani at the University of California in San Diego

to include the MB-pol potential for water. As explained in chapter 4, the
author of this thesis has implemented the energy and stress decomposition
to allow the computation of the heat flux. First, some preliminary results
will be shown, to check that the equilibrium values of the thermodynamic
observables are in agreement with the literature; then, the heat flux data
obtained from the equilibrium simulations of MB-pol water will be analyzed.

5.1 preliminary results

In order to perform meaningful calculations, one should prepare the sys-
tem in the correct thermodynamic state. In the present case, the quantity
of interest is the thermal conductivity of liquid water at atmospheric pres-
sure, so a set of configurations with temperatures ranging from ≈ 270K to
≈ 370K have been prepared. The simulation box is cubic and contains 256

water molecules. To be sure that the system is in the liquid state, the equi-
librium density ρ will be calculated, alongside with a dynamical property,
the self-diffusion coefficient D, and some structural properties, the radial
distribution functions (RDF).

The quantities hereby mentioned are already accessible from simulations
done with the original DL_POLY software modified to include the MB-pol
potential; since the heat flux calculations increase considerably the compu-
tational cost of the MD run, they have not been carried out in this initial
stage.

5.1.1 Density

The equilibrium density ρ has been computed as a function of tempera-
ture T . The calculations have been carried out in the NPT ensemble with a
4-chain Nosé-Hoover barostat/thermostat. A single initial configuration of
MB-pol water at ≈ 300K has been used as starting point to sample twelve dif-
ferent water configurations at atmospheric pressure and temperatures rang-
ing from 264K to 374K with steps of 10K. The simulation has been carried
out for more than 1ns. The first tens of picoseconds has been discarded as
an equilibration part, while the remaining 1000ps have been used for the
computation. In a NPT run, the cell volume is allowed to change with time.
After some equilibration time, its value will fluctuate around its mean in a
controlled way. The time-series of the cell volume Ω has been block-averaged

55
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Figure 5.1: Density as a function of temperature for the MB-pol model at the at-
mospheric pressure. The results are compared to the experimental val-
ues. The circles represent the densities computed via MD with the error
bands obtained via block analysis. The triangles are the experimental
data [Wagner and Pruß, 2002].

in 10 blocks of 100ps to obtain an estimate of the standard error of the mean.
The density has been calculated as:

ρ =
Nmolmmol

NAΩ
, (5.1)

mmol = 18.0107g/mol, (5.2)

where mmol is the value of the molar mass of water in the MB-pol model and
NA is the Avogadro constant.

In figure 5.1 the results are compared to the experimental values available
in the literature [Wagner and Pruß, 2002]. The accuracy is very good at high
temperature, while it worsens at lower temperatures; however, the overall
accuracy of the MB-pol density is higher than other common force-fields
for water and, most importantly, it accounts for the presence of a density
maximum. This feature of the MB-pol model was already noticed in the
literature [Reddy et al., 2016]; better results should be achieved via more
sofisticated techniques like Path-Integral-Molecular-Dynamics (PIMD), that
take into account the presence of nuclear quantum effects. The correct values
of the density ensures that the packing of the system is compatible with that
of liquid water.

5.1.2 Diffusivity

The computation of the self-diffusion coefficient is useful to check if the
system is in a fluid state; in fact, the diffusivity of a solid is very small, while
for a liquid or a gas it is finite. The self-diffusion coefficient D, or diffusiv-
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Figure 5.2: Vibrational spectrum of MB-pol water at ≈ 295K. The zoomed region
shows the zero-frequency value of the spectrum, i.e. the diffusion coef-
ficient D.

ity, is expressed as the time-integral of the velocity-velocity autocorrelation
function [Allen and Tildesley, 1987]:

D =
1

3N

N∑

i=1

∫ ∞

0
⟨Vi(0) ·Vi(t)⟩eq dt. (5.3)

The integral above is a Green-Kubo integral that can be recast into the zero-
frequency value of the so called vibrational spectrum, i.e. the power spectrum
of the velocity, via the Wiener-Kintchine theorem (see theorem 1 at page 22).

Differently from the heat flux case, the velocity time-series does not need
to be analyzed via the sophisticated cepstral analysis: each MD simulation
yields 3N independent time-series, i.e. each of the three Cartesian com-
ponents of the N atomic velocities1. A simple block-average of the peri-
odogram provides a good estimate of the velocity power spectrum. Fig-
ure 5.2 displays the vibrational spectrum computed in this way. The same
procedure has been carried out for every temperature at disposal. For each
vibrational spectrum, the zero frequency value has been collected and plot-
ted versus the temperature (fig. 5.3). The agreement with experimental
data [Holz et al., 2000] of water at the same condition is very good: yet
another evidence of the accuracy of the MB-pol model.
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Figure 5.3: Diffusivity of MB-pol water as a function of temperature. The agree-
ment with the experimental values [Holz et al., 2000] is very good.

5.1.3 Radial distribution functions

While the density as computed in section 5.1.1 is a global property of the
system, a the radial distribution functions describe the local density varia-
tions in the liquid. For an isotropic system it is defined as

g(x) =
1

4πx2
Ω
N2

N∑

i=1

N∑

j=1

⟨δ(x− |Ri −Rj |)⟩ . (5.4)

In water there are two atomic species, oxygen and hydrogen, so there will
be three different radial pair distribution functions: one involving distances
among oxygens, one among oxygens and hydrogens, and one among hydro-
gens only. Numerically, the computation is done by analysing the instanta-
neous configurations written by DL_POLY: for each atom in the configuration,
a routine counts the number of atoms of the selected species that are en-
closed in a spherical shell of given width (the resolution of the RDF) and
normalizes the result with respect to the volume the shell. The other nor-
malization constants are such that the asymptotic value of the RDF is 1. This
is done for every configuration: the results are then averaged to suppress
the fluctuations and obtain a better estimate of g(x). The visualization tool
VMD [Humphrey et al., 1996] includes a Tcl function to accomplish the calcu-
lation described above for a simulation snapshot; with another simple Tcl

script such function has been used to compute the RDFs of water for each
temperature available.

