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S O M M A R I O

La viscosità di taglio η, più comunemente chiamata viscosità, è un coeffi-
ciente di trasporto che descrive come un materiale resiste allo scorrimento.
Dal punto di vista microspico è legata all’attrito tra le molecole del materiale.
La sua computazione numerica richiede simulazioni di dinamica molecolare
molto lunghe al fine di ottenere un valore attendibile. Questo problema, ha
posto un limite per molti anni sul calcolo di questo coefficiente, in particolare
a partire da simulazione ab initio per via del grande costo computazionale
che queste comportano. Recentemente, moderne tecniche di analisi dei dati
hanno permesso il calcolo di coefficienti di trasporto, come la conducibilità
termica, attraverso simulazioni relativamente corte, dell’ordine del centinaio
di picosecondi.
I recenti sviluppi nell’ambito del machine learning e delle reti neurali hanno
aperto una nuova frontiera in fisica della materia condensata, in particolare
per quanto riguarda la dinamica molecolare. In particolare l’uso di cosid-
detti "potenziali neural-network" per la modellizzazione delle interazioni tra
le particelle sembra fornire un’alternativa interessante alla dinamica moleco-
lare ab initio. Infatti, una volta allenati a partire da dati ab initio, i potenziali
neural-network sono in grado di predire le forze agenti sugli ioni con un
risultato indistinguibile da quello ab initio.

In questa tesi viene, per la prima volta, calcolata la viscosità dell’acqua
a partire da simulazione ab initio e, successivamente, a partire da "simu-
lazioni neural-network" dove la dinamica degli ioni è predetta da complesse
reti neurali. A partire da queste simulazioni di dinamica molecolare, la vis-
cosità viene calcolata mediante la teoria della risposta lineare di Green-Kubo,
insieme alle più recenti tecniche di analisi di dati, in particolare la cosiddetta
analisi cepstrale.

A B S T R A C T

The shear viscosity η is a transport coefficient that describes how a ma-
terial resists to deformation. Microscopically, it is related to the internal
frictional forces that arises between the molecules of the material. The nu-
merical computation of this coefficients needs very long molecular dynamics
simulations in order to provide reliable values. For many years the evalua-
tion of the shear viscosity has been a formidable task, almost unaffordable
starting from ab initio molecular dynamics simulations, due to its high com-
putational cost. Recently, modern data analysis techniques had provided
new tools for the calculation of transport coefficients, as the thermal conduc-
tivity, with relative short molecular dynamics simulations.
The recent developments in machine learnign and neural networks provided
new tools within condensed matter physics, in particular for what concern
molecular dynamics. In particular, the use of neural-network potentials for
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the modelization of the interactions between particles seems to provide a
interesting alternative to the ab initio molecular dynamics. Indeed, once ad-
equately trained with ab initio data, the neural-network potentials are able
to predict the forces acting on the ions with the accuracy of ab initio calcula-
tions.

In this thesis we first evaluate the shear viscosity of liquid water from ab
initio molecular dynamics simulations. Thus, we discuss the shear viscos-
ity’s results of "neural-network simulations" where the dynamics of the ions
is given by complex neural networks. Starting from the molecular dynamics
simulations, the shear viscosity evaluation is carried out through the Green-
Kubo linear response theory, together with the most recent data analysis
techniques, in particular the so-called cepstral analysis.
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I N T R O D U C T I O N

Motivation

The numerical evaluation of transport coefficients, such as thermal conduc-
tivity and shear viscosity, in extended systems from Ab Initio Molecular Dy-
namics (AIMD) simulations has been considered, until recently, a formidable
task. It is in fact well known that in order to estimate transport coefficients
with satisfactory accuracy, very long simulations of order of tens nanosec-
onds are required. With modern empirical potentials, used to model the
inter-atomic interactions, it is still computationally possible to simulate long
trajectories, but their limited transferability and the lack of systematic tech-
niques for their derivation set a limit on their use. On the other hand, AIMD
simulations are computationally very demanding and even on the most ad-
vanced platforms ab initio simulations are limited to hundreds of picosec-
onds and few hundreds atoms.

Recently, approaches based on Machine Learning (ML) [Deringer & Csányi,
2017; Smith et al., 2017] and Neural Network (NN) [Behler & Parrinello,
2007; Zhang, Han, Wang, Car, et al., 2018] are growing in popularity.
Machine learning or neural network potentials, after a proper training on
accurate quantum mechanical data, can faithfully reproduce the ab initio
results, with a computational cost comparable with that of classical simula-
tions. With this techniques, "near ab initio" calculation of transport coeffi-
cients is possible, but a verification with AIMD is still needed in order to
validate the results.

In the last few years, a new approach [Baroni et al., 2020; Ercole et al.,
2017] was developed to avoid impractically long simulations, opening the
way to the quantum simulation of transport coefficients. This new technique
has already provided reasonably good results for thermal conductivity of
liquid systems with relatively short molecular dynamics trajectories (about
100 ps) achievable with ab initio calculations. So far, there have been no
attempts to apply this procedure for the evaluation of the shear viscosity
coefficient.

This study aims to contribute to this growing area of research by exploring
the calculation of shear viscosity of liquid water from ab initio molecular
dynamics simulations through both AIMD and neural-network techniques.
Among the many NN models, in the following work we will employ the
DeepMD-Se [Zhang, Han, Wang, Car, et al., 2018] model.

XI



XII introduction

Shear viscosity

We now give a brief introduction on the notion of viscosity and momen-
tum transport, following as reference [Ortiz de Zárate & Sengers, 2006].

Let us consider a one-component fluid with mass density ρ (r, t) and lo-
cal velocity v(r, t) at the point r and at the time t. A generalized form of
Newton’s equation of motions reads:

ρ (r, t)
d

dt
v (r, t) = −∇ ·P (r, t) + fext (r, t) (0.1)

where fext (r, t) is the force density, which expresses the amount of external
force per unit volume, and P (r, t) is the local pressure tensor. The latter can
be decomposed in

P (r, t) = p (r, t) I − τ (r, t) (0.2)

where p (r, t) is the local (hydrostatic) pressure and τ (r, t) is a symmetric
tensor, usually called local deviatoric stress tensor or simply local stress ten-
sor.

Eq. (0.1) can be written in the form1

∂

∂t
(ρv) = −∇ ·

[
(ρv) v− τ

]
+ fext −∇p (0.3)

which is the the ordinary equation of motion of a fluid.
The expression of the deviatoric stress is given by the phenomenological

Newton’s viscosity law

(τ)ij = τij = η

(
∂vi
∂rj

+
∂vj

∂ri

)
−

(
2

3
η− ηV

)
δij
∂vl
∂rl

(0.4)

where ηV and η are two independent coefficients known respectively as bulk
viscosity and shear viscosity. The first one represents extra forces required
to compress volume elements, while the latter represents shearing forces
between adjacent fluid layers.

Next, substituting Newton’s viscosity law (0.4) into Eq. (0.3) and using
the continuity equation for mass:

∂

∂t
ρ (r, t) = −∇ · (ρ (r, t) v (r, t)) (0.5)

one can obtain the Navier-Stokes equation:

ρ

[
∂v

∂t
+ (v ·∇) v

]
= −∇p+ η∇2v+

(
1

3
η+ ηv

)
∇ (∇ · v) + fext (0.6)

which is one of the three hydrodynamic equations: the partial differential
equations that determine the motion of a fluid. This equation presents a
non-linear term (v ·∇) v that leads to such complicated phenomena as tur-
bulence, which lies outside the scope of this thesis.

The bulk viscosity and the shear viscosity, together with other coefficients
such as the thermal conductivity, the diffusivity, etc., are generically referred
to as transport coefficients. They are related to the phenomenological coefficients

1 Here
[(
ρv
)
v
]
ij

= ρvivj is a second-order symmetric tensor.
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(or Onsager coefficients) appearing in the so-called phenomenological equations
[de Groot & Mazur, 1962; Kubo et al., 1991]. Non-equilibrium statistical
physics provides a theoretical justification and, together with linear response
theory [Kubo, 1957], offers some powerful tools to evaluate these coefficients
with molecular dynamics simulations. All this theory end up with the Green-
Kubo relations [1957] that give the exact mathematical expression for transport
coefficients in terms of integrals of time-correlation functions of proper cur-
rents.

In particular for the shear viscosity, defining the macroscopic stress tensor as
Π (t) = 1

V

∫
V τ (r, t)dr, the equation reads [Kubo et al., 1991]

η =
V

kBT

∫∞
0

〈Πoff (t)Πoff (0)〉eqdt (0.7)

where V and T are respectively the volume and the temperature of the sys-
tem, while kB is the Boltzmann constant. The label off indicates one of
the three equivalent off-diagonal component of the macroscopic stress ten-
sor (Πxy,Πxz,Πyz) and the brackets 〈·〉eq denote the ensemble average at
equilibrium.2

Eq. (0.7) relates the shear viscosity to the integral of the time-correlation
function of the off-diagonal elements of the stress tensor. Molecular dy-
namics allows to evaluate ensemble averages through the ergodic hypothesis
[Frenkel & Smit, 2001] and finally to evaluate transport coefficients.

Outline

In this thesis we will evaluate the shear viscosity of water systems, exploit-
ing the Green-Kubo relations. Molecular dynamics simulations are needed
in order to deal with the ensemble average appearing in Eq. (0.7). Different
approaches for the evaluation of the inter-atomic forces will be considered:
the first based on empirical potentials, the second with quantum mechani-
cal calculations based on Density-Functional theory and the last carried out
using neural network potentials.

This thesis is structured as follows:
first chapter: The theory of transport will be reviewed, starting from

the hydrodynamic theory, going through the linear response theory and fi-
nally ending up with the Green-Kubo formula for the shear viscosity; We
will provide the microscopic expression for stress tensor both for classical
and quantum systems.

second chapter: Starting from a brief introduction to some topics in
statistics, we present the main techniques used to analyze the data obtained
from the numerical simulations; a first application to an empirical water
model is discussed in order to validate the techniques.

third chapter: After a brief introduction of Density-Functional theory,
the Born-Oppenheimer approximation and the Car-Parrinello approach to
molecular dynamics, we carry out the calculation of the shear viscosity of ab
initio water.

2 Since the liquid is isotropic, the off-diagonal component of the stress tensor are equivalent.
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fourth chapter: We give a basic overview on machine learning and
we present the DeepMD-SE model for modelling inter-atomic. We end up
showing the results of the numerical simulations.



1 T H E O R E T I C A L F O U N DAT I O N S

The theory of hydrodynamic fluctuations [Forster, 2018] describes the mo-
mentum transport in classical fluids. The phenomenological theory of On-
sager [Onsager, 1931a] provides the physical foundations, while the linear-
response theory [Green, 1952; Kubo, 1957; Kubo et al., 1957] gives the math-
ematical formalization. The Green-Kubo formula relates the shear viscosity
η, a non-equilibrium dissipative quantity, to the time integrated equilibrium
auto-correlations of the off-diagonal elements of the macroscopic stress ten-
sor.

1.1 hydrodynamic variables

1.1.1 Extensive variables

Extensive variables, such as energy or entropy, play a fundamental role
in condensed matter physics. By definition, the values that these quantities
assume for a system are equal to the sum of the values they has for any of its
partitions into non-overlapping subsystems. This property allows to express
an extensive variable, A, as the integral of a suitably defined density, a(r),
as:

A (V) =

∫
V

a (r)dr, (1.1)

where V is the volume of the system. Equation (1.1) is not only the definition
of an extensive variable but it also provides a mathematical definition to the
density a (r) at point r of the space.

When an extensive quantity is locally conserved, i.e. there are neither
sources nor sinks, a continuity equation can be established. Introducing a
current density j (r, t) associated to the extensive quantity considered, the
continuity equation reads:

∂a (r, t)
∂t

= −∇ · j (r, t) , (1.2)

where ∇ =
(
∂
∂x , ∂∂y , ∂∂z

)
is the gradient vector and the dot · is the usual

scalar product. In the following, densities and current densities of conserved
quantities will be referred as respectively conserved densities and conserved
currents for short.

The continuity equation (1.2) fulfilled by the conserved currents and den-
sities has far-reaching consequences on the dynamics of these variables. By
Fourier transforming in space Eq. (1.2) one obtains

˙̃a (q, t) = −iq · j̃ (q, t) , (1.3)

where the overdot indicates a time derivative, and the tilde the Fourier trans-
form.

1



2 theoretical foundations

Eq. (1.3) states that the longer is the wavelength λ ∝ |q|−1 of the Fourier
mode of wave-vector q, the slower is the dynamics of the corresponding
Fourier component of the conserved density, ã (q, t). We conclude that for
long enough wavelengths, conserved densities are adiabatically decoupled
from all the other fast atomic degrees of freedom.

The long-wavelength Fourier components of conserved densities are called
hydrodynamic variables.

1.1.2 Local thermal equilibrium

Let S be the entropy of the system, which is a function of extensive con-
served quantities:

S = S (E,V ,N1,N2, ...) , (1.4)

where E is the energy of the system, V is the volume and Ni is the number
of particles of the species i. The corresponding conjugate intensive variables
are temperature, pressure and the chemical potentials:

∂S

∂E

∣∣∣
V ,Ni

=
1

T
,

∂S

∂V

∣∣∣
E,Ni

=
p

T
,

∂S

∂Ni

∣∣∣
V ,E

= −
µi
T

.

(1.5)

A system is said to be in thermodynamic equilibrium if all its macroscopic
properties are stationary with respect to time. As a consequence of the princi-
ple of maximum entropy, one can easily prove that intensive thermodynamic
properties (i.e. temperature, pressure and chemical potential) have uniform
values along the system, regardless of the size of it.

Indeed, let S (V1,A1) and let S (V2,A2) be the entropies of subsystems 1
and 2, as functions of one of their respective extensive variable, A, and let
α = ∂S

∂A be the corresponding intensive variable. At equilibrium, the total
entropy must be stationary with respect to the variation of A for one of its
subsystems, say A1, with the constraint that A1 +A2 = A, namely:

∂S (V ,A, ...)
∂A1

=
∂

∂A1

[
S (V1,A1) + (V2,A2)

]

=
∂

∂A1

[
S (V1,A1) + (V2,A−A1)

]

=
∂S (V1,A1)

∂A1
−
∂S (V2,A2)

∂A2

= α1 −α2

= 0,

(1.6)

and we conclude that α1 = α2. In particular, the very possibility of defining
an intensive variable is itself a consequence of equilibrium, which in turns
implies the constancy of intensive variables across the system.

To extend these concepts to systems which are not in thermodynamic equi-
librium (i.e. systems with in-homogeneous temperature, pressure, or chem-
ical potential) one adopts the principle of local thermodynamic states. Specif-
ically, it is assumed that one can imagine subsystems that are small with
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respect to the macroscopic scale, but that still contain a sufficiently large
number of molecules, so that one can define for them local values of the
thermodynamic properties by the methods of equilibrium statistical physics.
Thus, the total system can be seen as a continuum of local thermodynamic
states at equilibrium with thermodynamic properties that now depend on
the position r and the time t, such as ρ (r, t) , T (r, t) ,p (r, t) , etc. Thermody-
namic quantities are replaced by corresponding thermodynamic fields that
are continuous functions of space and time. This assumption goes under the
name of local thermal equilibrium.

1.1.3 Phenomenological equations

Let us consider a system with a numberQ of conserved extensive variables
{A1,A2, ...,AQ}. For instance, in the case of a one-component fluidQ = 5 cor-
responding to mass (i.e. particle number), energy and the three components
of the momentum. In order to simplify the notation, we set the values of the
conserved quantities equal to zero, 〈Ai〉 = 0, so that their densities, ai (r, t),
directly describe the departure from equilibrium, and we indicate by ji (r, t)
the corresponding currents. At equilibrium, all conserved densities and cur-
rents vanish. Off equilibrium, it will be assumed that the wavelength and
the time scale of the disturbances are so long that the assumption of local
thermal equilibrium is valid.