1 Actually, the conservation of total momentum imposes three linear constraints on the possible
values of the atomic velocities, so the independent time-series are 3N − 3. However, this does
not affect the validity of the argument.
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Figure 5.4: O-O, O-H and H-H radial distribution functions of MB-pol water at
≈ 295K compared to joint neutron and X-ray scattering experimental
values at ambient pressure. The first peak in the H-H radial distribution
function, due to the two hydrogen atoms within the same molecule, is
not resolved with the experimental techniques used in the paper from
which the data are taken.

Figures 5.4 compare the simulation results with experimental data. The
O-O radial distribution function agrees well with data, while for the O-
H and H-H distribution functions a better agreement can be achieved via
PIMD [Medders et al., 2014]. In is important to notice that the worst agree-
ment with the experimental data is for the second peak in the O-H RDF: the
position and intensity of this peak describe the spatial correlation between
oxygens and hydrogens in adjacent molecules, i.e. atoms that are directly in-
volved in hydrogen bonds. This property is notoriously difficult to measure.

5.2 heat transport simulations

After having shown the preliminary results in section 5.1, let us now out-
line how the computation of the thermal conductivity has been performed.
The molecular dynamics simulations to compute the heat flux time series
have been carried out in the NVE (microcanonical) ensemble; this is a com-
mon choice when it comes to compute dynamical properties, since it allows
better control on the simulation than other statistical ensembles.

5.2.1 Equilibration

The equilibration phase coincides with the long NVE run that has allowed
to compute the diffusion coefficient and the radial distribution functions.
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Figure 5.5: Periodogram of the heat flux at 300K after 60ps of MD simulation. At
500THz the magnitude of the periodogram is zero: the Nyquist fre-
quency can be safely reduced from 2500THz to 500THz.

The calculation of the above properties proves that the system is in the cor-
rect configuration and is ready for the production phase.

5.2.2 Production

The production runs have been carried out in the microcanonical ensemble
starting from the final configurations produced by the equilibration phase.
The simulation time-step has been set to 0.2fs; at the beginning of the com-
putation the program has been instructed to print the heat flux at each time-
step. This requires many resources; however, the optimum sampling rate is
the maximum time interval that satisfies the Nyquist–Shannon sampling theo-
rem, which states that a signal that contains no frequency higher than B hertz
is completely determined by sampling its values with a discrete time-series
spaced 1/2B seconds apart. This prevents from coming across unwanted
aliasing effect. To collect the value of B, after a few tens of picoseconds the
periodogram has been computed and plotted (fig. 5.5). Since after ≈ 500THz

the value of the periodogram is zero, a good value for the sampling rate is

ε =
1

2 · 500THz = 1fs,

i.e. the program will print the data to a file once every 5 simulation steps,
while keeping the simulation-time step to 0.2fs.

The total length of each simulation (one trajectory per temperature) is of
≈ 1.5ns. This value is considerably high, taking into account the fairly high
computational cost of MB-pol forces together with the heat flux computa-
tion. This conservative approach has been chosen because the complex na-
ture of the interaction in MB-pol water may require long convergence times;
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Figure 5.6: Sample of a few hundred femtoseconds of the energy flux time series.
The energy flux fluctuates around zero, its equilibrium value.

nevertheless, this incidental necessity provides a useful benchmark to the
still experimental technique of multi-component cepstral analysis applied to
molecular fluids.

5.2.3 Results and data analysis

The collected data useful to the calculation of the thermal conductivity
consist, for each configuration, of the three Cartesian components of the
energy flux, Jq, the three Cartesian components of the non-diffusive flux
JOH (see section 1.6.1 at page 12) and all the thermodynamic quantities such
as temperature, pressure, and volume. The data acquisition procedure and
the subsequent analysis can be summarized as:

• Compute the energy flux Jq and the Oxygen-Hydrogen mass flux JOH;

• Compute the cross-periodograms via discrete-Fourier transforms of
the time-series of the fluxes;

• From the discrete Fourier transforms of the fluxes, calculate the cross-
periodograms ℓM Ŝij

k (see eq. (3.55));

• Compute the multi-component periodogram (eq. (3.68)), estimator of
the multi-component power spectrum, ℓM Ŝ′

k: this is the time-series
whose zero-frequency value is proportional to the thermal conductiv-
ity;

• Compute the cepstrum ℓM Ĉn of the resampled time-series;

• Apply Akaike Information Criterion (AIC), eq. (3.49), to estimate the
number of cepstral coefficients P ∗ to retain;
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Figure 5.7: Conductivity κ (scale on the left) and number of cepstral coefficients P ∗

(scale on the right) as functions of the resampling frequency f∗. After a
saturation region, where P ∗ is constant with respect to f∗, the relation-
ship between P ∗ and f∗ becomes linear. The arrow points at the frontier
of these two regions, where the error on κ is at its minimum.

• Evaluate the thermal conductivity and its statistical error as explained
in eq. (3.73) and (3.74):

κ =
Ω

2kBT 2
exp

[
P ∗−1∑

n=−P ∗+1

ℓM Ĉn −ψ(ℓ−M + 1)− log(ℓ−M + 1)

]

(5.5)

εκ = κ

√
ψ′(ℓ−M + 1)

4P ∗ − 2

N
. (5.6)

Let us now take as an example a particular set of data, say the results of
the simulation performed at ≈ 300K, and go through each of the steps above
to get to the estimate of the conductivity of MB-pol water. The software
thermocepstrum [Ercole and Bertossa, 2018] already mentioned above, is a
python module designed specifically to handle the computation of thermal
conductivities via cepstral analysis. The original software, available as an
open source project on GitHub, has been forked and slightly extended by
the author of this thesis.

The heat flux and the non-diffusive mass flux as written by the MD pack-
age DL_POLY modified as described in section 4 have been computed in a
long simulation run. Figure 5.6 presents a sample of the Jq trajectory. The
fluxes have been fed to thermocepstrum, where the discrete Fourier trans-
forms have been calculated and rearranged to get the cross-periodograms
and, in the end, the multi-component periodogram.
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Figure 5.8: Thermal conductivity versus simulation time computed with the heat
flux alone (one-component analysis) and with both the heat flux and the
non-convective JOH (two-component analysis). On the left, the resam-
pling frequencies for the cepstral analysis have been chosen adopting
the method of figure 5.11. On the right, the same parameter is set to
0.1THz: this is the value for which the spectrum in figure 5.9 abruptly
drops.

Convergence with respect to the resampling frequency

The spectrum whose logarithm we want to analyze goes to zero above the
Nyquist frequency; moreover, it often happens that the spectrum is gapped,
i.e. it features frequency regions where its value is almost negligible with
respect to the value of the peaks. This implies that the logarithm of the
periodogram, i.e. the time-series that is analyzed via the cepstral technique,
in these regions would tend to diverge, since limx→0 log(x) = −∞. To avoid
this drawback, one can resample the time-series of the heat flux to lower its
Nyquist frequency to a safer value. The procedure of resampling goes like
this:

1. Choose a tentative value f∗ for the new Nyquist frequency. One should
aim to move the Nyquist frequency to a region right after a peak: usu-
ally the lowest frequency peak is a good choice, if the gap between the
first two peaks is sufficiently large;

2. Find the new sampling rate as ε∗ = 1/2f∗ and, if necessary, round it
to the nearest multiple of the actual sampling rate of the original heat
flux time-series;

3. Apply a low-pass filter of the heat flux time-series with a window as
large as ε∗, e.g. with a moving average. This helps to avoid aliasing
effects on the resulting signal, being the initial time-series very noisy;

4. Resample the time-series with the desired sampling rate.

The output signal is then analyzed as discussed above. To understand if
resampling the multi-component periodogram is useful to get a better result
from the available data, thermocepstrum has been instructed to perform a
sequence of conductivity computations with resampling frequencies ranging
from 0.1THz to 80THz. From equation (3.74) at page 32 it is clear that if
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Figure 5.9: Periodogram of the non-convective flux JOH. The magnified picture ex-
hibits the very-low-frequency part of the spectrum: the zero-frequency
value is the Onsager’s coefficient LJOH related to this flux. Being JOH
non-convective, LJOH must be equal to zero. Despite being not exactly
zero due to the finite length of the MD trajectory, the zero-frequency
value of the periodogram seems to approach zero. However, the change
is abrupt at very low frequency. This behavior is found in the peri-
odogram of the heat flux as well.

P ∗ and N , the latter being proportional to the resampling frequency2, are
linearly related, the error on κ is constant. On the other hand, when P ∗ is
constant with respect to f∗, the error decreases.

In figure 5.7, after an initial region, where the number of retained cepstral
coefficients is too low to be meaningful, there is a plateau in the graph of
P ∗: the end of the plateau is where the error on the conductivity is at its
lowest value. The resampling frequency corresponding to that value should
be the selected one. In the case of T ≈ 350K, the best resampling frequency
happens to be f∗ = 33.0THz. The same policy has been applied to each
available temperature.

Convergence with respect to simulation time

For benchmarking purposes, it is useful to know after how many sim-
ulation steps the value of the conductivity calculated via cepstral analysis
stabilizes around some value. For this reason, the computed conductivity
has been studied as a function of the simulation time.

2 The value of f∗ is the chosen Nyquist frequency, i.e.

f∗ = 1/2ε = N/2T ,

where T is the simulation time and ε is the sampling rate. That means f∗ ∝ N .



5.2 heat transport simulations 65

0 20 40 60 80 100 120 140

ω/2π (THz)

0

10

20

30

40

50

60

κ
(W

/m
K

)

Original (Jq)

Moving avg. (Jq)

Cepstrum-filtered

Orig. (Jq, JOH)

M. avg. (Jq, JOH)

Cepstrum-filtered

0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 5.10: Comparison between the low-frequency periodograms obtained with
the energy flux alone and with the multi-component analysis of the
energy flux and JOH. The intermediate filtering is done via a moving
average with a window of 0.01THz to visualize the qualitative behavior
of the spectra: they have not been used to obtain any quantitative value.
The trend near zero of the one-component spectrum is not matched by
the cepstral filter: the drop is too abrupt. Instead, the qualitative be-
havior is correct, with the two periodograms assuming similar values
near the origin.

Figure 5.9 displays the behavior of the periodogram of the non-diffusive
flux JOH at low frequencies. The periodogram behaves as expected near
ω=0: despite being not exactly zero, due to the finite length of the MD
simulation, the filtered periodogram seems to approach zero for very low
frequencies. However, the change is abrupt in the very narrow window
under ≈0.1THz. As one can see in figure 5.10, this behavior is found in
the periodogram of the heat flux, too; in the latter case, the value in zero
is positive, as it must be. To investigate the possible correlations between
the two fluxes, two-component analysis has been performed on the heat
flux and the non-diffusive mass flux. The result is shown in figure 5.10,
together with the heat flux periodogram. In the very low frequency region,
the two values tend to be the same; still, the two-component periodogram
is flatter than the heat flux periodogram. Cepstral analysis works better
with smooth periodograms: an abrupt change in the spectrum is not easy
to match as it requires a large number of cepstral coefficients for a small
portion of signal. Moreover, the value of the conductivity computed via one-
component analysis on the heat flux depends strongly on the resampling
frequency: this suggests that there are some problems in the filtering of
the signal near zero. The value of κ has been computed as a function of
the simulation time at two different resampling frequencies, using both the
simple one-component analysis and the two-component analysis (fig. 5.8).
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Figure 5.11: Conductivity computed via cepstral analysis as a function of the num-
ber of retained cepstral coefficient. The crossing dashed lines identify
the value of κ given by the P ∗ that minimizes the Akaike Information
Criterion of eq. (3.49).