Restricting to the case of only one conserved quantity, for small enough
deviations from equilibrium the time derivatives of conserved densities are
linear combinations of the density fluctuations themselves

ȧ (r, t) =
∫
Λ
(
r− r′, t− t′

)
a
(
r′, t′

)
dr′dt′ (1.7)

where a (r, t) is already the deviation from equilibrium of the conserved
density and Λ is a suitable coefficient that depends only over r − r′ and
t− t′ due to respectively space translation and time translation symmetry
of the system. Exploiting the convolution theorem, the space-time Fourier
transform of Eq. (1.7) reads:

− iωã (q,ω) = Λ̃ (q,ω) ã (q,ω) , (1.8)

where Λ̃ is the space-time Fourier transform Λ.
The generalization of (1.8) for a system with Q conserved extensive vari-

ables reads:

− iωãl (q,ω) =

Q∑
j=1

Λ̃lj (q,ω) ãj (q,ω) . (1.9)

By combining the last set of equations with the time Fourier transform of
Eq. (1.3), one obtains the constitutive equations:

− iq · j̃l (q,ω) =

Q∑
j=1

Λ̃lj (q,ω) ãj (q,ω) , (1.10)

and for the longitudinal component of the conserved currents, it holds:

j̃
l
(q,ω) = i

q

q2

Q∑
j=1

Λ̃lj (q,ω) ãj (q,ω) . (1.11)
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In isotropic media, the Λ̃’s are functions of |q|, whereas their value at |q| = 0
vanishes. In fact a non-vanishing value would imply a long-range depen-
dence of the currents on density fluctuations, in contrast with our assump-
tion of local thermodynamic equilibrium. Thus, the long-wavelength low-
frequency limit of the coupling constants can thus be assumed to be

Λ̃lj (q,ω) ∼ q2λ̃lj. (1.12)

Then inserting this last expression in Eq. (1.11) one obtains

j̃
l
(q,ω) = iq

Q∑
j=1

λ̃ljãj (q,ω) , (1.13)

valid in the long-wavelength low-frequency regime.
Defining the macroscopic conserved current Jl as:

Jl =
1

V

∫
V

jl (r)dr

= lim
q→0

j̃
l
(q,ω = 0) ,

(1.14)

and the corresponding components of the macroscopic density gradientsDl

as:

Dl =
1

V

∫
V

∇al (r)dr

= lim
q→0

iqãl (q,ω = 0) ,
(1.15)

we can relate explicitly these last two quantities through Eq. (1.13) and
obtain:

Jl =

Q∑
j=1

λ̃ljDj. (1.16)

Now, let αi = ∂S
∂Ai

be the intensive variable conjugate to the extensive
variable Ai, where S = S

(
Ai
)

is the system’s entropy, and χij = 1
V
∂Ai

∂αj

the corresponding susceptibility. Under the assumption of local thermal
equilibrium, local values of intensive variables αi (r) can be defined and the
normalized integrals of their gradients are called thermodynamic forces:

Fl =
1

V

∫
V

∇αl (r)dr. (1.17)

The thermodynamic forces can be related to the macroscopic density gradi-
ents through the susceptibilities:

Dl =

Q∑
j=1

χljFj, (1.18)

and inserting this relation into Eq. (1.16), one gets the phenomenological equa-
tions:

Jl =

Q∑
j=1

LljFj, (1.19)
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where

Llj =

Q∑
k=0

λlkχkj, (1.20)

are the Onsager’s coefficients (or phenomenological coefficients).
Eq. (1.19) equation states a linear relation between the macroscopic con-

serves currents J’s and the thermodynamic forces F’s.
In particular the Onsager’s coefficients satisfy the so-called Onsager’s re-

ciprocal relations [Onsager, 1931a; 1931b]

Llj = Ljl, (1.21)

that shows the equality of the cross-coefficients.

1.2 linear-response theory

In order to evaluate the phenomenological coefficients appearing in Eq.
(1.19), we need linear-response theory. Let us consider a classical system of
N interacting atoms described by the Hamiltonian

H0 (Γ) =

N∑
i=1

1

2Mn
P2n +Φ (R1,R2, ...,RN) , (1.22)

where Mi, Pn and Rn are respectively the mass, the momentum and the
position of the n-th particle, while Γ = {Rn,Pn} indicates the phase-space
coordinates of the entire system, and Φ is a generic many-body potential
that depends on the atomic positions.

Let us suppose that the system is subjected to a external potential that
couples to a linear combination of conserved densities, {al (r; Γ)}, as:

Φ′ (Γ, t) =
∑
l

∫
V

vl (r, t)al (; Γ)dr, (1.23)

where {vl (r, t)} are time-dependent fields that couple to the conserved den-
sities, and {al (r; Γ)} are space-phase observables whose ensemble average is
the conserved density

al (r) = 〈al (r, Γ)〉eq

=

∫
al (r; Γ)P0 (Γ)dΓ,

(1.24)

with P0 (Γ) the equilibrium distribution function:

P0 (Γ) ∝ e−
H0(Γ)
kBT , (1.25)

where kB is the Boltzmann constant and T is the temperature of the system.
We suppose that the system is at equilibrium, with respect to the hamiltonian
H0 at t = −∞, implying the coupling fields to be such that vl (r, t = −∞) =

0. Of course, also conserved currents are ensemble averages of phase-space
observables

jl (r) = 〈jl (r, Γ)〉eq. (1.26)
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Now, let Γ′t = {Rn (t) ,Pn (t)} be a dynamical trajectory of the system,
driven by the perturbed hamiltonian H′(t) = H0 +Φ′(t), through the well-
known Hamilton equations of motions:

Ṙn (t) =
∂H′

∂Pn

∣∣∣
t
,

Ṗn (t) = −
∂H′

∂Rn

∣∣∣
t
,

(1.27)

that are uniquely determined by the initial conditions Γ(t = 0) = Γ0.
When a phase-space observable is evaluated along a dynamical trajectory,

Γt, it will depend on time through the positions and momenta, and on the
initial conditions of the system. Averaging with respect to the initial con-
ditions will result in a time-dependent expectation value for the conserved
densities (or currents)

al (r, t) = 〈al (r, Γ)〉

=

∫
al (r; Γ)Pt (Γ)dΓ

=

∫
al (r; Γt)P0 (Γ0)dΓ0

= 〈al (r, Γt)〉eq,

(1.28)

where the ensemble average over the distribution function Pt ∝ e−
H′(t)
kBT given

by the hamiltonian H′ was written as an average over the initial conditions
weighted with P0, the distribution function given by the unperturbed hamil-
tonian.

In accord to Green-Kubo theory [Green, 1952; Kubo, 1957] the linear
response to a perturbation of the α component of a conserved current jl is

jlα (r, t) =
1

kBT

∑
j

∫t
−∞ dt′

∫
V

dr′
〈
jlα (r, Γt) ȧj

(
r′, Γt′

)〉
eq
vj
(
r′, t′

)

= −
1

kBT

∑
j

∑
β

∫t
−∞ dt′

∫
V

dr′
〈
jlα (r, Γt)

∂

∂r′β
j
j
β

(
r′, Γt′

)〉
eq
vj
(
r′, t′

)

=
1

kBT

∑
j

∑
β

∫t
−∞ dt′

∫
V

dr′
〈
jlα (r, Γt) jlβ

(
r′, Γt′

)〉
eq

∂

∂r′β
vj
(
r′, t′

)
,

(1.29)

where rβ is the β component of the position vector, and where the continuity
equation and the integration by parts have been used. Assuming space-time
homogeneity as well as isotropy, last equation can be averaged to recover the
macroscopic flux as in eq. (1.19) with

Jlα =
1

V

∫
V

jlα (r)dr, (1.30)

Flα =
1

VT

∫ ∫
∂

∂rα
vj (r, t)drdt, (1.31)

L
lj
αβ =

V

kB

∫∞
0

〈
Jlα (Γt) J

j
β (Γ0)

〉
eq
dt. (1.32)
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This completes the derivation of the Green-Kubo formula for transport coef-
ficients from classical linear-response theory, providing the tools in order to
evaluate the Onsager’s coefficients from equilibrium molecular dynamics.

1.3 momentum transport

The continuity equation for the momentum density g (r, t), in the absence
of external forces, reads

∂

∂t
g (r, t) = −∇ ·P (r, t) , (1.33)

where P (r, t) = p (r, t) I−τ (r, t) is the local pressure tensor and it is a second-
order tensor. It can be split in two contributions: the local hydrostatic pressure
and the symmetric local stress tensor.

The phenomenology of momentum transport in an isotropic liquid system
is described by the Newton’s viscosity law

(τ)lj = τlj = η

(
∂vl
∂rj

+
∂vj

∂rl

)
+

(
ηV −

2

3
η

)
δlj
∂vm

∂rm
, (1.34)

where η is the shear viscosity coefficient, while ηV is the bulk viscosity coef-
ficient. For general system, under the assumption of local thermal equilib-
rium, Eq. (1.34) reads [de Groot & Mazur, 1954]

τlj (r, t) =
∑
n,m

ηlj,nm (r, t)
∂vn (r, t)
∂rm

, (1.35)

where ηlj,nm is a fourth-order tensor: the viscosity tensor. This is the most
general expression for the viscous stress tensor including anisotropic as well
as isotropic systems for Newtonian fluids. For three-dimensional systems,
the viscosity tensor has 34 = 81 elements, however, since the stress tensor
is symmetric, this number reduce to 36. Additionally, Onsager’s reciprocal
relations (1.21) further reduces the number of independent coefficients to
21. We are not giving more details, but it turns out that, because of other
symmetries, for an isotropic fluid the number of independent phenomeno-
logical coefficients can be reduced to two: η and ηV , giving Eq. (1.34). We
further assume that in practical application the space-time dependence of
the phenomenological coefficients can be neglected.

Eq. (1.35) can be written in a macroscopic form, recasting to the form of
the phenomenological equations (1.19), by averaging over the volume and
assuming that the gradients of the velocity fields vary smoothly in space.
We then obtain

Πlj =
∑
n,m

ηlj,nm
∂vn

∂rm
, (1.36)

where Π = 1
V

∫
V τ (r)dr is the macroscopic stress tensor.

In the past section we presented how linear-response theory allows one
to compute the linear response coefficients to a mechanical perturbation
through the Green-Kubo equation (1.32). However a velocity gradient, as
the one appearing in (1.36), is not due to any mechanical perturbation of
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the hamiltonian. It is within the so-called thermal perturbations. Neverthe-
less, assuming the local thermal equilibrium hypotheses, a local value of the
velocity vector field v (r, t) can be defined providing us a way to treat this
thermal perturbation as mechanical one.

When a field of non-uniform mass flow is present in a fluid, the local
equilibrium phase-space distribution reads [Kubo et al., 1991]:

P (Γ) = e
− 1
kBT

[H0−
∫
V g(r,Γ)·v(r,t)dr], (1.37)

where g (r, t) is the momentum density and v (r) is the velocity vector field.
The analogous of the mechanical perturbation potential (1.23) is then given

by

Φ′ (Γ) =

∫
V

g (r, Γ) · v (r, t)dr, (1.38)

and we can write, in accord with (1.29), using the continuity equation (1.33)

τlj (r, t) =
1

kBT

∑
n,m

∫t
−∞ dt′

∫
V

dr′
〈
τlj (r, Γt) τnm

(
r′, Γt′

)〉
eq

∂

∂r′m
vn
(
r′, t′

)
,

(1.39)
where, now, vn (r, t) is one of the three components of the velocity vector
field v (r′, t′). Finally, in accord to Eqs. (1.30),(1.31) and (1.32) we can write

ηlj,nm =
Llj,nm

T
=

V

kBT

∫∞
0

〈
Πij (Γt)Πnm (Γ0)

〉
eq
dt, (1.40)

where Πij is the macroscospic stress tensor:

Πij (Γ) =
1

V

∫
V

τij (r, Γ)dr. (1.41)

For a isotropic liquid, Eq. (1.40) for the shear viscosity reads

η =
V

kBT

∫∞
0

〈
Πoff (Γt)Π

off (Γ0)
〉
eq
dt, (1.42)

where Πoff is equivalently one of the three off-diagonal elements of the
stress tensor.

1.4 microscopic expression of the stress ten-
sor

In order to evaluate the macroscopic stress tensor Π through molecular
dynamic simulations, one needs to express it as a function of atomic quanti-
ties. A simple classical derivation can be obtained from statistical mechanics
[Frenkel & Smit, 2001]. Considering a classical system made of N atoms of
mass mn in a volume V , for pairwise additive interactions the macroscopic
stress is given by1

Πij = −
1

V

N∑
n=1

〈

p

n
i p
n
j

mi
+
1

2

N∑
m( 6=n)=1

rnmi fnmj



〉

(1.43)

1 For a generalized expression of (1.43) compatible with many-body potentials and periodic
boundary conditions, one can look at [Thompson et al., 2009].
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where pni is the i-th component of momentum of the n-th particle, rnmi is
the i-th component of the distance vector between particle n and m and
fnmj represents the j-th component of the force exerted on particle n by the
particle m. The 〈·〉 brackets denote the usual ensemble average.

An analogue expression of the macroscopic stress for a quantum system
is given by [Nielsen & Martin, 1985a]

Πij = −
1

V

N∑
n=1

〈
Ψ
∣∣∣
(
pni p

n
j

mi
−
1

2
rni ∇nj Uint

)∣∣∣Ψ
〉

(1.44)

where Uint is the interacting potential between the particles and rni is the i-
the component of the position vector of particle n. In this case the positions
and the momenta of the particles has to be treated as quantum operators,
and the expectation value is over the many-body wave-function of the sys-
tem. Equation (1.44) is not in the most desirable form for application to large
macroscopic systems because of the presence of the position coordinate of
each particle. However, it is possible, in particular within Density-Functional
theory, to derive a well-defined expression for the stress tensor useful in sim-
ulations with periodic boundary conditions [1985a; 1985b].





2 DATA A N A LY S I S

The aim of this chapter is to introduce and briefly discuss the specific
techniques and the methods used in the present work in order to deal with
the calculation of the shear viscosity transport coefficient. In the past chapter,
we saw that the Green-Kubo formalism gives a direct relationship between
the viscosity and the expectation value at equilibrium of the off-diagonal
elements of the stress tensor. This relation reads:

η =
V

kBT

∫∞
0

〈
Πoff (Γt)Π

off (Γ0)
〉
eq
dt, (2.1)

where V is the volume of the system, kB is the Boltzmann constant and T is
the temperature of the system. The brackets 〈·〉 denotes the ensemble average.

In order to deal with the evaluation of the ensemble average of a general
observable, one can proceed with standard molecular dynamics techniques
[Frenkel & Smit, 2001]. In practice, the ensemble average, that consists in
averaging the observable over all the possible states of the system, is often
not easily accessible. Instead one can perform, in most of experiments, a
series of measurements during a certain time interval and then determine
the average of these measurements. This averages are equivalent to the en-
semble average if the system satisfies the so-called "ergodic hypothesis". The
latter can be expressed by the following relation

〈Â〉 = lim
T→∞ 1T

∫T

0

A (Γ(t))dt, (2.2)

where Â ≡ A(Γ) is a general observable that depends over the phase-space
variables of the system Γ, while A(Γ(t)) is a general observable evaluated
along a precise trajectory Γ(t) in phase-space.

Thus assuming the validity of the ergodic hypothesis, true at least for the
liquid systems, one can calculate the viscosity coefficient in Eq. (2.1) from
the time-series of the off-diagonal elements of the stress tensor obtained
from molecular dynamics simulations. Then these time-series are directly
connected to the viscosity through the relation

η =
V

kBT

∫∞
0

lim
T→∞ 1

T − t

∫T−t

0

Πij (Γ(t+ τ))Πij (Γ(τ)) dτdt, (2.3)

where T is the time-length of the simulation. Since the correlation time of the
currents (i.e. the time after that we can consider the correlation function to be
zero) is usually a significantly smaller then the time-length of the simulation,
one can write

η ≈ V

kBT

∫T

0

1

T

∫T−t

0

Πoff (Γ(t+ τ))Πoff (Γ(τ)) dτdt, (2.4)

that is valid in the limit of large-T.

11
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Within numerical simulations, the discretization of time leads to a discrete
form of Eq. (2.4):

η ≈ V

kBT

N∑
n=1

ε

M

M∑
m=1

Πoff (Γ(n+m))Πoff (Γ(m)) , (2.5)

where Πoff (Γ(m)) = Πoff (Γ(tm)) = Πoff (Γ(mε)) is the value of one of the
off-diagonal elements of the stress tensor at the simulation step m, and ε

is the time-step of the simulation. The evaluation of the viscosity through
Eq. (2.5) is compromised by the fact that, while ideally the time-correlation
function should go to zero for large time, in practise it is very noisy. As the
function approaches to zero, Eq. (2.5) starts integrating noise and behaves
like the distance traveled by a random walk, whose variance grows linearly
with the upper integration limit. The evaluation of transport coefficients thus
requires averaging over multiple trajectories (possibly multiple segments of
a same long trajectory) and estimating the resulting uncertainty as a function
of both the length of each trajectory and the upper limit of integration. This
is a cumbersome task that often leads to a poor estimate of the statistical and
systematic errors on the computed conductivity.

In the following sections we, first, present some useful notions and def-
initions of statistics and probability to provide several mathematical tools
useful to understand the main analysis technique used in this work: the so-
called cepstral analysis. This technique allows to avoid the direct calculation
of the integral in (2.5) that needs very long trajectories in order to be accurate.
In the last section of the chapter we present some applications and results
that we obtained from classical simulations of water.

2.1 elements of statistics

2.1.1 Stochastic processes

A stochastic process is, physically, any process running along in time and
controlled by probabilistic laws. Mathematically speaking, a stochastic pro-
cess is a collection of random variables {X(t), t ∈ T}, labelled by an index t
defined in the range T and can be thought as the time. We will alternate be-
tween the notation Xt and X(t) to denote the value of the stochastic process
at time t.

The process may be continuous or discrete according to the nature of the
index. For example, if T = {0, 1, 2, ..}, we are considering a discrete stochastic
process, while if T = [0,∞) we are considering a continuous one.