While the two-component conductivity computed with a resampling fre-
quency of 33THz is compatible with the same quantity computed with a
resampling frequency of 0.1THz, this is not true for the thermal conductiv-
ity calculated from the periodogram of the heat flux alone. With f∗=0.1THz,
the one component and two-components conductivities are compatible. This
is symptomatic of the pathological behavior of the periodogram of the heat
flux: the resampling frequency is so low that the only portion of the peri-
odogram that is being analyzed is the badly behaved part. There is a small
number of data points, so the error is large; however, the value of κ is correct
within the errorbars, since the cepstral filter has to recover the low-lying be-
havior of an almost linear signal. With f∗=33.0THz, the conductivity of ob-
tained from the cepstral analysis of the periodogram of the heat flux is larger
than the one obtained with two-components analysis. The low-frequency be-
havior of the periodogram of JOH and of Jq compared with the smoother
low-frequency behavior of the two-component spectrum strongly suggests
to always perform a two-component analysis, even when the system under
exam is not genuinely a two-component fluid, but simply a molecular fluid,
such as in our case. This is the route we will follow in the next sections.

To investigate a possible reason behind the sudden drop of the value of
the periodogram at low frequency, it could be insightful to investigate size
effects. Green-Kubo theory is built upon the hypothesis of thermodynamic
limit, where volumes and number of particles are taken to be infinite. In
particular, the fact that the non-diffusive flux exhibits non-zero transport
coefficient could be a symptom of spurious correlations due to the imposed
periodicity of the cell boundary conditions. However, these effects should
not be preponderant, since we are dealing with a liquid system.

The choice of P ∗

As discussed in section 3.3 when talking about the cepstral technique,
the computed value of the conductivity depends on the number P ∗ of cep-
stral coefficients that one keeps when Fourier-transforming back the log-
spectrum of the fluxes.
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Figure 5.12: Conductivity of the MB-pol model obtained via the cepstral analysis
of the heat flux time series. The dashed line is a quadratic fit on the
data. The solid line is obtained from the experimental referece data at
ampient pressure. The computed values of κ are not compatible with
the experimental data [Ramires et al., 1995].

Figure 5.11 (left) shows the plot of the conductivity as a function of the
number of retained cepstral coefficients. The intersection of the dashed lines
locates the value of κ that minimizes the function AIC(P ) of equation (3.49).
The plot on the right shows the filtering power of the cepstral analysis: the
higher the value of P ∗, the noisier the signal.

Of course, a further reduction of P ∗ would yields a cleaner spectrum,
since it means to discard a larger number of high-frequency terms: the role
of the Akaike Information Criterion is to decide when to stop throwing away
high-frequency components and leave only those components necessary to
reconstruct the large-scale behavior of the spectrum.

Thermal conductivity

After the preliminary analysis, let us finally present the results of the calcu-
lations of the thermal conductivity as a function of temperature. Figure 5.12

displays the values of κ obtained with the methodology exposed above. The
values are not compatible with the experimental results, but larger. This is
not uncommon for flexible models, that tend to overestimate the magnitude
of the thermal conductivity.

A comprehensive account for what concern the thermal conductivity of
various models is given by Sirk et al., 2013, both for equilibrium (G. K.)
and non-equilibrium molecular dynamics (NEMD) in the Müller-Plathe fla-
vor [Müller-Plathe, 1997]. The values of κ at ambient conditions (≈ 300K

and ≈ 1atm) for different models are:
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Rigid models
Model NEMD (W/mK) G.K. (W/mK)

SPC 0.802 0.776

SPC/E 0.821 0.806

TIP3P-Ew 0.814 0.797

TIP4P-Ew 0.766 0.816

Flexible models
Model NEMD (W/mK) G.K. (W/mK)

SPC/Fw 1.011 0.854

SPC/Fd 0.997 0.793

TIP3P/Fs 1.063 0.851

It is important to notice that the thermal conductivities listed above are
computed via direct trapezoidal integration of the autocorrelation function
of a 1ns long heat flux time-series. Although the models above are simpler
than MB-pol, i.e. they present a less complex form of interaction, we are
apt to think that such a relatively short trajectory may not be sufficient to
obtain an accurate estimate of the value of κ, a fortiori for the fact that the
Einstein-Helfand method is not mentioned in the original paper. Moreover,
there is no clarity on the method used to obtain an estimate on the error bar.

Comparison with the Green-Kubo integral

In conclusion, let us compare the cepstral analysis technique with the
standard Green-Kubo integral approach via the Einstein-Helfand approxi-
mation. Fig. 5.13 (left) shows the mean value of the square of the energy
displacement for MB-pol water at ≈ 347K. The thermal conductivity is the
asymptotic slope of the graph. The error bars are obtained via block analy-
sis on the heat flux time-series with 100 blocks. On the right, the integral of
the time autocorrelation function is plotted together with the values of κ as
given by the linear fit of

⟨
D2

ϵ

⟩
, and by the cepstral analysis.
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The values are not compatible, but this is not surprising: the Einstein-
Helfand approach requires very long trajectories to achieve convergence,
and this is not affordable with the MB-pol potential. As proved in the lit-
erature [Ercole, Marcolongo, et al., 2017], for sufficiently long trajectories the
Einstein-Helfand method yields results compatible with cepstral analysis,
and that is what is expected in this case.





6 C O N C L U S I O N S

In this study we have applied the Green-Kubo linear response theory
to compute the thermal conductivity κ to the MB-pol model of water.
To determine the heat flux, we have written the computer code that

enables the separation of the total energy and the virial stress into atomic
contributions in a version of the molecular dynamics package DL_POLY that
already contained an implementation of MB-pol.

Our aim was to compute the thermal conductivity of MB-pol water in
the temperature range for which water is liquid at ambient pressure. After
an equilibration phase, where the system has been prepared at the desired
values of temperature and pressure via thermostats and barostats, some ther-
modynamic and structural properties have been calculated. This phase has
served to validate of the physical state of the simulated system. Computed
density, diffusivity and radial distribution functions are consistent with the
results found in the literature and accurate with respect to experiments.

The simulations of the equilibrated systems have been carried out for more
than 1ns in the microcanonical ensemble to acquire the heat flux time-series.
This quantity has been analyzed together with the non-diffusive particle flux
JOH using the cepstral technique, a recently developed statistical method
to filter out the non-Gaussian noise from the log-periodogram of the heat
flux. The cepstral technique has proven to reproduce the results of the well
known integration of the heat flux time-autocorrelation function, with the
advantage of requiring shorter trajectories. This approach, together with the
gauge invariance of thermal conductivity, makes the Green-Kubo approach to
thermal transport affordable in an ab initio framework.

Given the great accuracy demonstrated by the MB-pol model for a wide
range of properties of water, we expected to retrieve a similar degree of ve-
racity in the computation of the thermal conductivity. That has not revealed
to be the case: in fact, the collected results are of the order of 1.0W/mK in
the whole temperature range, while the experimental value is of the order
of 0.6W/mK, at the same thermodynamic conditions. The overestimation is
of about 60%, while other water models usually overestimate the quantity of
approximately 30%. There could multiple reasons behind this discrepancy:

• MB-pol mimics the hydrogen bonding of pairs and triplets of water
molecules via an elaborate fitting polynomial that involves the posi-
tions of many atoms at the same time. The many-body nature of the
interaction introduces correlations that fatten the tail of the heat flux
time-autocorrelation function: this may enlarge the convergence time
of its integral and consequently complicates the estimation of the ther-
mal conductivity;

• The electrostatic contribution to the energy and the forces takes into
account the polarizable nature of water, with the self-consistent com-
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putation of the induced dipoles at every step. This feature, albeit pro-
viding excellent results for other properties of water, may introduce
correlations that affect the computation. Moreover, Römer et al., 2012

showed that the explicit polarizability and molecular flexibility are not
needed to achieve results that are in good agreement with experiments,
including the existence of an anomalous maximum value of κ.

• Finite size effects might alter the value of the conductivity derived from
the spectrum of the heat flux. An analogous effect exists for diffusivity
and shear viscosity [Yeh and Hummer, 2004], that are transport coef-
ficients as well. However, in the case of diffusivity, size-effects do not
seem to be relevant for 256 molecules, i.e. the number of molecules
used in our simulations.

To better understand the obtained results, a possible route is the system-
atic analysis of the various contributions to the heat flux coming from the
different forms of interactions that constitute MB-pol. This would help to
interpret how the value of κ arises from the heat fluxes related to the differ-
ent interaction terms, and to troubleshoot possible localized problems in the
implementation.

Direct comparison of MB-pol and other implementations of water mod-
els that yield results in better agreement with experiments could be useful
to spot what the most slowly converging terms are and how to improve
their computation. A more in-depth study of the possible presence of non-
diffusive fluxes that hinder the convergence of the value of κ may shed light
on how to efficiently decorrelate the heat flux from all the other fluxes, and
achieve accurate results with shorter simulations. A systematic size-effects
study should highlight the presence of convergence problems related to the
finite size of the simulated system, or at least it would let us single out this
hypothesis. In conclusion, to validate or discard the values computed in this
work, it could be useful to compute the conductivity with other methods,
such as the non-equilibrium technique introduced by Müller-Plathe.

From the data analysis perspective, the use of two-component cepstral
analysis in the case of a molecular fluid, aimed at the decorrelation of the
heat flux from the non-diffusive fluxes, has been validated and proven to
yield better and faster convergence on the computed value of κ. This has
been shown to be essential to achieve a robust estimate of the thermal con-
ductivity, with low dependence on the choice of parameters such as the
resampling frequency and the number of cepstral coefficients to retain in
the filtering process. We suggest this to become the standard prescription
for molecular fluids and, in general, multi-component fluids for whom non-
diffusive fluxes can be defined.



A E L E C T R O S TAT I C E N E R GY O F A
C O N F I G U R AT I O N

The total electrostatic energy of a configuration of charges and dipoles
can be expressed as:

Uelec,tot = U (CC) + U (CD) + U (DD) + Upol, (A.1)

where CC stands for charge-charge interaction, CD for charge-dipole, DD
for dipole-dipole and pol stands for polarization.

a.1 charge-charge interaction

The interaction energy U (CC)
ab of two point charges qa placed in Ra and qb

placed in Rb is given by the product of one of the charges (e.g. qa) and the
Coulomb potential ϕC generated by the other (qb):

ϕC(|r−Rb|) =
qb

|r−Rb|
, (A.2)

U
(CC)
ab =qaϕC(|Ra −Rb|)

=
qaqb

|Ra −Rb|
≡qaqb
Rab

.

(A.3)

When there are many particles, the total charge-charge contribution to the
energy is:

U (CC) = 1
2

∑

a̸=b

qaqb
Rab

. (A.4)

a.2 charge-dipole interaction

The interaction energy UCD
ab of a point charge qa placed in Ra and a dipole

µb = qblb made of a pair of charges ±qb placed in Rb and Rb + lb, where
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lb ≪ Rab can be obtained as a first order expansion of the Coulomb interac-
tion between the charge qa and the two charges ±qb:

U
(CD)
ab =

qa(−qb)
Rab

+
qaqb

|Ra −Rb − lb|

=− qaqb
Rab

⎡
⎣1− 1√

1+ l2b/R2
ab − 2Rab · lb/R2

ab

⎤
⎦

=− qaqb
Rab

[
1−

(
1+

Rab · lb
R2

ab

+O
(

l2b
R2

ab

))]

≃qaRab · (qblb)
R3

ab

=
qaRab ·µb

R3
ab

.

(A.5)

When there are many particles, the total charge-dipole contribution to the
energy is:

U (CD) = 1
2

∑

a̸=b

qaRab ·µb

R3
ab

. (A.6)

a.3 dipole-dipole interaction

In analogy with what done before, the dipole-dipole interaction will be ob-
tained from the second order expansion of the Coulomb interaction between
a pair of dipoles µa in Ra and µb in Rb:

U
(DD)
ab =

(−qa)(−qb)
Rab

+
(−qa)qb

|Ra −Rb − lb|
+

qa(−qb)
|Ra + la −Rb|

+
qaqb

|Ra + la −Rb − lb|

=qaqb

⎡
⎣ 1

Rab
− 1√

R2
ab + l2b − 2Rab · lb

− 1√
R2

ab + l2a + 2Rab · la
+

+
1√

R2
ab + l2a + l2b − 2Rab · lb + 2Rab · la − 2la · lb

⎤
⎦ .