In numerical simulations, the stochastic processes correspond to the collec-
tions of the instantaneous values of the observables of the system. Since the
time within the simulation is discrete, these stochastic processes, that are
continuous in the physical world, become discrete and can be seen as the
discretization of the real continuous ones, Xm = X (εm), where ε is some
discretization step (i.e. the time-step of the simulation). This discretiza-
tion is only a numerical trick and we can always regard these processes as
continuous in order to simplify the underlying math and manipulate them
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more easily. A “numerically observed” sample, or realization of a (discrete)
stochastic process is often referred to as a time series or signal and it will be
indicated by x(t).

Consider now a discrete stochastic process Xt, with the time index t in
range t ∈ [1,n] , its joint probability density

P (X1,X2, ..,Xn−1,Xn) , (2.6)

totally describes the stochastic process itself. The covariance of the process
at two different times is given by:

CX(t1, t2)
def=〈(Xt1 − 〈Xt1〉) (Xt2 − 〈Xt2〉)〉, (2.7)

and it is also called its time-correlation function, where 〈·〉 denote the expecta-
tion value with respect to the joint probability density (2.6).

Let us now introduce another important property of stochastic processes.
A stochastic process Xt is said to be weak stationary if its expectation value
does not vary with respect to time and if its time-correlation function is
invariant under an arbitrary time translation, i.e.:

mX(t)
def=〈Xt〉 = mX(t+ τ) ∀τ ∈ R,

CX(t1, t2)
def=〈(Xt1 −mX(t1)) (Xt2 −mX(t2))〉 = CX (t1 + τ, t2 + τ) ∀τ ∈ R.

(2.8)

In particular, the last relation implies that the time-correlation function de-
pends only on time differences

CX(t1, t2) = CX(t1 − t2, t2 − t2) = CX(t1 − t2, 0). (2.9)

The notion of weak stationary is enough for our purposes, even though if
the marginal distributions of a process are invariant under time translation,
the process is said to be strong stationary [Papoulis, 1991]. The marginal
distribution of the variable Xi is defined as:

Fi (X1,X2, ..,Xi−1,Xi+1, ...,Xn) =
∫
P (X1,X2, ..,Xi, ...,Xn)dXi. (2.10)

In general, strong stationarity implies weak stationarity and not vice-versa,
but there is a particular case: Gaussian processes [Ebden, 2015]. A stochastic
process is said to be Gaussian if the marginal distributions of any n-uple of
its values {Xt1 ,Xt2 , ..,Xtn} are multivariate normal distributions. For Gaus-
sian processes, weak stationary implies strong stationary, because the co-
variance matrix uniquely determines all its the marginal distributions. This
means that if the covariance matrix is invariant under time translation (i.e.
the process is weak stationary) then also all the marginals function are invari-
ant under time translation, involving the strong stationary of the process.

2.1.2 The Wiener-Khintchine Theorem

Even before enunciating the theorem, let us introduce some fundamental
quantities that will become crucial for our future purposes.



14 data analysis

Let us consider a process {Xt}, the time-correlation function is given in
accord with Eq. (2.7) by:

C(t) = 〈X(t)X(0)〉, (2.11)

where the brackets denote the averaging over an ensemble of realizations of
the random variable and we assumed that 〈X(t)〉 = 0. Let us assume that the
process is weakly stationary, satisfying then conditions given by Eqs. (2.8).
We will further assume that the Fourier transform of the time-correlation
function C(τ) define by

C̃(ω) =

∫∞
−∞C(t)eiωtdt (2.12)

exists.
The truncated Fourier transform of a realization x(t) of the process {Xt} over

the interval [−T/2, T/2] is defined as

x̃T(ω)
def=
∫ T
2

− T
2

x(t)eiωtdt, (2.13)

and since x(t) is a random variable also x̃T(ω) can be regarded as a stochastic
process labelled by ω.

The truncated spectral power density of a process, ST(ω), is defined as the
expectation value of the modulus squared of the truncated Fourier transform
of the process, divided by the width of the truncation window:

ST(ω)
def=
1

T
〈∣∣x̃T(ω)

∣∣2〉 = 1

T

〈∣∣∣∣
∫ T
2

− T
2

x(t)eiωtdt

∣∣∣∣
2〉

. (2.14)

The power spectral density (PSD) or power spectrum of the random process
{Xt} is the limit for large-T of Eq. (2.14):

S(ω)
def= lim

T→∞ST(ω) = lim
T→∞ 1T

〈∣∣x̃T(ω)
∣∣2〉. (2.15)

The Wiener-Khintchine theorem [Khintchine, 1934; Wiener, 1930] states
that the power spectral density is the Fourier transform of time-correlation
function:

S(ω) =

∫∞
−∞C(t)eiωtdt. (2.16)

Proof: Let us evaluate explicitly the power spectrum of the process

〈∣∣x̃T(ω)
∣∣2〉 =

∫T/2

−T/2

∫T/2

−T/2

〈
X(s)X(t)

〉
eiω(s−t)dsdt (2.17)

=

∫T/2

−T/2

∫T/2

−T/2
C(s− t)eiω(s−t)dsdt, (2.18)

where the realization x(t) was assumed to be real valued since, for our pur-
pose, it assumes the meaning of the instantaneous values of physical observ-
ables.
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Figure 1: Domain of integration before (left) and after (right) the change of variables:
τ = s− t and t′ = t.

Since the integrand in Eq. (2.18) depends only on the variable s− t, defin-
ing a new variable τ = s− t and t′ = t, with standard calculus manipula-
tions, one can write∫T/2

−T/2
dt

∫T/2

−T/2
C(s− t)eiω(s−t)ds =

∫T/2

−T/2
dt′
∫T/2−t′

−T/2−t′
C(τ)eiωτ dτ, (2.19)

where the integration domain transforms as showed in Fig. 1 under the
change of variables.

Going on with simple calculus manipulations, it is easy to show that the
following relation holds

〈∣∣x̃T(ω)
∣∣2〉 =

∫T

−T
C(τ)eiωτ (T − |τ|)dτ, (2.20)

and dividing by T and letting T go to infinity becomes

S(ω) = lim
T→∞ 1T

〈∣∣x̃T(ω)
∣∣2〉 = lim

T→∞
∫T

−T
C(τ)eiωτ

(
1−

|τ|

T

)
dτ

= lim
T→∞

∫T

−T
C(τ)eiωτdτ+O

(
1

T

)
,

(2.21)

concluding the demonstration of the Wiener-Khintchine theorem.
Now one can show that weak stationarity implies that the time-correlation

function is a even function of time:

C(t) = 〈X(t)X(0)〉 = 〈X(t− t)X(0− t)〉 = C(−t). (2.22)

This let us write the PSD of the related process (i.e. the Fourier transform
time correlation function) as:

S(ω) =

∫∞
−∞C(τ)eiωtdτ

=

∫0
−∞C(τ)eiωtdτ+

∫∞
0

C(τ)eiωtdτ

= 2

∫∞
0

C(τ)cos(ωτ)dτ

(2.23)
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This result in conjunction with the Wiener-Khintchine theorem (2.16) al-
lows one to write the shear viscosity transport coefficient given by (2.1) in a
useful form:

η =
V

kBT

∫∞
0

〈
Πoff (Γt)Π

off (Γ0)
〉
dt

=
V

kBT

∫∞
0

CΠoff(t)dt

=
V

2kBT
S(ω = 0).

(2.24)

where CΠoff is the time correlation function of the off-diagonal element Πoff

of the stress tensor.
This relation is very important because it allows to relate the zero fre-

quency value of the power spectral density of the process, in the present
case the stress process, to the corresponding transport coefficient, the shear
viscosity.

2.2 cepstral analysis

In the present work we are interested in the shear viscosity coefficient and
so let us indicate the time series of stress tensor as:

Πoffn = Πoff(nε), n = 0, 1, 2, ...,N− 1 (2.25)

where ε in the sampling time (i.e. the time-step of the simulation) and N
is the length of the time series that we assume to be even. For the sake of
simplicity, let us drop the label off indicating the off-diagonal component of
the stress tensor and let us consider Πn as the time-series of one of them.

The discrete Fourier transform of the stress time series is defined as:

Π̃k =

N−1∑
n=0

Πne
2πiknN , (2.26)

for 0 6 k 6 N− 1. The sample spectrum Ŝk, called also periodogram, is defined
as

Ŝk =
ε

N

∣∣Π̃k
∣∣2, (2.27)

and for large N it is an unbiased estimator of the power spectrum defined
in Eq. (2.15), evaluated at ωk = 2πk/Nε, namely: 〈Ŝk〉 = S(ωk).

Since the Π’s are real, it is easy to show that the following relation holds

Π̃∗k = Π̃N−k, (2.28)

since

Π̃N−k =

N−1∑
n=0

Πne
2πi

(N−k)
N n

=

N−1∑
n=0

Πne
2πine−2πi

kn
N

=

N−1∑
n=0

Πne
−2πiknN = Π̃∗k.

(2.29)
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Eqs. (2.28) and (2.27) naturally imply

Ŝk = ŜN−k, (2.30)

so that periodograms are usually reported for 0 6 k 6 N/2.
Now, we will show some important statistical properties the total stress,

however these properties are valid for any general conserved-flux process.
Any element of the stress tensor is defined as the integral over the volume of
the corresponding stress density, τ (r, t), whose space-correlation function,
〈τ (r, t) τ (r′, t)〉, is usually short-ranged at equilibrium. Regarding the inte-
gral as a sum over different finite volumes and taking these volumes bigger
than the average interaction length of the system, each different contribution
to the total stress can be regarded as independent. Also, since the system
is homogeneous in space, each contribution is identically distributed to the
others. Thus the total stress tensor is a sum of identically and independent dis-
tributed variables (iid). The Central Limit Theorem [Papoulis, 1991] ensures
the distribution of the total stress to be Gaussian with zero-mean (since at
equilibrium the expectation value of the stress is zero). Thus, we can con-
clude that any conserved-flux process is Gaussian as well. The flux time
series is in fact a multivariate stochastic variable that in the thermodynamic
limit tends to a multivariate normal deviate. Since the Fourier transform of
a Gaussian is itself a Gaussian, the Fourier transform of the process P̃k is a
Gaussian process with zero-mean too.

The variance of the Π̃k process is given by

Var
[
Π̃k
]
=
〈
|Π̃k|

2
〉

=
〈[
<
(
Π̃k
)]2

+
[
=
(
Π̃k
)]2〉

=
〈[
<
(
Π̃k
)]2〉

+
〈[
=
(
Π̃k
)]2〉

=
N

ε
〈Ŝk〉 =

N

ε
S(ωk).

(2.31)

Thus, indicating with N(µ,σ2) a normal distribution with mean value
µ and variance σ2, one can say that the real and the imaginary part of
the Fourier transform of the process are themselves stochastic process dis-
tributed as

k = 0,
N

2
: <

(
Π̃k
)
∼ N

(
0,
N

ε
S(ωk)

)
,

k /∈ {0,
N

2
} : <

(
Π̃k
)

, =
(
Π̃k
)
∼ N

(
0,
N

2ε
S(ωk)

)
,

(2.32)

since for k = 0 or N/2, Π̃k is real and since the real and the imaginary part
of Π̃k are independent variables.

From Eqs. (2.31) and (2.32) we can derive the stochastic distribution of the
periodogram Ŝk for k /∈ {0,N/2}:

Ŝk =
ε

N

[
<
(
Π̃k
)]2

+
[
=
(
Π̃k
)]2

=
ε

N

{[
N

(
0,
N

2ε
S(ωk)

)]2
+

[
N

(
0,
N

2ε
S(ωk)

)]2}

=
S(ωk)

2

{
N21 +N22

}
,

(2.33)
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where N1 and N2 are standard Gaussian variables, obtained from the rela-
tion N = N(0,σ2)/σ. For k =∈ {0,N/2} the same expression gives

Ŝk = S(ωk)N
2
1. (2.34)

The distribution of the sum of n squared independent standard Gaussian
variables is a chi-squared distribution χ2n with n degrees of freedom. Chi-
squared variables have the following statistic properties:

x : χ2n −→

{
〈x〉 = n
Var [x] = 2n

(2.35)

Defining new variables ξ̂k distributed as

ξ̂k ∼
χ22
2

, k /∈ {0,N/2}; ξ̂k ∼ χ21, k ∈ {0,N/2}, (2.36)

Eqs. (2.33) and (2.34) can now be written in a more compact and significant
way:

Ŝk = S(ωk)ξ̂k, (2.37)

with ξ̂k distributed as in Eq. (2.36). For the sake of simplicity, we consider
all the ξ̂ identically distributed, ξ̂k ∼ χ22/2 for all values of k, thus making
an error of order O(1/N), which vanishes in the long-time limit N→∞.

Molecular dynamic simulations can provide us multiple realizations of the
same process. In the present case, since the system under study is homoge-
neous and isotropic, the off-diagonal elements Πij of the stress matrix with
ij = xy, xz,yz are three independent and equivalent time-series of the same
process, then a single MD trajectory provides three different independent
realization of the same process

In the general case, let us suppose to have l different realizations of a
process. We can then define a mean periodogram

lŜk
def=

ε

lN

l∑
p=1

∣∣lΠ̃k
∣∣2

= S(ωk)
lξ̂k,

(2.38)

where lξ̂k ∼ 1
2lχ

2
2l since the periodogram is given by the sum of the square

of 2l standard Gaussian variables. Eq. (2.38) shows once again that the
mean periodogram is an unbiased estimator for the power spectral density
of the process, 〈lŜk〉 = S(ωk), and in particular, through Eq. (2.24), its zero-
frequency value is proportional to the transport coefficient.

An important property for a good estimator is the consistency: the vari-
ance of the estimator should decrease with the number of the sampled points.
In this sense, lŜk is not consistent. In fact, while it is unbiased and so its
expectation value is the true value of the power spectral density, its variance
is not affected by the number of sampled points N:

〈lŜk〉 = S(ωk)〈lξ̂k〉 = S(ωk),

Var
[
lŜk
]
= S(ωk)

2Var
[
lξ̂k
]
=
1

l
S(ωk)

2,
(2.39)
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where we used the definition of lξ̂k and the properties of the chi-square
distribution in Eq. (2.35). This relations shows that the periodogram is
unbiased but is not consistent. This is due to the fact that the noise given
by lξ̂k acts like a white-noise and is multiplicative. Thus, to deal with this
problem one can take the logarithm of the periodogram in order to transform
the multiplicative noise in an additive one, easier to treat with standard
filtering techniques.

Let lL̂k = log
(
lŜk
)

be the log-periodogram of the time series. By taking the
logarithm of Eq. (2.37) one obtains

lL̂k = log (S(ωk)) + log
(
lξ̂k
)
= log (S(ωk)) +

lΛ+ lλ̂k, (2.40)

where lλ̂k = log
(
lξ̂k
)
− lΛ are zero-mean identically and independent dis-

tributed stochastic variables, lΛ = 〈log
(
lξ̂k
)
〉 = ϕ(l) − log(l), and ϕ(z)

is the digamma function defined as the derivative of the logarithm of the
Euler-Gamma function:

ϕ(z) =
d

dz
log (Γ(z)) =

Γ ′(z)

Γ(z)
. (2.41)

The variance of the lλ̂k variables is σ2l = ϕ
′(l), where ϕ′(z) is the tri-gamma

function, i.e. the second derivative of the logarithm of the Euler-Gamma
function:

ϕ′(z) =
d2

d2z
log (Γ(z)) . (2.42)

Then with this procedure we turned the initial multiplicative noise in Eq.
(2.38) in an additive white noise with zero-mean. We wish now to clean up
the logarithm of the periodogram from its high-frequency components that
are mainly due to the white-noise. In practise, we apply a low-pass filter to
Eq. (2.40) hoping in a reduction of the power of the noise, without affecting
the true signal.

In order to do this, exploiting the so called "cepstral analysis" [Baroni et al.,
2020; Childers et al., 1977; Ercole et al., 2017], we define the cepstrum of
the time series Pn as the inverse Fourier transform of its log-periodogram
[Childers et al., 1977]

lĈn =
1

N

N−1∑
k=0

lL̂ke
−2πiknN . (2.43)

Similarly to the sample power spectrum, the cepstral coefficients defined in
Eq. (2.43) are real, periodic, and even: Ĉn = ĈN−n. A generalized form
of the central-limit theorem ensures that, in the large-N limit, the inverse
Fourier transform of the lλ̂k appearing in Eq. (2.40) are a set of independent
(almost) identically distributed zero-mean normal deviates [Peligrad & Wu,
2010]. It follows that:

lĈn = Cn + δn0
lΛ+ lµ̂n,

Cn =
1

N

N−1∑
k=0

log (S(ωk)) e
−2πiknN ,

(2.44)
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where lµ̂n are independent zero-mean normal deviates with variance

〈lµ̂2n〉 =
σ2l
N

for n /∈
{
0,
N

2

}
〈lµ̂2n〉 = 2

σ2l
N

otherwise

(2.45)

If the log-periodogram, log (S(ωk)) is smooth enough, the number of non-
null Cn in Eq. (2.44), is much smaller than N: only few of them really
contributes to the smooth shape of S(ωk) and so to the signal we want to
compute. Analysing the different cepstral coefficients lĈn, one can then
assume that for n > P∗, where P∗ is the number of cepstral coefficient we
want to keep, the coefficients do not carry information about the power
spectral density, but only about the noise given by the variables lµ̂n in Eq.
(2.44). Then in order to clean the periodogram from the noise, one can
perform a discrete Fourier transform of Eq. (2.43) restricted to n < P∗ and
n > N− P∗:

lL̂∗k ≡ lĈ0 + 2
P∗−1∑
n=0

lĈncos

(
2πkn

N

)
, (2.46)

and in particular its zero-frequency component:

lL̂∗0 =
lĈ0 + 2

P∗−1∑
n=0

lĈn

= log (S(ω = 0)) + lΛ+ lµ̂0 + 2

P∗−1∑
n=0

lµ̂n.