(A.7)

At the first order in the expansion of the inverse square roots in the above
equation, the only term who does not cancel due to sign differences is the
la · lb part coming from the last term. At the second order, only the cross
terms between 2Rab · la and −2Rab · lb survive, for the same reason. So what
remains is:

U
(DD)
ab =

qaqb
Rab

[
la · lb
R2

ab

+ 3
8

(−8(Rab · la)(Rab · lb)
R4

ab

)]

=
qaqb
Rab

[
la · lb
R2

ab

− 3
(Rab · la)(Rab · lb)

R4
ab

]

=
µaµb

R3
ab

− 3
(Rab ·µa)(Rab ·µb)

R5
ab

.

(A.8)
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When there are many particles, the total dipole-dipole contribution to the
energy is:

U (DD) = 1
2

∑

a̸=b

[
µaµb

R3
ab

− 3
(Rab ·µa)(Rab ·µb)

R5
ab

]
. (A.9)

a.4 polarization energy

The polarization contribution is the difference between the total electro-
static energy and the sum of the terms found up to now:

Upol =Uelec,tot − (U (CC) + U (CD) + U (DD))

=Uelec,tot − 1
2

∑

a̸=b

qaqb
Rab

− 1
2

∑

a̸=b

{
qaRab ·µb

R3
ab

+

[
µaµb

R3
ab

+

−3
(Rab ·µa)(Rab ·µb)

R5
ab

]}

=Utot − 1
2

∑
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qaqb
Rab

+

−
∑

b

µb · 1
2

∑

a( ̸=b)

[
qa(−Rba)

R3
ba

+

(
µa

R3
ba

− 3
(Rba ·µa)Rba

R5
ba

)]

=Utot −

⎧
⎨
⎩

1
2

∑

a̸=b

qaqb
Rab

+

−
∑

b

µb · 1
2
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a( ̸=b)

[
qaRba

R3
ba

+

(
3
(Rba ·µa)Rba

R5
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− µa

R3
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E(Rb) generated by the rest of the sources

⎫
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=Utot −
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2

∑

a̸=b
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b

µb ·E(Rb)
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(A.10)

In equilibrium, the total energy is invariant under small variations dµ of the
induced dipoles; thus:

dUpol =dUelec,tot +
∑

b

dµb ·E(Rb)

=
∑

b

dµb ·E(Rb);
(A.11)

since the molecules are globally neutral, only the dipole contribution to the
electric field will be relevant. Hence, the electric field at site b will be, in
equilibrium:

E(Rb) =
1
αb
µb. (A.12)
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The variation in polarization energy becomes:

dUpol =
∑

b

1
αb
dµb ·µb

=
∑

b

1
2αb

d(µb ·µb).
(A.13)

If the process of polarizing the molecules is reversible, then the above ex-
pression is the differential of an analytic function and one can integrate it to
get:

Upol =
∑

b

1
2αb

µb ·µb. (A.14)

Finally, the total energy of a configuration of charges and dipoles is:

Uelec,tot =
1
2

∑

a̸=b

qaqb
Rab

+ 1
2

∑

a̸=b

qaRab ·µb

R3
ab

+

+ 1
2

∑

a̸=b

[
µaµb

R3
ab

− 3
(Rab ·µa)(Rab ·µb)

R5
ab

]
+
∑

b

1
2αb

µb ·µb

(A.15)

In equilibrium, when the induced dipoles are such that the total electrostatic
energy is minimized, i.e.:

∀µa
∂Uelec,tot

∂µa
= 0, (A.16)

the total energy can be written as:

Uelec,tot =
1
2

∑

a

∑

b( ̸=a)

qaqb
Rab

− 1
2

∑

a

µa ·Ea(Ra), (A.17)

where {µa} are the dipoles which minimize the Uelec,tot and Ea(Ra) is the
electric field at site a due to the other charges and dipoles.

a.5 thole-type model (ttm)

In a TTM framework, the point charges and the dipoles in the interac-
tion terms are smeared on a volume around their position, to overcome the
problem of divergent polarizability at short distances [Thole, 1981]. The pre-
scription is to equip the inverse power law behavior of the interaction with
functions λn in such way:

1

Rn
ab

↦→ λn(uab)

An
ab

, (A.18)

where uab = Rab/Aab, Aab = (αaαb)
1/6 and the λ functions are defined re-

cursively as:

λn+2(u) = − 1

un

∂λn(u)

∂u
(A.19)

λ1(u) =
1− e−aum

u
+ a1/mΓ

(
1− 1

m , aum
)

(A.20)

Γ(c,x) =

∞∫

x

dt tc−1e−t (A.21)
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The value of m is set to 4 in the TTM4-F model, which is the one imple-
mented in the MB-pol potential for water; a is a fitting parameter, and Γ is
the upper incomplete gamma function.

The electrostatic energy within this framework becomes:

Utot =
1
2

∑

a̸=b

qaqbλ1(uab)

Aab
+ 1

2

∑

a̸=b

qaRab ·µbλ3(uab)

A3
ab

+

+ 1
2

∑

a̸=b

[
µaµbλ3(uab)

A3
ab

− 3
(Rab ·µa)(Rab ·µb)λ5(uab)

A5
ab

]
+

+
∑

b

1
2αb

µb ·µb

(A.22)

The equilibrium expression for the interaction takes the form:

Utot =
1
2

∑

a

∑

b( ̸=a)

qaqbλ1(uab)

Aab
− 1

2

∑

a

µa ·Ea(Ra)

def
=
∑

a

V TTM,elec
a + V TTM,ind

a .

(A.23)





B I B L I O G R A P H Y

Akaike, H.
1974 “A new look at the statistical model identification”, IEEE Transac-

tions on Automatic Control, 19, 6 [Dec. 1974], pp. 716-723, issn: 0018-
9286, doi: 10.1109/TAC.1974.1100705.

Allen, M.P. and D.J. Tildesley
1987 Computer Simulation of Liquids, Oxford science publications, Claren-

don Press, isbn: 9780198553755, https://books.google.com.tr/
books?id=ibURAQAAIAAJ.

Babin, V., C. Leforestier, and F. Paesani
2013 “Development of a “First Principles” Water Potential with Flexible

Monomers: Dimer Potential Energy Surface, VRT Spectrum, and
Second Virial Coefficient”, J Chem Theory Comput, 9, 12.