(2.47)

It follows from the properties satisfied by the lµ̂’s in Eqs. (2.45) that lL̂∗0 is a
Gaussian variable with expectation value and variance given by:

〈lL̂∗0〉 = log (S(ω = 0)) + lΛ,

σ2lL̂∗0
= ϕ′(l)

4P∗ − 2

N
,

(2.48)

and finally the transport coefficient, in this case the viscosity, and its vari-
ance:

η =
V

2kBT
S (ω = 0) =

V

2kBT
e〈
lL̂∗0〉−lΛ,

σ2η = η2σ2lL̂∗0
= η2ϕ′(l)

4P∗ − 2

N
.

(2.49)

Then this technique not only allows to estimate the zero-frequency com-
ponent of the log-periodogram, which is directly connected by the Wiener-
Khintchine theorem to the transport coefficient, but gives also its standard
deviation. In particular we see that this error depends over three different
parameters: the length of the time-series N, the number of cepstral coef-
ficients we decide to keep P∗ and the number of realizations of the same
process that we dispose l.

In order to estimate the optimal number of cepstral coefficients necessary
to keep the features of the real power spectral density and to remove the
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noise, in [Ercole et al., 2017] the authors suggested to use the Akaike’s Infor-
mation Criterion [Akaike, 1974]. This method consists in choosing P∗ as the
one that minimizes the function:

AIC(P) = −2max
θ

log L (θ,P) + 2P, (2.50)

where L (θ,P) is the likelihood of the parameters θ = (θ1, θ2, .., θP) of the
model and P is the number of parameters that characterized the chosen
model. Then the optimal number of parameters is the argument of the AIC
minimum:

P∗AIC ≡ arg min
P
AIC(P). (2.51)

In the present case, the parameters of the model are the coefficients Cn as
defined in Eqs. (2.44). The log-likelihood of this parameters is

2log L (C,P) = −
N

2σ2l

(
Ĉ0 − (C0 +

lΛ)
)2

−
N

σ2l

P−1∑
n=1

(
Ĉn −Cn

)2
−
N

σ2l

N/2∑
n=P

Ĉ2n.

(2.52)
This result follow the fact that in our model we assume that for n < P the
stochastic variables Ĉn contain information about the power spectral density
and then are gaussian variables with mean value equal to the Fourier coef-
ficients of the logarithm of the power spectral density of the process. While
for n > P the Ĉn’s are due to the white noise giving zero-mean Gaussian
variables.

The maximum of Eq. (2.52) is given by

2max
C
log L (C,P) = −

N

σ2l

N/2∑
n=P

Ĉ2n, (2.53)

and the AIC of this model turns out to be

AIC(P) =
N

σ2l

N/2∑
n=P

Ĉ2n + 2P, (2.54)

that is the quantity we have to minimize in order to get the right P∗ in accord
with Eq. (2.51).

2.3 applications to classical simulations

In order to benchmark the methodology described above and to get used
with this technique, we have applied it to the calculation of the shear vis-
cosity of classical water. In particular the aim of this preliminary study, as
well as validate the technique itself, is to determine the dependence of the
viscosity over the size of the system and to find a reference length of the
trajectory in order to obtain a error of about 10% on the viscosity value.

Classical MD simulations were ran using LAMMPS package [Plimpton,
1995]. More details over the specific simulation will be given later on.
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Figure 2: Depiction of a TIP4P/2005 water molecule.

ε/kB(K) σ(Å) qH(e) dOM(Å)

TIP4P/2005 93.2 3.1589 0.5564 0.1546

Table 1: Optimized parameters for the TIP4P/2005 model.

2.3.1 The TIP4P/2005 model of water

The TIP4P/2005 [Abascal & Vega, 2005] is a rigid four sites model for
the simulation of classical water. It consists of four interaction sites: three of
them are placed at the positions of the oxygen atom and of the two hydrogen
atoms of the molecule while the other site, often called the M site, is co-
planar with the O and H sites and is located at the bisector of the H–O–H
angle. In Fig. 2 is given the structure of the model. The model is rigid, then
the value of the H-O distance and of the H-O-H angle are kept fixed to the
experimental values respectively of rOH = 0.9572Å and αHOH = 104.52◦.

The inter-molecular pair potential has two contributions: a Lennard-Jones
ULJ term and an electrostatic interaction Uel. The peculiar feature of the
model is that the oxygen site O carries no charge, but contributes to the the
LJ term:

ULJ = 4ε

[(
σ

rOO

)12
−

(
σ

rOO

)6]
. (2.55)

Conversely the H and M sites are charged and contribute only to the elec-
trostatic potential between two molecules, namely i and j in the following
way

Uel =
e2

4πε0

∑
a,b

qaqb
rab

, (2.56)

where e is the electron charge, ε0 is the permittivity of vacuum, and a and
b stands for the charged sites of molecules i and j, respectively.

The model is then fully described by four parameters: the strength ε and
the length σ of the Lennard-Jones interaction, the charge of the hydrogen
site (or of the M site equivalently), the distance dOM between the oxygen
site and the M site. The optimized values of these parameters are given in
Table 1.
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Figure 3: Mean periodogram of stress time series of water obtained from a 150 ps
molecular dynamics trajectory. Grey: periodogram obtained directly for
Eq. (2.38) with l = 3 (i.e. with the three equivalent components of the
stress tensor). Blue: periodogram filtered with a moving average window
of width 0.3 THz, useful to reveal the main features of the spectrum. The
vertical line identifies f ∗ used in order to restrict the analysis over the
low-frequencies region of the spectrum. The inset is a magnification of
the low-frequency region with the result of the cepstral analysis in red.

2.3.2 Validation of the technique

In this section the results of the cepstral analysis on water TIP4P/2005

model are presented. The water system was chosen as a cubic super-cell
containing 384 atoms (128 water molecules) with a density ρ = 0.998 g/cm3.

A first molecular dynamics simulation was run in order to equilibrate
the system in the NVT ensemble at the target temperature T = 350K for
several hundred picoseconds, then we performed a very long (about 50 ns)
NVE simulation in order to collect data for the analysis. Time-step of the
simulations was chosen ε = 0.2 fs in order to have a satisfying conservation
of the total energy.

In order to perform the cepstral analysis technique, we used the software
thermocepstrum [Ercole & Bertossa, 2018]. The software is a python module
designed specifically to handle the computation of thermal conductivities
via cepstral analysis. The original software, available as an open source
project on GitHub, has been slightly modified in order to deal with stress
time series and to predict the shear viscosity.

In Fig. 3 we report the sampled mean periodogram of the stress ten-
sor averaged over the three equivalent off-diagonal elements (i.e. xy, xz,yz).
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Figure 4: Distribution of the results given by the cepstral analysis protocol applied
different trajectories of 150 ps. The black line is a Gaussian function with
expectation value given by the sample mean and standard deviation ob-
tained from the empirical statistics of the resulting data. The vertical grey
band indicates the location of the value of the viscosity, ηB, evaluated from
block analysis.

The solid blue line represents a moving average1 computed over a narrow
frequency window while the vertical black line indicate a cutoff frequency
used for the cepstral analysis. It is in fact convenient, since the transport
coefficient depends on the low-frequency behavior of the spectrum, to apply
a low-pass filter to the time series in order to eliminate the high-frequency
portion of the spectrum. Given a new cutoff frequency f ∗, one can directly
re-sample the stress time series with a new time-step ε′ = (2f ∗)−1 resulting
in a low-pass filter at the chosen frequency. According with the previous ap-
plication of this technique for the calculation of transport coefficients [Ercole
et al., 2017], the value of the cutoff frequency, f ∗, was chosen just at the end
of the first narrow peak.

In order to validate the cepstral data-analysis protocol, we first computed
the viscosity from a direct integration of the stress auto-correlation function,
Eq. (2.4), combined with standard block analysis over the 50 ns long trajec-
tory obtaining ηB = 0.41± 0.01 cP, that will be taken as a reference. In Fig.
4 we show the distribution of the values obtained from the cepstral analysis
technique, η, on each segment of 150 ps of the trajectory. The optimal P∗A
has been determined independently on each segment, while the f ∗ was cho-
sen once for all from one of them, since the different periodograms of the
different segments share the same main features. The graph shows a fair

1 Given a sequence {xi}
N
i=1 the moving average of width n is a new sequence {si}

N−n+1
i=1

defined from the ai by taking the arithmetic mean of subsequences of n terms: si =
i+n−1∑
j=1

xj
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Figure 5: Dependence of the mean η̄, as estimated with our data analysis technique,
on the number of cepstral coefficients P∗. Here P∗A is the optimal number
of cepstral coefficients given by the AIC method. The black dots represent
the mean value of the viscosity provided and the blue area is its average er-
ror, both computed over multiple molecular dynamics trajectories (about
150 ps). The black dashed lines indicate the standard deviation of data es-
timated from empirical statistics. The horizontal grey band indicates the
location of the value of the viscosity, ηB, evaluated from block analysis.

compatibility between the values computed through the data-analysis pro-
tocol and the value obtained by blocks analysis approach, depicted as the
black region, proving the reliability of the technique.

In order to analyse the dependence between the transport coefficient and
the number of cepstral coefficients P∗, we display in Fig. 5 the mean vis-
cosity transport coefficient η̄ for different choice of P∗, averaged over all the
different 150 ps long trajectory. In particular, taking as reference the number
of optimal cepstral coefficients given by the Akaike Information Criterion,
P∗A, we report the dependence between η̄ and P∗/P∗A. We observe that when
P∗ is larger than P∗A, the estimated value of η doesn’t depend markedly on
P∗. Still, a very slight bias seems to be present probably due to the difficulty
that the AIC seems to present when it has to deal with a sharp low-frequency
peak in the power visible in Fig. 3.

In Fig. 6 we display the dependence of the resulting estimate of η̄, the
average viscosity over the different segment of the whole trajectory, as a
function of the cut-off frequency, along with the dependence of the optimal
number of the cepstral coefficients, P∗A. Fig. 6a shows a bias between the
reference value, ηB, and the viscosity evaluated through the cepstral tech-
nique, η̄. In particular this bias becomes relevant for large f ∗, leading to a
non-compatibility between the two approaches. As mentioned before, this
is due to the fact that the AIC seems not to be a totally reliable indicator
of the number of cepstral coefficients. This is, again, due to the sharp peak
very close to the zero-frequency of the spectrum. By increasing the optimal
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Figure 6: The two different graphs display the results obtained with cepstral anal-
ysis with respectively P∗ = P∗A (left) and P∗ = 2P∗A (right), with P∗A the
optimal number of cepstral coefficients provided byt the AIC.
Red squares: dependence of the optimal number of cepstral coefficients
given by the AIC, P∗A, on the cut-off frequency f ∗.
Black dots: dependence of the mean viscosity η̄ on the cut-off frequency
f ∗. The vertical black line indicates the value of f ∗ chosen for the previous
analysis. The meaning of the blue region and of the black dashed lines are
the same as in Fig. 5.

number of cepstral coefficients provided by AIC by a factor two, P∗ = 2P∗A,
the bias introduced decreases as indicated in Fig. 6b. In any case, with the
cut-off frequency we’ve chosen, the bias introduced by the AIC seems not to
be relevant and the result is totally compatible with the result given by block
analysis.

To conclude, Fig. 7 displays the average relative error given by the cepstral
analysis technique for different block sizes. In particular, a trajectory of
150 ps seems to be enough to guarantee an error smaller than 10%.

To sum up the results of the present discussion, we benchmarked the
cepstral analysis technique by comparing it with standard procedure, block
analysis, for the evaluation of viscosity transport coefficient from molecular
dynamics trajectories. The results are satisfying and show a fully compatibil-
ity between the two procedures. Still, cepstral analysis seems to introduce a
slight bias on the transport coefficients, probably relied on the sharpness of
the low-frequency peak of the spectrum. In this case the AIC does not pre-
dict the correct number of cepstral coefficients and increasing this number by
a factor two, P∗ = 2P∗A, appear to be a more satisfactory choice. Moreover,
a trajectory of 150 ps seems to be enough in order to obtain a acceptable
standard deviation over the transport coefficient.

2.3.3 Size scaling

In this last section, we want to study the dependence between the size of
the simulated system and the viscosity transport coefficient obtained from
the cepstral analysis. The aim of this section is to find a satisfying size of
the system in order to not include significant surface effects and evaluate
correctly the viscosity in the bulk.
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Figure 7: Dependence of the relative error as estimated from cepstral technique and
averaged over different trajectories (of same length), on different trajectory
lengths.

In order to do this, we ran a NVE simulation (about 10 ns) for five
different water systems with different number of particles, respectively of
96, 192, 384, 768 and 1536 particles. Each system was brung to a target tem-
perature of about 350K through a NVT simulation of several hundred of
picoseconds. The density of the systems was chosen to be ρ = 0.998 g/cm3.
The time-step of the simulations was set to ε = 0.2 fs. For every different
system we repeated the previous data analysis protocol over segments of
100, 150, 200 and 250 ps of the whole trajectory in order to compute the vis-
cosity coefficient of each system. Since each different periodograms share
the same main features, the cutoff frequency f ∗ = 3THz was chosen once all
sizes. The optimal number of cepstral coefficients was, again, estimated us-
ing AIC method independently for each different trajectory of each different
system.

Fig. 8 shows the average viscosity coefficient, η̄, for different size systems
obtained from the cepstral analysis as a function of trajectory lengths. The
results looks well constant over the block sizes. In Fig. 9 we show the average
value of the shear viscosity obtain with 150 ps long trajectories as function
of the size of the system, displaying a fair compatibility of the mean shear
viscosity over the different systems.

We conclude that shear viscosity of water shows no significant system-size
dependencies. These results match with those observed in earlier studies
[Yeh & Hummer, 2004].
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Figure 8: Average results for the shear
viscosity of water as a func-
tion of the block size, for differ-
ent system sizes: 32, 64, 128, 256
and 512 molecules. The error-
bars correspond to the average
error provided by the cepstral
analysis.
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Figure 9: Average results for the shear viscosity of water obtained from trajecto-
ries of 150 ps for different system sizes. The errorbars correspond to the
average error provided by the cepstral analysis.





3 A B I N I T I O M O L E C U L A R DY N A M I C S

Ab initio electronic structure methods are computational methods based
on quantum mechanics. Ab initio means "from first principle" since the only
inputs required in such calculations are physical constants and no empirical
data are required. Ab initio calculations aim to evaluate the many-electron
wave function which is the solution of the electronic Schrödinger equation,
given the positions of the nuclei and the number of electrons. From the
many-electron wave function, one can evaluate several properties of the
system such as electron densities, energy, and other observables. Ab ini-
tio molecular dynamics (AIMD) can also be performed, exploiting the Born-
Oppenheimer approximation [Born & Oppenheimer, 1927]. The main differ-
ence between classical molecular dynamics and AIMD is the way in which
the forces between atoms are evaluated. In classical MD a functional form
for inter-atomic forces is assumed on the basis of physical considerations.
An empirical potential is built fitting the parameters to a given experimental
and/or theoretical data base. In contrast, in AIMD the inter-atomic forces
are computed from electronic structure calculations in a consistent and accu-
rate way as the simulation proceeds, no empirical data are needed and only
the number of atoms and the species of each atom are used.

In the following sections we first briefly review the theoretical background
behind ab initio electronic structure calculations like the Born-Oppenheimer
approximation [1927], Density-Functional theory [Hohenberg & Kohn, 1964;
Kohn & Sham, 1965] and the Car-Parrinello technique for AIMD simulations
[Car & Parrinello, 1985]. In the last section we present some original results
for the shear viscosity obtained from AIMD simulations.

3.1 born-oppenheimer approximation

In condensed matter physics we deal with nuclei and electrons. Thus, let
us consider a system of N nuclei and n electrons. In principle one has to
solve the Schrödinger equation:

H
(
{r}, {R}

)
Ψ
(
{r}, {R}

)
= EtotΨ

(
{r}, {R}

)
, (3.1)

where {r} and {R} are respectively the entire set of coordinates of electrons
and nuclei, while Etot is the energy of the whole system. The hamiltonian
H is given by

H
(
{r}, {R}

)
=−

N∑
µ=1

 h2

2Mµ
∇2µ −

n∑
j=1

 h2

2mj
∇2j +

1

2

∑
µ6=µ′

ZµZµ′e
2

|Rµ −Rµ′ |

−
∑
j,µ

Zµe
2

|rj −Rµ|
+
1

2

∑
j6=j′

e2

|rj − rj′ |
,

(3.2)

31
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where the first two terms are respectively the kinetic energy of the nuclei and
of the electrons, the third term is the Coulomb repulsion between nuclei, the
thirst term represents the Coulomb attraction between nuclei and electrons
and finally the last contribution is the Coulomb repulsion between electrons.

A solution to the Schrodinger equation (3.1) would be a function depen-
dent on the coordinates of all particles of the system. However, exploiting
the fact that the nuclei are more massive than the electrons by at least three
orders of magnitude, one can separate the global problem into an electronic
problem for fixed nuclei and a nuclear problem under an effective potential
generated by electrons. This approach is known as the Born-Oppenheimer
approximation (BO approximation) [Born & Oppenheimer, 1927].

Formally, we assume the total wave function Ψ of the form

Ψ
(
{r}, {R}

)
= φ

(
{R}
)
ψR
(
{r}
)
, (3.3)

where the electronic wave-function ψR depends now parametrically on the
positions of the nuclei Rµ and solves the electronic Schrodinger equation:

[
−

n∑
j=1

 h2

2mj
∇2j −

∑
j,µ

Zµe
2

|rj −Rµ|
+
1

2

∑
j6=j′

e2

|rj − rj′ |

]
ψR
(
{r}
)
= E

(
{R}
)
ψR
(
{r}
)
,

(3.4)
where the nuclei positions {R} are fixed and the energy E

(
{R}
)

of the electron
gas depends upon them.
Inserting Eq. (3.3) in (3.1) and using Eq. (3.4) one can write

[
−

N∑
µ=1

 h2

2Mµ
∇2µ +

1

2

∑
µ 6=µ′

ZµZµ′e
2

|Rµ −Rµ′ |
+ E
(
{R}
)]
Ψ
(
{r}, {R}

)
= EtotΨ

(
{r}, {R}

)
.

(3.5)
Assuming now that the electronic wave-function depends only weakly

upon the nuclei positions, i.e.:

[
−

N∑
µ=1

 h2

2Mµ
∇2µ
]
φ
(
{R}
)
ψR
(
{r}
)
≈ ψR

(
{r}
)[
−

N∑
µ=1

 h2

2Mµ
∇2µφ

(
{R}
)]

, (3.6)

Eq. (3.5) leads to a Schrodinger equation for nuclei coordinates only

[
−

N∑
µ=1

 h2

2Mµ
∇2µ +

1

2

∑
µ 6=µ′

ZµZµ′e
2

|Rµ −Rµ′ |
+ E
(
{R}
)]
φ
(
{R}
)
= Etotφ

(
{R}
)
, (3.7)

where the electrons appear only in the form of a effective potential.
If the nuclei are regarded as classical particles, as it’s usually done, the

Schrodinger equation (3.7) can be replaced by the Newton’s law. In particu-
lar one can write the force acting on the µ-th nucleus as

R̈µ =
1

Mµ
Fµ = −

1

Mµ
∇µ
[ 1
2

∑
µ6=µ′

ZµZµ′e
2

|Rµ −Rµ′ |
+ E
(
{R}
)]

= −
1

Mµ
∇µVpes

(
{R}
)
,

(3.8)
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where Vpes
(
{R}
)

is known as potential energy surface, and it is the effective
potential acting on the nuclei depending only one the atomic coordinates
and species.

However, even if the Born-Oppenheimer approximation simplifies consid-
erably the problem, all solutions of the electronic Schrodinger equation (3.4)
are still very complex function of the coordinates of all electrons, parametrized
by the atomic position.

3.2 density-functional theory

The resolution of the Schrodinger equation for a many body system is
made consistently hard by the need of working with the many-body wave-
function, even in the BO approximation. This is a formidable task, even for
systems of a few particles, and thus the search of schemes where one can
work with objects simpler than the many-body wave-function has had a spe-
cial appeal since the born of quantum mechanics. One such a scheme is pro-
vided by the so called Density-Functional theory (DFT), whereby one focuses
on the one-body density ρ (r) rather than on the many-body wave-function
ψ (r1, ..., rn), as it is done in the Schrodinger equation. Its resolution is still
far from being simple.

Density-Fuctional theory is based on the Hohenberg-Kohn theorem [Ho-
henberg & Kohn, 1964]. Hohenberg and Kohn were able to prove that in
order to obtain information of the ground state of the system, only the elec-
tronic density of the ground state needs to be known. The latter is a quantity
that depends only on one spacial coordinate, taking much less effort to be
handled. In particular the theorem states the ground-state charge density of
a system of n electrons

ρ (r) =
〈
ψ
∣∣
n∑
j=1

δ
(
r− rj

)∣∣ψ
〉

= N

∫ ∣∣ψ (r, r2, ..., rn)
∣∣2dr2...drn,

(3.9)

uniquely identifies the external potential Vext acting on electrons and in turn
the whole Hamiltonian H = T +U+Vext, where T is the kinetic energy and
U is the electron-electron repulsion. Thus, the energy of the ground-state is
a functional of the change density:

E [ρ] = 〈ψ|H|ψ〉 = 〈ψ|T +U+ Vext|ψ〉 = F [ρ] +
∫
vext (r) ρ (r)dr, (3.10)

where F [ρ] is a universal functional describing the kinetic contribution and
the electron-electron repulsion, moreover we’ve assumed that the external
potential has the form Vext =

∑
j vext

(
rj
)

and could be, for example, the
ion-electron interaction.
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This sketch provides a relevant simplification for obtaining the properties
of the system. While the electronic density still needs to be found, it can
now be obtained from a variational ansatz by minimizing the total energy1

ρ (r) = arg min
ρ
E [ρ] , (3.11)

This avoids the necessity to use many-body wave functions.

3.2.1 Kohn-Sham equations

Kohn-Sham formalism [Kohn & Sham, 1965] provides a scheme in order
to cast the density functional problem of interacting particles into a self-
consistent problem of non-interacting particles. In practice, one starts as-
suming that any interacting one body density is also solution of an auxiliary
non-interacting problem with an appropriate external potentials. Then, let
us introduce a non-interacting system having the same electronic density as
the true one

ρ (r) =
∑
j

∣∣ψj (r)
∣∣2, (3.12)

whereψj are known as Kohn-Sham orbitals and are orthonormal single-electron
wave-functions, 〈ψk|ψj〉 = δkj. We define the exchange-correlation energy, the
functional given by

Exc [ρ] = T [ρ] +U [ρ] −
(
Tni [ρ] + VH [ρ]

)
, (3.13)

where Tni [ρ] and VH [ρ] are respectively the kinetic energy of the non-interacting
electrons, and the electrostatic Hartree energy:

Tni [ρ] = −
 h2

2m

∑
j

〈
ψj
∣∣∇2j

∣∣ψj
〉
, (3.14)

VH [ρ] =

∫ ∫
ρ (r) ρ (r′)

|r− r′|
drdr′. (3.15)

Finally the total energy of the system (3.10) can be written as

E [ρ] = Tni [ρ] +UH [ρ] + Exc [ρ] +

∫
vext (r) ρ (r)dr. (3.16)

By imposing the condition that the Kohn-Sham orbitals minimize the energy
functional (3.16) under the orthonormality constraints, one obtains the Kohn-
Sham equations

HKSψj (r) =
[
−

 h2

2m
∇2 + veff (r)

]
ψj (r) = εjψ (r) , (3.17)

where the effective potential, veff (r) = vH (r) + vxc (r) + vext (r) is a func-
tional of the density, in addition to being a function of r, given by the sum
of respectively the exchange-correlation potential, the Hartree potential and

1 Here we assume the ground-state not to be degenerate.
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the external potential for the interacting system. The first two contributions
are defined as

vH ([ρ] ; r) =
δVH [ρ]

δρ (r)
= e2

∫
ρ (r′)

|r− r′|
dr′, (3.18)

vxc ([ρ] ; r) =
δExc [ρ]

δρ (r)
, (3.19)

where the derivative symbol δ/δρ (r) denotes the functional derivative with
respect to the density.

From the Kohn-Sham equations one self-consistently obtains the density
given by Eq. (3.12), occupying the orbitals starting from the lowest one (in
energy). In practice, one starts from a guess density ρ (r) and iterates (3.17)
and (3.12) up to self-consistency, once one has reached it, the total energy of
the ground-state can be obtained as

E =
∑
j

εj − VH [ρ] −

∫
vxcρ (r)dr+ Exc [ρ] . (3.20)

There is still a substantial problem of this scheme: the exchange-correlation
energy functional, Exc, is still not known, and so the corresponding potential
vex (r). However a lot of approximations have been proposed and one of the
most remarkable and surprisingly effective is the Local Density Approximation
(LDA) [1965], which assumes that the exchange-correlation functional can be
re-write as

Exc [ρ] =

∫
ρ (r) exc (ρ (r))dr, (3.21)

using for the exchange-correlation energy density exc (ρ (r)) the result for
the homogeneous electron gas of density ρ, computed in each point r. This
calculation can be accurately carried out through Quantum Monte Carlo
techniques.

3.2.2 Stress tensor in DFT

In the chapter 1 we presented the formal expressions for stress (1.44) ap-
plicable to general many-body systems. However, this expression is not in a
form which can take advantage of the simplifications resulting from express-
ing the energy as a functional of the electronic density. Let us consider a
macroscopic and finite solid of volume V , the static macroscopic stress is de-
fined as the derivative of the total potential energy of the nuclei with respect
to the macroscopic strain [Martin, 2004]

Πsαβ =
1

V

∂Vpes

∂εαβ
=
1

V

∂Eii
∂εαβ

+
1

V

∫
ρ (r)

∂Vext (r)

∂εαβ
dr, (3.22)

where the last equality follows from the Helmann-Feymann theorem[DEB,
1973]. The apex s indicates the fact that this expression contains only the
contribution due to the potential energy to the stress, and the kinetic contri-
bution due to the classical motion of the ions. In Eq. (3.22) Eii is the ionic
repulsion, ρ is the electronic density, Vext is the electron-ion potential, and
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greek subscripts are cartesian components. Considering a strained system,
the displaced ionic positions are given by

Rl,α → R′l,α = Rl,α +
∑
β

εαβRl,β, (3.23)

the electron-ion potential is in the form

Vext (r) =
∑
l

v (|r−Rl|) . (3.24)

We therefore recast (3.22) as

V ·Πsαβ =
∂Vpes

∂εαβ
=
∂Eii
∂εαβ

−

∫
ρ (r)

∑
l

Rlβv
′
α (r−Rl)dr, (3.25)

where

v′α (r) =
rα

r

∂v′ (|r|)

∂|r|
. (3.26)

The expression of Eq. (3.25) is only meaningful for a finite system, since it
is boundary sensitive and depends upon the position of the ions which is
ill-defined in PBC. Therefore, let us transform it in a more useful expression.
Within the Density-Functional theory, the density ρ, as we’ve seen, is given
by

ρ (r) =
∑
i

fi|ψi (r)|
2, (3.27)

where fi is an occupancy factor and the φ’s are the usual Kohn-Sham or-
bitals, eigenfunctions of the hamiltonian HKS define in Eq. (3.17). Exploiting
the commutator

[
HKS, rβ

∂

∂rα

]
=
pαpβ

m
− rβ

∂

∂rα
(Vext + VH + Vxc) , (3.28)

which has a vanishing mean value over the orbitals, and substituting Rl,β =

rβ − (r−Rl)β in Eq. (3.25), we obtain the following expression for the
macroscopic stress tensor

Πsαβ =
1

V

∂Eii
∂εαβ

+
1

V

∂Exc

∂εαβ
+
1

V

∫
ρ (r)

∑
l

(r−Rl)β v
′
α (r−Rl)dr

−
1

V

∑
i

fi〈ψi|
pαpβ

m
|ψi〉−

e2

2V

∫
ρ (r) ρ

(
r′
) (rα − r′α) −

(
rβ − r′β

)

|r− r′|3
drdr′,

(3.29)

where all the terms, except the exchange-correlation (XC) contribution, are
now manifestly boundary insensitive and extensive in form. Within LDA
approximation, the XC contribution to the stress can be shown [Nielsen &
Martin, 1985a] to be a pure isotropic pressure, while in the most general case
(and for low-symmetry solids) it is anisotropic. In particular for gradient-
corrected functionals (GGA), the explicit boundary insensitive and extensive
form is given in the Ref. [Dal Corso & Resta, 1994].

Morever, for some DFT calculation schemes it is advantageous to express
all quantities, such as the energy, the density and the Kohn-Sham orbitals,



3.3 car-parrinello molecular dynamics 37

in reciprocal space where a manageable plane-wave basis set gives high cal-
culation accuracy and efficiency. In this context, a general expression of the
macroscopic stress tensor for either local and non-local pseudopotential can
be found in the Ref. [Nielsen & Martin, 1985b].

3.3 car-parrinello molecular dynamics

Ab initio molecular dynamics, in the BO approximation, can be success-
fully carried out within the DFT scheme in order to obtain the PES at fixed
atomic positions and then evaluating the force acting on the nuclei through
Eq. (3.2) together with the Hellmann-Feymann theorem. This allows to write
the force acting on the µ-th atom as

Fµ = −∇µ
[
−

∫
ρ (r)

Zµe
2

|r−Rµ|
dr+

∑
µ′( 6=µ)

ZµZµ′e
2

|Rµ′ −Rµ|

]
, (3.30)

where ρ (r) is the electron density obtained from self-consistent calculation.
The key problem, however, is that the calculations must be very efficient in
order to reduce the expensive computational cost of DFT calculations.

The Car-Parrinello algorithm for AIMD [Car & Parrinello, 1985] consists
in a unified approach that does not consider the motion of nuclei and the
solution of the equations for electrons at fixed {Rµ} as separate problems,
but rather it tries to treat them at the same level. Again, in ab initio molecu-
lar dynamics, the motion of the nuclei is determined by the forces acting on
them, evaluated starting from the solution of the electronic quantum prob-
lem. The special feature of the Car-Parrinello algorithm is that it solve the quantum
electronic problem using molecular dynamics [Martin, 2004] rather than using
DFT calculations or other ab initio approaches. This is achieved adding a
fictitious kinetic energy carried by the electrons, which leads to a fictitious
Lagrangian for both electrons and nuclei [Car & Parrinello, 1985]

L =
∑
j

1

2
m̃

∫
|ψ̇j (r)|

2dr+
∑
ν

1

2
MµṘ

2
µ − Vpes

[
{ψj}, {Rµ}

]

+
∑
jk

Λjk

[∫
ψ∗j (r)ψk (r)dr− δjk

]
,

(3.31)

where Mµ are the physical ionic masses and m̃ are arbitrary parameters of
appropriate units. Theψ’s are single-electron orbitals, while Vpes

[
{ψj}, {Rµ}

]

is the DFT potential energy surface written as a functional of the single-
electron orbitals and the atomic positions. The last term in Eq. (3.31) ensures
the orthogonality of the electronic states.

The Lagrangian (3.31) generates a dynamics for the parameters {ψj} and
{Rµ} through the equation of motions:

m̃ψ̈j (r, t) = −
δE

δψ∗j (r)
+
∑
k

Λjkψk (r, t)

= HKSψj (r, t) +
∑
k

Λjkψk (r, t) (3.32)

MµR̈µ = Fµ = −∇µE (3.33)
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where see that the parameter m̃ plays the role of a fictitious mass for the
electrons chosen in order to reach a optimal convergence of the solution to
the true adiabatic solution. The equation of motions can be solved with
standard techniques such as the Verlet algorithm [Frenkel & Smit, 2001].

We highlight the fact that the fictitious kinetic energy of the electrons has
nothing to do with the real quantum kinetic energy and that the motion pro-
vided by the Car-Parrinello Lagrangian (3.31) is also fictitious. The purpose
of this fictitious energy is to evolve the single-electron orbitals always stay-
ing close to the real ground-state (i.e. close to the Kohn-Sham orbitals). This
can be achieved by an appropriate choice of the the fictitious mass of the
electrons and of the time-step of the simulation, the smaller the value of m̃
the better the adiabaticity is preserved. Small values of m̃, however, result
in small values for the integration time-step.

A typical Car-Parrinello simulation starts with a electronic minimization
at fixed ionic positions, in order to bring the electronic system on the ground
state relative to the starting atomic configuration. This can be accomplished,
instead of solving the Kohn-Sham equations (3.17) in the standard self-consistent
way, by cooling the system down reducing the fictitious kinetic energy though
the fictitious mass parameter that plays the role of the temperature in the
standard simulated annealing techniques. This approach is called dynamical
simulated annealing and provides a way alternative to find the minimum of
the self-consistent Kohn-Sham equations. Once the ground-state has been
reached, integrating the equation of motions (3.32) and (3.33) allows one to
carry out ab initio molecular dynamics.

The stress tensor in Car-Parrinello dynamics can be evaluated exploiting
Eq. (3.29) and adding the kinetic contribution of the moving ions (present
also in the classical equation of the stress tensor (1.43)). The macroscopic
stress can be written as follow [Parrinello & Rahman, 1980]

Παβ = −
∑
µ

Mµv
µ
αv
µ
β

V
+
1

V

∂Vpes

∂εαβ
(3.34)

where vµα is the component α of the velocity vector of the atom µ. The second
term of the equation is the static contribution to the stress tensor due to the
potential energy, and can be evaluated from (3.29) using the single electron
orbitals solving the equation of motion of the CP Lagrangian (3.31).