Babin, V., R. Medders G., and F. Paesani
2014 “Development of a “First Principles” Water Potential with Flexible

Monomers. II: Trimer Potential Energy Surface, Third Virial Coeffi-
cient, and Small Clusters”, J Chem Theory Comput, 10, 4.

Bertossa, Riccardo, Loris Ercole, and Stefano Baroni
2018 “Transport coefficients in multi-component fluids from equilibrium

molecular dynamics” [Aug. 2018].

De Leeuw, S. W., J. W. Perram, and E. R. Smith
1980 “Simulation of electrostatic systems in periodic boundary condi-

tions. I. Lattice sums and dielectric constants”, Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sci-
ences, 373, 1752, pp. 27-56, issn: 0080-4630, doi: 10.1098/rspa.1980.
0135.

Einstein, A.
1905 “Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten
Teilchen”, German, Annalen der Physik, 322, 8, pp. 549-560, doi: 10.
1002/andp.19053220806.

Ercole, Loris and Riccardo Bertossa
2018 ThermoCepstrum. a code to estimate transport coefficients from the cep-

stral analysis of a multi-variate current stationary time series, https:
//github.com/lorisercole/thermocepstrum.

Ercole, Loris, Aris Marcolongo, and Stefano Baroni
2017 “Accurate thermal conductivities from optimally short molecular

dynamics simulations”, Scientific reports, 7, 1, p. 15835.

79

https://doi.org/10.1109/TAC.1974.1100705
https://books.google.com.tr/books?id=ibURAQAAIAAJ
https://books.google.com.tr/books?id=ibURAQAAIAAJ
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1098/rspa.1980.0135
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://github.com/lorisercole/thermocepstrum
https://github.com/lorisercole/thermocepstrum


80 bibliography

Fourier, Jean Baptiste Joseph
1822 Théorie Analytique de la Chaleur, Cambridge Library Collection

– Mathematics, Cambridge University Press, doi: 10 . 1017 /

CBO9780511693229.

Green, Melville S.
1952 “Markoff Random Processes and the Statistical Mechanics of Time-

Dependent Phenomena”, The Journal of Chemical Physics, 20, 8,
pp. 1281-1295, doi: 10.1063/1.1700722, eprint: https://doi.org/
10.1063/1.1700722, https://doi.org/10.1063/1.1700722.

1954 “Markoff Random Processes and the Statistical Mechanics of Time-
Dependent Phenomena. II. Irreversible Processes in Fluids”, The
Journal of Chemical Physics, 22, 3, pp. 398-413, doi: 10 . 1063 / 1 .

1740082.

Helfand, Eugene
1960 “Transport Coefficients from Dissipation in a Canonical Ensemble”,

Phys. Rev. 119 [1 July 1960], pp. 1-9, doi: 10.1103/PhysRev.119.1.

Holz, Manfred, Stefan R. Heil, and Antonio Sacco
2000 “Temperature-dependent self-diffusion coefficients of water and six

selected molecular liquids for calibration in accurate 1H NMR PFG
measurements”, Phys. Chem. Chem. Phys. 2 [20 2000], pp. 4740-4742,
doi: 10.1039/B005319H.

Humphrey, William, Andrew Dalke, and Klaus Schulten
1996 “VMD: visual molecular dynamics”, Journal of molecular graphics, 14,

1, pp. 33-38.

Kadanoff, Leo P. and Paul C. Martin
1963 “Hydrodynamic equations and correlation functions”, Annals of

Physics, 24, pp. 419-469, issn: 0003-4916, doi: https://doi.org/
10.1016/0003-4916(63)90078-2.

Kubo, Ryogo
1957 “Statistical-Mechanical Theory of Irreversible Processes. I. General

Theory and Simple Applications to Magnetic and Conduction Prob-
lems”, Journal of the Physical Society of Japan, 12, 6, pp. 570-586, doi:
10.1143/JPSJ.12.570.

Kubo, Ryogo, Mario Yokota, and Sadao Nakajima
1957 “Statistical-Mechanical Theory of Irreversible Processes. II. Re-

sponse to Thermal Disturbance”, Journal of the Physical Society of
Japan, 12, 11, pp. 1203-1211, doi: 10.1143/JPSJ.12.1203, eprint:
https://doi.org/10.1143/JPSJ.12.1203, https://doi.org/10.
1143/JPSJ.12.1203.

Marcolongo, Aris, Paolo Umari, and Stefano Baroni
2015 “Microscopic theory and quantum simulation of atomic heat trans-

port”, 12 [Mar. 2015].

https://doi.org/10.1017/CBO9780511693229
https://doi.org/10.1017/CBO9780511693229
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1103/PhysRev.119.1
https://doi.org/10.1039/B005319H
https://doi.org/https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203


bibliography 81

Medders G., R., V. Babin, and F. Paesani
2014 “Development of a “First-Principles” Water Potential with Flexible

Monomers. III. Liquid Phase Properties”, J Chem Theory Comput, 8,
10.

Millot, Marius, Sebastien Hamel, J Ryan Rygg, Peter M. Celliers, Gilbert
W. Collins, Federica Coppari, Dayne E. Fratanduono, Raymond
Jeanloz, Damian Swift, and J Eggert

2018 “Experimental evidence for superionic water ice using shock com-
pression”, 14 [Feb. 2018].

Müller-Plathe, Florian
1997 “A simple nonequilibrium molecular dynamics method for calculat-

ing the thermal conductivity”, The Journal of Chemical Physics, 106,
14, pp. 6082-6085, doi: 10.1063/1.473271.

Onsager, Lars
1931a “Reciprocal Relations in Irreversible Processes. I.” Phys. Rev. 37 [4

Feb. 1931], pp. 405-426, doi: 10 . 1103 / PhysRev . 37 . 405, https :

//link.aps.org/doi/10.1103/PhysRev.37.405.
1931b “Reciprocal Relations in Irreversible Processes. II.” Phys. Rev. 38 [12

Dec. 1931], pp. 2265-2279, doi: 10.1103/PhysRev.38.2265, https:
//link.aps.org/doi/10.1103/PhysRev.38.2265.