3.4 shear viscosity

In this work, we use on the Perdew-Burke-Ernzerhof (PBE) approximation
to the exact exchange and correlation (XC) functional, whose parameters
have been determined from first principles [Perdew et al., 1996]. The PBE
functional can provide a reasonable description of liquid water, although
PBE simulations need to be run at an elevated temperature (e.g., 400 K) in or-
der to approximate the properties of the liquid at 300 K [Sit & Marzari, 2005].
Hamann-Schluter-Chiang-Vanderbilt (HSCV) pseudopotentials [Hamann et
al., 1979; Vanderbilt, 1985] were used to represent the core region of oxy-
gen and hydrogen atoms. Among the possible ab initio molecular dynam-
ics techniques, we have chosen the Car-Parrinello [Car & Parrinello, 1985]
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Figure 10: Fictitious energy of the electrons as a function of time.

method and all of our calculations were carried out with the plane-wave
first-principles distributions of codes Quantum ESPRESSO [Giannozzi et
al., 2009]. The plane-wave cutoff was set to 85Ry. The water model was
chosen as a cubic super-cell with periodic boundary conditions containing
375 atoms (125 molecules of water), with a density ρ = 1.0 g/cm3.

As usual, a first NVT simulation of few picoseconds was carried out
wherein the system was equilibrated at target temperature of 400K with a
Nose-Hoover thermostat. Then we performed a NVE trajectory of about
200 ps in order to collect data. The mean temperature of the ions during the
simulation was found to be 〈T〉 = 410± 0.5K. A time-step ε = 7.26 · 10−2 fs
was used to integrate the electronic and ionic equations of motion; this value
is about ten times smaller than the time step typically used in molecular dy-
namics. The fictitious energy of the electrons was chosen to be m̃ = 25me.

In Fig. 10 we display the behaviour of the fictitious energy of the electron
through the NVE simulation. The function oscillates with a maximum value
of about 1.3 · 10−2 Hartree and there is no indication of a systematic gain of
kinetic energy of the electronic variables.

In Fig. 11 we show the different energies of the system as a function of
the time. The green data represent the potential energy surface, Vpes, of
the system, in red we plot the real energy of the whole system, formed by
electron and ions, while in black we present the constant of motion of the
Car-Parrinello Lagrangian (3.31). The almost constant behavior of the latter
gives a check of the numerical accuracy in the integration of the equations
of motions. Actually, very small fluctuations, due to the discretization of
the time evolution are present, not visible on the scale of the picture since
they correspond to relative variations of energy less than 10−4 Hartree. The
difference between the conserved energy and the total energy of the system
(respectively black and red data) corresponds to the fictitious energy of the
electronic degrees, which is about six orders of magnitude smaller respect
to the other.
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Figure 11: Behaviour of the energies during the CP dynamics. Green: the potential
energy surface, i.e. the self consistent energy of the electrons within
the density functional theory and the Born-Oppenheimer approximation.
Red: the total energy of the system given by the sum of the PES and the
kinetic energy of the ions. Black: the formal conserved energy of the
Car-Parrinello Lagrangian.

3.4.1 Results and data analysis

After this short description of the simulation itself, we are now ready
to discuss the shear viscosity of PBE water, following the scheme already
presented in Chap. 2.

The collected data useful to the calculation of the shear viscosity consist
of the time series of the three off-diagonal elements of the stress tensor, Παβ.
We remind briefly the step of the data acquisition procedure and the subse-
quent analysis in order to evaluate the transport coefficient

• Compute the off-diagonal elements of the stress tensor: Πxy,Πxz,Πyz;

• Compute the mean periodogram of the stress time series lŜk from Eq.
(2.37);

• Choose a cut-off frequency in order to get rid of high-frequency peaks,
and resample the time series;

• Compute the cepstrum (2.43);

• Apply the Akaike Information Criterion (AIC), maximizing Eq. (2.54)
in order to estimate the number of cepstral coefficients P∗;

• Evaluate the shear viscosity and its statistical error from Eqs. (2.49);

The resulting mean periodogram is displayed in Fig. 12, and its mov-
ing average represented with the solid blue line. The features of the spec-
trum at low frequencies are similar to the one we already analysed for the
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Figure 12: Mean periodogram of stress time series of water obtained from a 200 ps
ab initio molecular dynamics trajectory. Grey: mean periodogram ob-
tained directly for Eq. (2.38) with l = 3 (i.e. with the three equivalent
components of the stress tensor). Blue: periodogram filtered with a mov-
ing average window of width 0.3 THz

TIP4P/2005 model in Fig. 3. However, the ab initio spectrum exhibits peaks
also for higher frequencies, at approximate 48 THz and 102 THz.

The results carried out by the cepstral analysis technique is showed in
Fig. 13. The cepstrum is represented by the red line showed in the inset
of the graph. The periodogram exhibits a high peak very close to the zero
frequency, followed by a second smaller peak at about 8 THz.

In order to justify our chosen value for the cut-off frequency, we report
in Fig. 14 the behaviour of the shear coefficient with its standard deviation
as a function of f ∗. The transport coefficient is quite constant and fully
compatible in the interval [0, 30], which, looking at the full periodogram
of the stress time series in Fig. 12, corresponds to the region that goes
from zero till the first peak. After this first peak, the viscosity still doesn’t
show dramatic discontinuities, but the compatibility with the low-frequency
values is less evident. In the inset of the plot we display a magnification of
the low frequency region and also the dependency of the optimal number of
cepstral coefficients, given by the Akaike Information Criterion, as a function
of the cut-off frequency. We found that the growth of the number of P∗

is almost linear (slightly sub-linear) with the choice of f ∗. With the aim
of obtaining a good estimate of the shear viscosity, choosing an f ∗ as one
of the value in the interval [0, 30] would be equivalent, but since we also
want a small standard deviation, we chose as cut-off frequency the value
f ∗ ≈ 12 THz which is a good compromise between the estimation of the
shear viscosity and its error.
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Figure 13: Cepstral analysis of stress time series of water obtained from a 200 ps
molecular dynamics trajectory at 400K. Grey: mean periodogram. Blue:
periodogram filtered with a moving average window of width 0.3 THz.
The vertical line identifies the cut-off frequency f ∗. The inset is a magnifi-
cation of the low-frequency region with the result of the cepstral analysis
in red.

Finally, we present the result (for the first time) of the shear viscosity of
PBE water at about 410K:

η = 0.488± 0.029 cP (3.35)

with a relative error of the 6%. A previous ab initio shear viscosity for PBE
water can be found in [Kuhne et al., 2009], however no previous results
have ever been found with AIMD exploiting the Green-Kubo formalism. We
compare our ab initio result with the experimental ones showed in Tab. 2,
obtained from Ref. [Haynes et al., 2005]. Our result corresponds to the
experimental value of liquid water at about 323K, this discrepancy of about
100K is quite in accord with previous studies [Grossman et al., 2004; Sit &
Marzari, 2005].

As we can see from Tab. 2, experimental shear viscosity shows a strong
dependency upon the temperature of the system. This implies that, in or-
der to limit the bias introduced by temperature fluctuations on the value of

T(K) 273 283 293 303 313 323

η(cP) 1.793 1.307 1.002 0.798 0.653 0.547

T(K) 333 343 353 363 373

η(cP) 0.467 0.404 0.354 0.315 0.282

Table 2: Experimental values of the shear viscosity of water [2005].
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Figure 14: The graph displays the results obtained with cepstral analysis at differ-
ent cut-off frequencies. The blue region represent the statistical error of
each value of the shear viscosity while the black dots the actual values.
The inset is a magnification of the first region the graph, with the addi-
tion, in red, of dependency of the optimal number of cepstral coefficients
obtain from the AIC upon the f ∗. The vertical black line indicates the cut-
off frequency we’ve chosen in order to obtain the final estimate of the
shear viscosity of water (3.35)

the viscosity, one has to carry out molecular dynamics simulations with a
very stable temperature. In particular, in our the Car-Parrinello simulation
of 125 water molecules, the standard deviation of the instant values of the
temperature was founded to be about σT = 15K. In order to reduce this fluc-
tuations one can proceed in two different ways: a thermostat can be coupled
to the dynamics of the ions, making sure that it does not affect the dynamics
of the system, or equivalently one can simulate a larger system at constant
energy, reducing in this way the amplitude of the temperature fluctuations.
The latter choice is of course the safer, but the computational cost of ab initio
molecular dynamics makes it unaffordable.

In the next chapter, we will try to overcome the impossibility of carrying
out ab initio molecular dynamics simulations with large systems, exploit-
ing neural network potentials. The latter will provide data that won’t be
distinguishable between the ab initio ones providing an accurate model to
AIMD.





4 N E U R A L N E T W O R K A P P R OA C H TO
M O L E C U L A R DY N A M I C S

A lot of progress has been made in recent years in the development of
atomistic potentials using machine learning (ML) techniques. Represent-
ing the interatomic potential energy surface (PES), both accurately and effi-
ciently, is one of the most challenging problem in molecular modelling. Two
are the mostly common traditional approaches: the direct application of
quantum mechanics models such as DFT models, or empirically constructed
potential models fitted from experimental data. The former approach is
severely limited by the size of the system that one can handle, while as the
latter class of methods are limited by the accuracy and the transferability of
the model. Considering the importance of the PES in molecular modeling, a
lot of interest has been recently put in order to provide a general framework
for an ML-based PES that can equally describe different systems with high
fidelity .

In this last chapter we focus our attention on a particular machine learn-
ing model called Deep Potential - Smooth Edition (DeepPot-SE) [Zhang, Han,
Wang, Saidi, et al., 2018], which is able to efficiently represent the PES for a
wide variety of systems with the accuracy of ab initio quantum mechanics
models. In particular, a scheme for molecular simulation, the deep potential
molecular dynamics (DPMD) [Zhang, Han, Wang, Car, et al., 2018] based on
machine learning, will be exploited in order to obtain molecular dynamic
simulations with inter-atomic forces predicted by a carefully crafted deep
neural network trained with ab initio data.

In the first sections we will give a brief description of machine learning
basic concepts [Goodfellow et al., 2016]. We will proceed describing the
DeepPot-SE model [Zhang, Han, Wang, Saidi, et al., 2018] and how to use
it in order to craft a neural network potential. Finally, we will present (for
the first time) the result of the shear viscosity of water obtained from DPMD
simulations trained on ab initio data.

4.1 machine learning basics

Let us begin with a general definition of a machine learning algorithm is:
an algorithm that is able to learn from data. By learning we mean that these
computer algorithms improve automatically through experience, in order
to make predictions or decisions without being explicitly programmed to
do so. This allows ML to tackle tasks that are too difficult to be solved
with fixed programs written and designed by human beings. Many kind
of tasks can be solved with machine learning (classification, transcription,
machine translation, anomaly detection ...), here we focus our attention on
one particular task: the regression. In a regression algorithm, the computer
program is asked to predict a numerical value given some input. In order

45



46 neural network approach to molecular dynamics

to solve this task, the learning algorithm is asked to output a function f :

Rn → R. From this point of view, this approach is then very similar to a fit:
we have some data, we fit them with a specific function and then, given an
input, we are able to provide some predictions.

Briefly, a regression algorithms usually work in the following way. A set
of data, provided from the experience, is split in two subsets: the learning
one and the test one. The first contains the data fed to the ML algorithm, the
latter is used to check if the predictions that the program provide are correct.
This kind of learning is called a supervisor learning.

4.1.1 Example: Linear Regression

To make more concrete the previous basic concepts we’ve just introduced,
we present an example of a simple machine learning algorithm: the linear
regression. Our goal is to build a model that can take a vector x ∈ Rn as
input, and can predict the value of a scalar y ∈ R as its output, which is a
linear function of the input. Let us define the output predicted by our model
as

ŷ = wTx, (4.1)

where w ∈ Rn is a vector of parameters and the label T indicates the trans-
pose. We can think of w as a set of weights that determine how each single
data xi affects the prediction.

Suppose we have a dataset consisting in a matrix of m examples inputs
and a relative vector that provide the correct value of y for each of these
examples. Let us use this dataset as a testing set. We refer to the matrix of
inputs as X(test) and to the vector of the corresponding targets as y(test):

X(test) =
(
xT1 , xT2 , ..., xTm

)
where xi =

(
x1, x2, ...

)
(4.2)

y(test) = (y1,y2, ...,ym) . (4.3)

One way in order to control the performance of the model is to compute
the loss function or cost function. The loss function is a fundamental tool in
ML and must be chosen with care being the function that gives information
of the model. A simple choice, in this case, is the mean squared error

MSEtest =
1

m

∑
i

(
ŷ
(test)
i − y

(test)
i

)2
, (4.4)

where ŷi is the prediction that the model provide, given xi as input. This in
some way measure the error of the model’s predictions and it is equal to 0
when ŷ(test) = y(test), i.e. the model provided the right predictions.

We need now an algorithm that improves the weightsw in order to reduce
the value of the loss function MSEtest, while it is allowed to gain experience
by observing a training set

(
X(train),y(train)

)
. An easy and intuitive way

is just to minimize the MSEtrain, the error on the training set, with respect
to the weights. This can easily carried out solving the following problem

∇wMSEtrain = 0, (4.5)
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that has solution

w =
(
X(train)TX(train)

)−1
X(train)y(train). (4.6)

Then evaluating the weights through this last equation constitutes a simple
learning algorithm.

4.2 deep feedforward networks

Deep feedforward networks [Goodfellow et al., 2016], also often called feed-
forward neural networks, are the fundamental pillars of deep learning mod-
els. These models are called feedforward because the information moves in
only one direction, forward, from the input nodes, through the hidden nodes
(if any) and to the output nodes. There are no cycles or loops in the network.
The goal of a feedforward network is to approximate some function f ∗. For
example, for a regression, y = f ∗ (x) maps an input vector x to an output
y. Then the feedforward network will define a map y = f(x;w) optimizing
the values of the parameters w in order to result in the best approximation
function.

Deep feedforward neural networks are referred as network because they
are typically constitutes of composition of many different functions. For
example, we might have three functions f (1), f (2), f (3) connected in a chain,
to form f (x) = f (3)

(
f (2)

(
f (1) (x)

))
. In this case, f (1) is called first layer, f (2)

is called the second layer and so on. The number of function chained gives
the depth of the network (this is where the term deep learning comes from).
The final layer is called the output layer. When we feed a feedforward neural
network with an input, we don’t know how the layers individually behave
and interact in order to provide the output. We do not decide the output of
every different layer, but it is the learning algorithm itself that automatically
decided how to use these layers to best implement an approximation of
the f ∗. Because the training data do not show the desired output for each
of these layers, these layers are called hidden layers. The meaning of these
intermediate outputs is often not totally understood.

Lastly, these networks are called neural because, at the very beginning,
they were inspired by neuroscience. Each hidden layer of the network is
typically vector-valued, and its dimensionality determines the width of the
model. An hidden layer receives an input vector xin with n entries and
gives back an output vector xout with m entries, acting then like a matrix
W : M×N . We can think of the layer as consisting of many units that act
in parallel, each representing a vector-to-scalar function. These units (often
referred as nodes) resembles the different neurons in the sense that they
receive an input from many other units (the entries of the vector xin) and
the compute a scalar output (one of the components of xout). Each neuron
is then the representation of one row of the matrix W, and the number of
rows of the latter corresponds to the number of neurons for that particular
layer (i.e. the width of the layer).

Let us give a simple mathematical interpretation for the neuron. In Fig.
15 we display the way in which a usual neuron is represented. A vector
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Figure 15: The neuron mathematical model of McCulloch and Pitts. In this particu-
lar model the activation function is a Heavisde function.

x = (x1, x2, .., xN) is the input signal and enters the neuron with weights
w = (w1,w2, ..,wN). Inside the neuron, the sum of the weighted entries
is calculated, given a =

∑
i xiwi + b where b is a bias. This result is used

as argument of the activation function f (z), a non linear function that finally
gives the value of the output y. In order to describe the biological behaviour
of a neuron, McCulloch and Pitts in the 1943 [Fitch, 1944] chose as activation
function the Heaviside function, given as output

y = Θ

(
N∑
i=1

xiwi + b

)
= Θ (a) , (4.7)

in order to describe neuron with binary response. The neuron is say to
be activated if a > 0. Nowadays, other activation functions, like hyperbolic
functions, rectified linear functions (ReLu) and emphsigmoids, have become
more popular.

The example we presented is simple and trivial, but it’s the fundamen-
tal unit of a feedforward neural network. In these models every layer can
present a large number of neurons. Each of these neurons takes a vector as
input and give back a scalar output, the latter will be fed again to another
neurons, together with the output of the other neurons of that layer. This
process will be repeated for every layer of the network, resulting in a almost
chaotic sequence of operations.

For a better understanding, let us consider a single output feedforward
neural network with L layers of neurons. We call x the input vector and we
refer as o(l) the output of the l-th neuron layer, clearly o(0) = x is the input
vector and o(L) = ŷ is th output scalar value. For simplicity, let us restrict
to the case L = 3 and we suppose each neuron in the same l-th layer to have
the same activation function f (l). A schematic representation of the deep
feedforward network is given in Fig. 16. Let us define

a
(l)
k =

∑
j

w
(l)
kj o

(l−1)
j + b

(l)
k , o(l)k = f (l)

(
a
(l)
k

)
, (4.8)

where w(l)
kj and b(l)k are respectively the weight and the bias for the output

of the j-th neuron (of layer l− 1) entering the k-th neuron of the layer l, while
o
(l)
k is the scalar output of the k-th neuron in the l-th layer. To simplify the

mathematics further, the bias b(l)k for node k in layer l will be incorporated
into the weights as w(l)

k0 with a fixed output of o(l−1)0 = 1 for node 0 in layer
l− 1.
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Figure 16: A simple feedforward neural network with two hidden layer

The final output value ŷ can be then written as

ŷ = o
(3)
1 = f (3)

(
z
(3)
1

)

= f (3)


∑

i

w
(2)
1i f (2)


∑

j

w
(1)
ij f (1)

(∑
k

w
(0)
jk x

(0)
k

)


 ,

(4.9)

and we can again, given a training dataset of M vectors xi and their relative
true associated output yi, define the loss function as

L =
1

M

M∑
i=1

(yi − ŷi)
2 =

1

M

M∑
i=1

Li, (4.10)

and can be easily generalized for a arbitrary number of layers.
The learning process, which consist in minimizing the loss function (4.10),

is powered by two fundamental algorithms: the stochastic gradient descent
that provides a useful tool in order to manage the dataset to train the net-
work, and the back-propagation that allows to compute the gradient of the
loss function in a easy and computationally cheap way. We will end this
brief introduction describing these two algorithms.

4.2.1 Stochastic gradient descent

Almost all deep learning algorithms are powered by one very important
algorithm: stochastic gradient descent (STG) [Goodfellow et al., 2016]. This
algorithm is an extension of the well-know gradient descent algorithm, since
it replaces the actual gradient (calculated from the entire data set) by an
estimate thereof (calculated from a randomly selected subset of the data).
In the present case the function we want to minimize is the loss function
(4.10), and in order to obtain a solid neural network, capable of providing
good previsions from previously unobserved inputs (this ability is called
generalization), large training sets are necessary. But large training sets are
also more computationally expensive.



50 neural network approach to molecular dynamics

As we’ve seen before the loss function can be decomposed as a sum over
training example of some per-example loss function

L (w) =
1

M

M∑
i=1

L (xi,yi,w) =
1

M

M∑
i=1

Li, (4.11)

where L is the per-example loss function.
In order to minimize the loss function, gradient descent requires comput-

ing

∇wL (w) =
1

M

M∑
i=1

∇wLi, (4.12)

and the cost of this operation is O(m), turning out being unaffordable for
typical size of training dataset, made of millions to billions of examples.

The stochastic gradient descent provides a interesting alternative. The
gradient of the loss function is approximately estimated using small set of
samples called minibatch. In practice, on each step of the algorithm we can
sample a minibatch of examples B = {x1, x2, ..., xM′} drawn uniformly from
the training set. The minibatch size M′ is chose drastically smaller than the
size of the entire dataset, ranging from 1 to few hundreds.

The estimate of the gradient is formed as

g =
1

M′

M′∑
i=1

∇wLi, (4.13)

using data from the minibatch B. The new optimized parameters w(new)

are then given following the estimated gradient downhill:

w(new) = w(new) − εg, (4.14)

where ε is the step size, called the learning rate.

4.2.2 Back-propagation algorithm

The stochastic gradient descent allows us to save a significant amount of
computational time, but still we need to explicitly compute the gradient of
the loss function with respect to a relevant number of parameters. This made
the computation of the gradient for a neural network slightly more compli-
cated. Nevertheless, the back-propagation algorithm allows to do it efficiently
and exactly [2016].

In fitting a neural network, the back-propagation algorithm computes the
gradient of the loss function with respect to the weights of the network for
a single example. The algorithm works by computing the gradient with
respect to each weight exploiting the chain rule for derivatives, iterating
backward from the last layer to the first. It is called back-propagation be-
cause it works in the opposite way of the natural forward propagation of the
information in a feedforward neural network.

Let us try to describe the algorithm. We want to evaluate the gradient of
the loss function (4.10) with respect to a particular weights w(l)

kj . Referring
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to (4.8), w(l)
kj is the weight that multiplies the output of the j-th neuron of

the layer l− 1, o(l−1)j , and contribute to a(l)k , the argument of the activation
function of the k-th neuron of the l-th layer. We then write explicitly this
derivative and, using the chain rule, we obtain

∂L

∂w
(l)
kj

=
∂L

∂a
(l)
k

∂a
(l)
k

∂w
(l)
kj

=
1

M

M∑
i=1

∂Li
∂a

(l)
k

∂a
(l)
k

∂w
(l)
kj

, (4.15)

where a(l)k is defined in (4.8) and Li is what we previously called the per-
example loss function. For simplicity, let us drop the index i. The first term
in the sum is denoted as

δ
(l)
k =

∂L

∂a
(l)
k

, (4.16)

and can be interpreted as the error at layer l. The second term can be explic-
itly evaluated and it gives

∂a
(l)
k

∂w
(l)
kj

=
∂

∂w
(l)
kj

(
rl−1∑
n=1

w
(l)
kno

(l−1)
n

)
= o

(l−1)
j , (4.17)

where rk−1 is the number of neurons in the layer l− 1.
Thus, the partial derivative of the loss function with respect to the weight

w
(l)
kj returns

∂L

∂w
(l)
kj

= δ
(l)
k o

(l−1)
j . (4.18)

Starting from the final layer L, let’s give an expression for δ(L)1 (the sub-
script is 1 and not k because this derivation concerns a one-output neural
network). The error at layer L can be evaluated as follow

δ
(L)
1 =

∂L

∂a
(l)
1

=
∂

∂a
(l)
1

[
f (L)(a(l)1 ) − y

]2
(4.19)

= 2
[
f (L)(a(l)1 ) − y

]
f ′(L)(a(L)1 ), (4.20)

where the prime indicates the derivative of the function with respect to its ar-
gument. Putting all together, the derivative of the loss function with respect
to a weight in the final layer w(L)

1k is

∂L

∂w
(l)
1j

= δ
(L)
1 o

(L−1)
j = 2 (ŷ− y) f ′(L)(a(L)1 )o

(L−1)
j . (4.21)

The partial derivatives with respect to any other weight of hidden layers
is a bit more complicated. Let us write the error of the hidden layer l in the
following way

δ
(l)
k =

∂L

∂a
(l)
k

=

r(l+1)∑
n=1

∂L

∂a
(l+1)
n

∂a
(l+1)
n

∂a
(l)
k

=

r(l+1)∑
n=1

δ
(l+1)
k

∂a
(l+1)
n

∂a
(l)
k

. (4.22)

Note that the bias input o(l)0 corresponding to w(l+1)
k0 is fixed and do not

enter in the sum since its value is not dependent on the outputs of previous
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layers. The second term of the sum can be evaluated exploiting the definition
of a(l+1)i :

a
(l+1)
n =

rl∑
j=1

w
(l+1)
nj f (l)

(
a
(l)
j

)
−→ ∂a

(l+1)
n

∂a
(l)
k

= w
(l+1)
nk f ′(l)

(
a
(l)
k

)
. (4.23)

Plugging this expression in (4.22) gives

δ
(l)
k = f ′(l)

(
a
(l)
k

) r(l+1)∑
n=1

δ
(l+1)
k w

(l+1)
nk , (4.24)

which is called backpropagation formula. Putting all together, the derivative of
the loss function (4.15) finally gives

∂L

∂w
(l)
kj

= δ
(l)
k o

(l−1)
j = f ′(l)

(
a
(l)
k

)
o
(l−1)
j

r(l+1)∑
i=1

δ
(l+1)
k w

(l+1)
ik . (4.25)

This last equation is where backpropagation gets its name. In particular
we see, Eq. (4.24), that the error δ(l)k at layer l is dependent on the error δ(l+1)k

at the next layer l+ 1. One then proceed in the following way first. First,
the forward phase is carried out, evaluating all the outputs of the different
layer of the network, the different input of each neurons and the resultant
loss function; then one can proceed backward, starting from evaluating the
error at the output layer and going back. Once we have collected all the
errors , through (4.25), the derivative of the loss function with respect to any
weights is easily carried out.

This algorithm, flanked by the stochastic gradient descent, allows to train
efficiently a deep feedforward neural network.

4.3 deep potential - smooth edition

After this brief introduction in machine learning basic topics, let us go
back to physics. The Deep Potential - Smooth Edition [Zhang, Han, Wang,
Saidi, et al., 2018] exploits machine learning tools in order to model the PES
of an interacting system made of electrons and nuclei. The model, which
naively consists in a deep feedforward neural network, can be trained with
ab initio data allowing to predict the total energy of the system and the forces
acting on each atom with quantum accuracy. By construction, DeepPot-SE
is extensive and continuously differentiable, scales linearly with system size,
and preserves all the natural symmetries of the system. Imposing the sym-
metries of the system, such as rotational and translational symmetry, to the
model is not indispensable since one could let the neural network learn all
this properties by itself. Anyway, forcing the model to present these symme-
try properties reduces the time one has to spend to train it in order to have
satisfactory predictions.
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Let us give a brief description of this model. We consider a system of N
atoms and we define the coordinate matrix R ∈ RN×3 as

R =




x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN


 , (4.26)

where ri = (xi,yi, zi) is the position of the i-th atom. As we’ve previously
seen, the PES, Vpes (R), is a function that maps the atomic coordinates and
their chemical character to a real number.

The DeepPot-SE model, exploiting the extensivity of the total energy, works
decomposing the PES in atomic contributions εi that depend on particular
local atomic descriptors. The latter contain information of the local environ-
ment of each atom and its species. In order to construct these descriptors, let
rc be a pre-defined cut-off radius. For each atom i, we consider its neighbors
list given by the ensemble of the atoms whose distance from the atom i is
smaller than the cut-off distance: rij < rc. Let Ni be the number of atom
of this list, we can describe the local environment of atom i with the relative
coordinate matrix Ri ∈ RNi×3 in terms of Cartesian coordinates

Ri =




x1i y1i z1i
x2i y2i z2i

...
...

...
xNii yNii zNii


 , (4.27)

where rji = rj − ri =
(
xji,yji, zji

)
are defined as relative coordinates.

Now, in order to make the model smooth, the relative coordinates matrices
Ri ∈ RNi×3 are mapped into generalized coordinates R̃i ∈ RNi×4. The
latter are referred as renormalized coordinate matrix:

R̃i =




s(r1i)
s(r1i)x1i
r1i

s(r1i)y1i
r1i

s(r1i)z1i
r1i

s(r2i)
s(r2i)x2i
r2i

s(r2i)y2i
r2i

s(r2i)z2i
r2i

...
...

...
...

s(rNii)
s(rNii)xNii

rNii

s(rNii)yNii
rNii

s(rNii)zNii
rNii




, (4.28)

where s(rji) is a continuous and differentiable scalar weighting function de-
fined as

s(rji) =


1
rji

rji < rcs

1
rji

[
1
2cos

(
π
(rji−rcs)
(rc−rcs)

)
+ 1
2

]
rcs < rji < rc

0 rji > rc

(4.29)

that plays the role of a smoothing function applied to each component. Here
rcs is a smooth cut-off parameter that allows the components of R̃i in to
smoothly go to zero at the boundary of the local region defined by rc. In
particular s(rji) plays the role of a smoothing function, reducing the weight
of the particles that are more distant from atom i. It also removes the dis-
continuity introduced by the cut-off radius rc.
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R R̃i

NNαi

εi

Figure 17: A pictorial representation of the Deep Potential-SE scheme. The coor-
dinate matrix R is firstly transformed in the renormalized coordinate
matrix R̃i which descibes the local environment of the atom i. The let-
ter is then fed to a feedforward neural network NNαi , specific for the
atomic species αi of the atom i. The network gives as result a scalar
number trained to be the local atomic energy.

Then, each matrix R̃i is fed into a specific deep feedforward network
NNαi , where αi specifies the species of the atom i. The output εi of the
neural network is the local atomic energy of the atom i. Then the PES is
given by the sum of the local atomic energies

Vpes =

N∑
i=1

εi, (4.30)

while the atomic forces are given by

Fn = −∇nVpes = −

N∑
i=1

∇nεi, (4.31)

The training is performed with the stochastic descent method, minimiz-
ing the loss function with respect to the weights of the deep feedforward
network. The evaluation of the gradient is carried out using backpropaga-
tion algorithm, while the loss function is chosen to be

L =
1

M

M∑
l=1

pE|Vpes − E
l|2 + pF|F− F

l|2, (4.32)

where M is the number of examples in the minibatch used for the STG
method, El and Fl are the predicted energies and total forces, and pE,pF are
tunable prefactors useful to improve the efficiency of the training.

Let us notice that the evaluation of the atomic forces is straightforward
and it is given ’for free’ by the backpropagation algorithm. In fact we can
write each term in the sum (4.31)

∇nεi =
∂εi
∂rn

=
∂εi

∂R̃i

∂R̃i
∂rn

, (4.33)

where the first term is given by the backpropation, while the second can be
computed easily resulting in an analytic expression for the atomic forces.
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4.4 simulations

The DeepPot-SE model that computes the atomic interactions of the sys-
tem can be built, trained and used for molecular dynamics simulations with
the DeepMD-kit. This kit provides a package written in Python/C++, de-
signed to minimize the effort required to build deep learning based model
of interatomic potential energy and force field and to perform molecular
dynamics (MD).

The typical procedure of using DeePMD-kit is

• Prepare data. In order to train the model, one needs to provide the
following information: the atoms type, the simulation box, the atoms
coordinates, the atomic forces, and the system energy. All this infor-
mation are taken from Car-Parrinello molecular dynamic simulations
which provide a snapshot of the system dynamics at each step of the
trajectory. Thus, the training energy and forces are evaluated from ab
initio simulations, aiming to build a neural network able to give results
indistinguishable from the original data and then able to reproduce ab
initio molecular dynamics.

• Build the model. The deep feedforward neural network and the input
matrix descriptors has to be build. In order to do build the descriptors,
one needs to specify the two cut-off rc and rcs, the dimension of the
renormalized coordinate matrix (i.e. the maximum possible number of
neighbors). Then one need to specifies the features of the fitting deep
feedforward network, such as the number of layers and the number
of neuron for each layer. A seed is needed in order to initialize the
starting weights of the net.

• Train the model. Given the model and the descriptors, the training of
the net can be carried out. The parameter of the loss function (4.32), pE
and pF, has to be fixed in order to give the desired weight of the energy
and forces. These parameters can also be chosen to change during the
training with some function of the training step. Finally, given the size
of the minibatch for the STG and the size of the testing data set, useful
to keep under control the training and avoid overfitting, the training
can start.

• Freeze the model. Once the training is finished, usually at least after one
million of steps, i.e. STG iteration, the model can be "freezed" and the
final optimized parameters of the net are written in an output file.

• Test the model. The neural network potential can be tested comparing
the results of DFT calculation with the ones predicted by the net on
new snapshots.

• Run MD. If the testing provides successfull results, the model is ready
and one can perform molecular dynamic simulations using the neural
network potential in order to predict the interatomic forces.

Let us now give some information for what concern the neural network
potential we used in order to carried out the shear viscosity of water. The
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Figure 18: Comparison of the DFT
forces and the DeepPot-SE
predicted forces on the test-
ing snapshots. The dot line
denotes the bisector of the
first and third quadrant that
identifies the perfect match
between DFT and predicted
data.

training dataset consists of several millions of snapshots collected from Car-
Parrinello molecular dynamics simulations of PBE water, run at different
temperatures: 400, 430, 500K. Using snapshots at different temperatures im-
proves the stability and the reliability of the model and avoids annoying
instabilities during the simulations. Instabilities may be due to thermal fluc-
tuations that in the simulations can lead to unusual atomic dispositions, that
differ remarkably from the training dataset. When the network is fed with
these unusual snapshots, the predicted atomic forces can be wrong and tend
lead to a dramatically wrong dynamic.