Paesani, F.
2016 “Getting the Right Answers for the Right Reasons: Toward Predic-

tive Molecular Simulations of Water with Many-Body Potential En-
ergy Functions”, Accounts of Chemical Research, 49, 9, pp. 1844-1851.

Partridge, H. and D. W. Schwenke
1997 “The determination of an accurate isotope dependent potential en-

ergy surface for water from extensive ab initio calculations and ex-
perimental data”, J Chem Phys, 106, 11, pp. 4618-4639, doi: 10.1063/
1.473987.

Peligrad, Magda and Wei Biao Wu
2010 “Central limit theorem for Fourier transforms of stationary pro-

cesses”, Ann. Probab. 38, 5 [Sept. 2010], pp. 2009-2022, doi: 10.1214/
10-AOP530, https://doi.org/10.1214/10-AOP530.

Ramires, Maria L. V., Carlos Nieto de Castro, Yuchi Nagasaka, Akira Na-
gashima, Marc Assael, and William Wakeham

1995 “Standard Reference Data for the Thermal Conductivity of Water”,
24 [May 1995], p. 1377.

https://doi.org/10.1063/1.473271
https://doi.org/10.1103/PhysRev.37.405
https://link.aps.org/doi/10.1103/PhysRev.37.405
https://link.aps.org/doi/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://link.aps.org/doi/10.1103/PhysRev.38.2265
https://link.aps.org/doi/10.1103/PhysRev.38.2265
https://doi.org/10.1063/1.473987
https://doi.org/10.1063/1.473987
https://doi.org/10.1214/10-AOP530
https://doi.org/10.1214/10-AOP530
https://doi.org/10.1214/10-AOP530


82 bibliography

Reddy, Sandeep K., Shelby C. Straight, Pushp Bajaj, C. Huy Pham, Marc
Riera, Daniel R. Moberg, Miguel A. Morales, Chris Knight, Andreas
W. Götz, and Francesco Paesani

2016 “On the accuracy of the MB-pol many-body potential for water:
Interaction energies, vibrational frequencies, and classical thermo-
dynamic and dynamical properties from clusters to liquid water
and ice”, The Journal of Chemical Physics, 145, 19, p. 194504, doi:
10.1063/1.4967719.

Römer, Frank, Anders Lervik, and Fernando Bresme
2012 “Nonequilibrium molecular dynamics simulations of the thermal

conductivity of water: A systematic investigation of the SPC/E
and TIP4P/2005 models”, The Journal of Chemical Physics, 137, 7,
p. 074503, doi: 10.1063/1.4739855.

Sirk, Timothy W., Stan Moore, and Eugene F. Brown
2013 “Characteristics of thermal conductivity in classical water models”,

The Journal of Chemical Physics, 138, 6, p. 064505, doi: 10.1063/1.
4789961.

Thole, B. T.
1981 “Molecular polarizabilities calculated with a modified dipole inter-

action”, Chemical Physics, 59 [Aug. 1981], pp. 341-350, doi: 10.1016/
0301-0104(81)85176-2.

Wagner, W. and A. Pruß
2002 “The IAPWS Formulation 1995 for the Thermodynamic Properties

of Ordinary Water Substance for General and Scientific Use”, Jour-
nal of Physical and Chemical Reference Data, 31, 2, pp. 387-535, doi:
10.1063/1.1461829.

Yeh, In-Chul and Gerhard Hummer
2004 “System-Size Dependence of Diffusion Coefficients and Viscosi-

ties from Molecular Dynamics Simulations with Periodic Boundary
Conditions”, The Journal of Physical Chemistry B, 108, 40, pp. 15873-
15879, doi: 10.1021/jp0477147.

https://doi.org/10.1063/1.4967719
https://doi.org/10.1063/1.4739855
https://doi.org/10.1063/1.4789961
https://doi.org/10.1063/1.4789961
https://doi.org/10.1016/0301-0104(81)85176-2
https://doi.org/10.1016/0301-0104(81)85176-2
https://doi.org/10.1063/1.1461829
https://doi.org/10.1021/jp0477147

	Titlepage
	Titleback
	Epigraph
	Abstract
	Contents
	Introduction
	1 Heat transport theory
	1.1 Hydrodynamic variables
	1.2 Linear Response Theory
	1.3 Heat transport
	1.4 Heat current density in molecular dynamics
	1.5 Gauge invariance of the heat flux
	1.6 Multi-component fluids
	1.6.1 Molecular fluids


	2 The model
	2.1 The form of the potential
	2.2 One-body term
	2.2.1 Analytic form of the PES
	2.2.2 Empirical corrections

	2.3 Two-body term
	2.3.1 Long-range
	2.3.2 Short-range

	2.4 Three-body term
	2.5 Many-body term

	3 Data analysis
	3.1 A brief reminder of statistics
	3.2 Einstein-Helfand approach
	3.3 Cepstral analysis
	3.3.1 Multi-component cepstral analysis


	4 Implementation of the heat flux calculation
	4.1 Energy distribution
	4.1.1 Water monomer energy
	4.1.2 Water dimer energy
	4.1.3 Water trimer energy
	4.1.4 Electrostatic energy

	4.2 Force distribution
	4.3 Water monomer stress
	4.3.1 Bond term
	4.3.2 Angular term

	4.4 Water dimer stress
	4.4.1 Short range
	4.4.2 Dispersion term

	4.5 Water trimer stress
	4.6 Electrostatic stress tensor
	4.6.1 Direct-space term
	4.6.2 Reciprocal-space term
	4.6.3 Self-interaction term
	4.6.4 TTM4-F model correction

	4.7 Heat flux vector in the MB-pol model

	5 Simulations
	5.1 Preliminary results
	5.1.1 Density
	5.1.2 Diffusivity
	5.1.3 Radial distribution functions

	5.2 Heat transport simulations
	5.2.1 Equilibration
	5.2.2 Production
	5.2.3 Results and data analysis


	6 Conclusions
	A Electrostatic energy of a configuration
	A.1 Charge-charge interaction
	A.2 Charge-dipole interaction
	A.3 Dipole-dipole interaction
	A.4 Polarization energy
	A.5 Thole-type model (TTM)

	 Bibliography