The parameters that controls the weights of the energy and forces in the
loss function (4.32) were chosen to asymmetrical at the beginning of the train-
ing, giving more weight to the forces, and ending up in the opposite way,
giving more weight to the energy. Also the learning rate defined in (4.14)
was chosen to decrease exponentially during the training in order to reach
the minimum more efficiently. The size of the minibatch used in the stochas-
tic gradient descent was less than ten snapshots. The training was carried
out for millions of iteration, feeding the network with several hundreds of
thousands of snapshots

In order to preliminary test the network, let us check the quality of the
predicted forces on 1000 different snapshots taken from a NVE ab initio
trajectory of a PBE water system made of 125 molecules at about 400K. To
compare these two results, in Fig. 18 we plot the points (fDFT , fNN) whose
coordinates are respectively the true DFT forces and the predicted ones given
by the neural network DeePot-SE model. The plot exhibits a good agreement
between the two results.
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4.4.1 Validation of the neural network potential

Before focusing the attention on the shear viscosity of the neural network
water model, one needs to test not only the accuracy of the predicted forces,
but also the static and dynamical properties of the simulated system. From
this perspective, we simulated a system of 125 water molecules at density
ρ = 1.0 g/cm2. The temperature of the simulation was chosen to be about
400K in order to match with the ab initio simulation we’ve already carried
out for the shear viscosity calculation. The molecular dynamics simulation
were, again, performed using the LAMMPS package for molecular dynam-
ics [Plimpton, 1995], where the neural network potential provided by the
DeepMD-kit is already interfaced with the MD code. From the simulation,
we evaluate some structural properties such as the radial distribution func-
tion and simple dynamical properties such as the mean square displacement
of the atoms and the vibrational spectrum , i.e. the power spectrum of the
velocity. Numerical results for these properties can be compared with the ab
initio ones and thus serve as a criterion to test the neural network model.

Let us start discussing the radial distribution function. The radial distri-
bution gives fundamental information about the structure of a system. For
a simple mono-atomic fluid the radial distribution function, g (r), is defined
as [Allen & Tildesley, 2017]

g (r) = ρ−2〈
∑
i

∑
j( 6=i)

δ (ri) δ
(
rj − r

)
〉 = V

N2
〈
∑
j6=i

δ
(
r− |rij|

)
〉, (4.34)

where rij = ri − rj is the distance between atom i and atom j, and the
dependence of the function just over the modulus of the distance between
two atoms is due to the isotropy of the fluid.

The g (r) of a fluid system provides insight into the liquid structure, char-
acterizing its local structure. It also provides preliminary information about
the phase of the simulated system.

Since water is a diatomic fluid, we can evaluate different radial distribu-
tion functions:

gOO (r) ∝ 〈
Noxy∑
i=1

Noxy∑
j=1( 6=i)

δ
(
r− |roi − r

o
j |
)
〉, (4.35)

gHH (r) ∝ 〈
Nhyd∑
i=1

Nhyd∑
j=1( 6=i)

δ
(
r− |rhi − rhj |

)
〉, (4.36)

gOH (r) ∝ 〈
Noxy∑
i=1

Nhyd∑
j=1

δ
(
r− |roi − r

h
j |
)
〉, (4.37)

where Noxy,Nhyd are respectively the number of oxygen atoms and hydro-
gen atoms of the system, and roi , rhi are the positions of the oxygen and
hydrogen atom i.

The oxygen-oxygen radial distribution function, gOO (r), and the hydro-
gen hydrogen radial distribution function, gHH (r), provide the surround-
ing environment of the oxygen/hydrogen atom with respect to the other
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Figure 19: O–H (bottom), H–H (middle) and O–O (top) radial distribution func-
tions for water as estimated from ab initio simulation (black dotted line)
are compared with the results obtained using the DeepMD-SE potential
(red solid line) to model the inter-atomic interactions in classical simula-
tions.

oxygen/hydrogen atoms. The oxygen-hydrogen radial distribution function,
gOH (r), gives information about the length of the oxygen-hydrogen bond.

In Fig. 19 we present the three different radial distribution functions for
water evaluated from ab initio simulation (black dotted line) and using the
DeepMD-SE potential (red solid line) trained on ab initio data in order to
model the interactions. The two approaches give the same results with good
precision and no differences are visible on the scale of the plot. In partic-
ular, the position of the first peak in the oxygen-oxygen radial distribution
function, corresponding to the position the first oxygen atoms neighbours,
matches the experimental one for ambient water at 2.8Å, measured through
x-ray diffraction [Skinner et al., 2013].

The OH bond length for the isolated water molecule is known accurately
from microwave and infrared spectroscopies [Cook et al., 1974] and turns
out to be equal to 0.97Å, pretty close to the first peak of gOH (r) in Fig. 19.
We conclude that the water DeepMD-SE potential that we trained starting
from ab initio data, reproduces the same structural properties of the original
ab initio simulation. Moreover, the PBE water at about 400K and with a
density of 1.0 g/cm3 has after all the same main features of the experimental
ambient water in the local structure.
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Figure 20: Mean square displacement (MSD) of hydrogen atoms (left and oxygen
atoms (right) of water molecules versus time. Black: results obtained
from the ab initio NVE simulation. Red: results obtained from classical
simulation with the neural network potential.

Let us now compare some basic dynamical properties of the two models.
We start from the mean square displacement (MSD) of the atoms. The MSD
is a measure of the deviation of the position of a particle with respect to a
reference position over time. It is given by [Frenkel & Smit, 2001]

MSD (t) =
1

N

N∑
i=1

〈∣∣ri (t) − ri (0)
∣∣2〉, (4.38)

where ri is the position vector of the atom i, N is the number of atom of the
system, and the brackets 〈·〉 denotes the usual ensemble average.

In Fig. 20 we show the results of the evaluation of the mean square dis-
placement respectively for the hydrogen atoms (left plot) and oxygen atoms
(right plot), as a function of time. The two molecular dynamics approaches,
AIMD in black and DeepMD-SE, provides slightly different results: both
the neural network’s curve present a steeper slope than the ab initio ones.
Nevertheless, the results appear to be still compatible.

We end up the validation of the the neural network potential, discussing
the VDOS of the system. The vibrational spectrum is given by

D (ν) =
1

3

∫∞
0

VAC (t) ei2πνtdt, (4.39)

where

VAC (t) =
1

N

N∑
i=1

〈vi(t)vi(0)〉, (4.40)

is the velocity time-correlation function, and vi is the velocity of the atom i

at time t.
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Figure 21: Vibrational spectrum, D (ν), as defined in Eq. (4.41), of hydrogen atoms
(left) and oxygen atoms (right) as a function of the frequency ν. We com-
pare the results obtained from the ab initio NVE simulation (black dotted
line), and results obtained from classical simulation with the neural net-
work potential (red solid line).

The zero-frequency value of the vibrational spectrum is related to the dif-
fusion coefficient [2001]

D = D(ν = 0) =
1

3

∫∞
0

VAC(t)dt

=
1

3

∫∞
0

1

N

N∑
i=1

〈vi(t)vi(0)〉dt,
(4.41)

This is nothing but the Green-Kubo integral for the mass transport coeffi-
cient, the diffusivity.

In Fig. 21 we display the vibrational spectrum, D (ν), of hydrogen atoms
(Fig. 21a) and oxygen atoms (Fig. 21b) as a function of the frequency ν. The
low-frequency region of the graph looks to be well reproduced by the neu-
ral network potential, both for the hydrogen and the oxygen atoms. While
for the oxygen atoms the plot shows fully compatibility between ab initio
and neural network data, for the hydrogen ones, at high frequency, a small
mismatch between can be seen in Fig. 21a, in particular on the peak at
about 100 THz. The high-frequency region of the graph describes the short-
wavelength behaviour of the particle’s motion, which seems to be worse
approximated by the neural network than the long-wavelength one. Nev-
ertheless, we are still satisfied by the quality of the molecular dynamics
reproduced by the DeepPot-SE potential.

In Fig. 22 we compare the low-frequency region of the (Fig. 21) for both
the ab initio and neural network simulation. Keeping in mind Eq. (4.41),
we see that for both the hydrogen atoms and oxygen atoms the diffusion
coefficient (i.e. the zero-frequency value of the Fourier transform of the
velocity time-correlation function) of the two approaches is fairly compatible.
In particular we obtain:{

DNNhyd = 0.358± 0.010Å
2
/ps

DAIhyd = 0.361± 0.008Å
2
/ps

{
DNNoxy = 0.342± 0.010Å

2
/ps

DAIoxy = 0.346± 0.022Å
2
/ps

(4.42)
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Figure 22: Low-frequency region Fourier transform of the vibrational spectrum,
D (ν), of hydrogen atoms (left) and oxygen atoms (right). The zero-
frequency value correspond to the diffusion coefficient D. In black are
represented the results obtained from the ab initio NVE simulation, in
red the results obtained from classical simulation with the neural net-
work potential.

where the apex AI and NN denote respectively the value obtained from
AIMD and DeepPot-SE. Moreover also the diffusivity of the two different
species of atoms (i.e. hydrogen and oxygen) are compatible as it should
be for not dissociated water. The value of the diffusion coefficient of PBE
water at about 410K is somewhere between the two the experimental values:
Dexp = 0.324Å

2
/ps at 313K and Dexp = 0.356Å

2
/ps at 318K [Holz et al.,

2000]. This result shows, again, the shift in temperature of about 100K of
PBE water with respect to real water.

After this brief discussion where we analysed standard properties of liq-
uid water comparing the ab initio simulation to the neural network one, we
can turn to the shear viscosity. We want to compare the results of the vis-
cosity calculation obtained respectively from AIMD and DPMD. As usual,
the simulations provide us the stress time series that were analysed with the
cepstral analysis technique in order to obtain the value of the shear viscosity
transport coefficient. The cut-off frequency was chosen to be f ∗ = 10 THz

for both simulation and the optimal number of cepstral coefficients P∗ was
found independently using the AIC. The results obtained is presented in Fig.
23; the graph displays the filtered mean periodogram and the cepstrum of
both the AIMD and DPMD simulations. The shear viscosity transport coeffi-
cient obtained from the neural network trajectory, with a mean temperature
of 〈T〉 = 415± 0.7K is

ηNN = 0.491± 0.035 cP (4.43)

fully compatible with the result obtained previously from the AIMD simula-
tion at 410± 0.5K given in Eq. (3.35).

In Fig. 24 we display the behaviour of the transport coefficient as a func-
tion of the cut-off frequency for both the DeePot-SE simulation and the
AIMD one. The results are fairly compatible and the neural network shear
viscosity shows a good stability upon f ∗.
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Figure 23: Mean periodogram and cepstrum of the stress time series. The PSD and
the cepstrum obtained from ab initio trajectory simulation are denoted
respectively in red and dark red, while the PSD and the cepstrum obtained
from the neural network trajectory are denoted in grey and black.

This ends our discussion in order to validate the DeepMD-SE potential.
The inter-atomic forces given by this potential fairly reproduce the static
and dynamic properties of the ab initio simulation. The shear viscosity is
also well-reproduced and results compatible with the ab initio calculation.

4.5 shear viscosity results

Finally, we present the results for the calculation of the shear viscosity
of water with neural network potential. As we previously mentioned in
Chapter 3, one of the problematic features of the shear viscosity of water is
its strong dependency upon temperature. Simulations with a more stable
temperature can carried out using a thermostat or increasing the number of
particles. The latter choice is the safer one since it does not introduce ad-
ditional degrees of freedom that can get worse the dynamics of the atoms.
The computational cost of AIMD makes the simulation of big system unaf-
fordable. Despite this, machine learning and the DeepPot-SE model provide
us alternatives in order to run classical simulations with a neural network
potential that reproduce ab initio data, but with a computational cost that is
more than ten times lower. This allows us to simulate bigger systems with a
classical potential that reproduces quantum forces.

From this prospective, we choose to simulate a water system made of 3000
atoms, 1000molecules of water, in as a cubic super-cell. The size of the super-
cell was set in order to recover the same density of the previous simulations:
ρ = 1.0 g/cm3. We carried out simulations at different temperatures, starting
with and NVT of several picoseconds and ending with a 200 ps long NVE
that provided the data of the stress time series. The target temperatures of
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Figure 24: Shear viscosity transport coefficient obtained from the cepstral analysing
technique as a function of the cut-off frequency f ∗.Black: results obtained
from the DPMD simulation with their standard deviation. Red: results
obtained from the AIMD simulation with their standard deviation.

the different NVT of the different simulations were chosen to be in the range
370− 550K.

Each different trajectory provides the time stress series that were anal-
ysed using the already mentioned protocol. The cut-off for each trajectory’s
analysis was chosen ad hoc, but approximately between 5− 15 THz. Higher
temperatures trajectories shows a better behaviour and stability of the shear
viscosity as a function of the cut-off frequency, probably due to the less
sharpness of the low-frequency peak. The optimal number of cepstral coef-
ficients, P∗, was again chosen independently through the AIC. To give an
illustration, in Fig. 25 we report the full mean periodogram of the time se-
ries of the stress at 415± 0.7K. The periodogram shows the same principal
features as the ab initio one previously analyzed showed in Fig. 12, con-
firming once again that the neural network potential well reproduce also the
dynamical properties of the PBE water.

Finally, in Fig. 26, we present the results for the shear viscosity as a func-
tion of the mean temperature of the simulation. The graph confirms the
experimental a decreasing trend of the shear viscosity as a function of the
temperature. We also report the the ab initio results (in red) obtained from
the system of 125 molecules which is compatible, but not so evidently, with
the other results obtained from the simulations of 1000 molecules.

It is well established that PBE water simulates more structured water, at a
temperature that around 100K lower then the one of the simulation. Since
the viscosity is very sensitive upon the temperature of the system, it can be
chose as a good indicator in order to estimate of this discrepancy. To give
an illustration of the comparison between our results for PBE water and the
experimental shear viscosity of water, given in Tab. 2, we report in Fig. 27

all the results together. In particular, in order to match our results with the
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Figure 25: Mean periodogram of stress time series of water obtained from a 200 ps
trajectory generated with the neural network potential at 415 ± 0.7K.
Grey: mean periodogram obtained directly for Eq. (2.38) with l = 3

(i.e. with the three equivalent components of the stress tensor). Blue:
periodogram filtered with a moving average window of width 0.3 THz

experimental ones, we shifted the mean temperature of our simulations of
85K lower. Our results suggest that in order to achieve a good compatibility
between the shear viscosity of PBE water and the shear viscosity of exper-
imental water, the first has to be simulated at a temperature that is about
85K higher than the temperature of real water.
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Figure 26: Shear viscosity results computed at different temperatures using the neu-
ral network potential trained with ab initio data. The red data reports the
ab initio value, Eq. (3.35), previously computed.
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Figure 27: Shear viscosity of water as a function of the temperature. Black: results
obtained from neural network simulations of a PBE water system made
of 1000 molecules; green: experimental values of the shear viscosity of
water [2005].





5 C O N C L U S I O N S

In this study we have applied the Green-Kubo linear response theory to
evaluate the shear viscosity transport coefficient of water both from classical
simulations, ab initio molecular dynamics simulations and from classical
simulation with neural network potentials.

The study proceeded in different steps. The first aim was to validate the
cepstral analysis: a data analysis technique used to clean up the integral
of the time-correlation function of the conserved currents, in the present
case, the off diagonal elements of the stress tensor. The cepstral analysis has
been already successfully tested for the thermal transport coefficient [Baroni
et al., 2020; Ercole et al., 2017] but no tries have ever been made for the
shear viscosity case. With the aim of testing the data analysis technique, we
evaluate the shear viscosity of the TIP4P/2005 water model, a classical rigid
model, that gives good results in simulating water systems. The potential
is an empirical model, fitted over experimental data, and provides a good
description of the interactions in liquid water. The validation consisted in
comparing the shear viscosity resulting from the cepstral analysis technique
and the one resulting from the straight integration of the Green-Kubo for-
mula for the shear viscosity (2.1). The latter approach needs a very long
trajectory in order to give a reliable results, unaffordable with AIMD simu-
lations. Size effects were also considered in order to choose the right size of
the system in the subsequent ab initio simulation. Also a hypothetical length
of the simulation of 150 s were found in order to obtain a relative error on
the shear viscosity transport coefficient of about 10%.

After this first part, were we got used with the data analysis technique,
we switched to AIMD simulations. We simulated the PBE water model at a
temperature around 400K which corresponds to about ambient liquid water.
We ran a 200 ps long Car-Parrinello trajectory and we evaluate the time-
series of the off diagonal elements of the stress tensor. The latter, provides
us the fundamental ingredients in order to evaluate the shear viscosity using
as always the cepstral analysis. We obtained the following results

η = 0.488± 0.029 cP (5.1)

for PBE water at about 410K. This is the first result of shear viscosity of
water obtained from the integration of the Green-Kubo formula.1

We finally end this study considering the state-of-art technique of mod-
eling atomic interactions using machine learning. The DeePot-SE model
was used in order to obtain a neural network potential able to predict inter-
atomic forces with ab initio accuracy. In this sense we trained a deep feed-
forward neural network with ab initio data of PBE water and, after a brief

1 Another calculation of the shear viscosity of water can be found in the literature [Kuhne et al.,
2009]. The calculation exploits a relation between the diffusion coefficients value at finite size
and its extrapolated value at infinite size, which includes the shear viscosity of the liquid.
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validations of the predicted forces and property of the system, we carried
out molecular dynamics simulations using this model. We simulate a big-
ger water system of 1000 molecules at different temperatures in the range
370− 550K. From the resulting trajectories, we evaluated, for the first time,
the shear viscosity from a neural network simulation. The strong depen-
dency of the shear viscosity upon the temperature and the comparison be-
tween neural network results for the shear viscosity and experimental mea-
sures, provided us a way in order to estimate the discrepancy between PBE
water and real water. We found that PBE water shear viscosity well match
the experimental value if the simulation are run at a temperature that is 85K
higher than the temperature of real water.
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