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1 Introduction

Density Functional Theory (DFT) has emerged ae dactostandard for simulat-

ing and modeling the properties of materials at the atormar{’) scale. In spite

of all the successes met in forty years of DFT practice, some of its mathematical
foundations are still poorly understood, and the limits of current approximations
to it (not all of which can be systematically improved, not even in principle) barely
begin to show in a clear way. The aim of the present short course is to provide
an overview of the conceptual foundations of the theory, as well as a glimpse of
its successes and failures, with an eye on the prospects to overcome its present
limitations.

In a nutshell, DFT is a technique that allows to describe the properties of a sys-
tem of interacting electrons in terms of its ground-state electron charge-density
distribution, rather than of the external potential acting upon it. In a way that
will be made more clear in Se8, this change of variables closely parallels the
switch between conjugate variables (volume and pressure, entropy and tempera-
ture, particle number and chemical potential, etc.) in elementary thermodynamics.
The mathematics of thermodynamics is rooted in the propertiesgegndre trans-
forms The possibility of formulating DFT in terms of Legendre transforms hardly
comes as a surprise, and has in fact popped up in the literature ever since the early
eighties [, 2, 3, 4, 5, 6]. What is surprising is the minor attention generally paid to
such a formulation which is in fact largely overlooked. | do not know if this lack
of attention is due to some fundamental mathematical flaws in the arguments. | do
not believe so. In any event, | do believe that the analogies between DFT and ther-
modynamics serve the purpose of demystifyingrtregicof DFT and shed light
on some deep, fundamental aspects of the theory. Furthermore, these analogies
arebeautiful(or at least, so they look to me) and lend themselves to the introduc-
tion of some general mathematical concepts which are ubiquitous in theoretical
physics and hardly properly taught in curricular courses.

My lectures will be divided in three rather independent parts. In the first, | will
introduce and briefly discuss some basic mathematical concepts, sdichcas
tionals variational principles a generalized version of thgellmann-Feynman
theorem[ 7, 8], Legendre transformsetc. The second part will be devoted to an
introduction of DFT along the lines sketched above. No attempt will be made at
mathematical rigor (nor would | be able to even try!). Rather, | will try to highlight
the analogies between the mathematical structure of DFT and that of elementary
thermodynamics, without entering (nor even mentioning, most of the times!) the
many mathematical subtleties that arise in basing DFT entirely on such similari-
ties. In the last part, | will present a (very limited) sample of applications of DFT
to materials modeling, and try to contrast its many successes with some of the
failures which still need to be overcome.
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I wish the students will enjoy these lectures (and learn from them!) no less
than | enjoyed their preparation (and learned from it!).

1.1 Disclaimer

| spent quite some time writing these notes, but the time to leave for Les Houches
inexorably came before | could complete them (or at least, complete them the
way | had wished in the first place). A few hours before takeoff, these notes still
lack any reference to actual applications, which | wish | could include. All of
the sections need revision to some extent. This is particularly so for the last few
sections where this need is explicitly stated (whereas for the others it is simply to
be understood!). The literature is also way incomplete and inhomogeneous.

In spite of all these limitations, | wish you will find these notes useful, but |
would like to urge you to treat them as what they are: the draft of a work still
to be completed. Do not blindly trust each and every statement you find in these
pages (nor should you do so for any, even most respectable, scientific text). If you
find typos, errors, inconsistencies, or obscure statements, please send me your
suggestions and complaints: | will incorporate them in the (hopefully) soon-to-
be-completed version. Meanwhile, you may want to check from time to time for
up-to-date versions at

http://www.democritos.it/"baroni
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2 Mathematical preliminaries

2.1 What is a functional?

A real-valued functionF' : Q — R, is a binary relation that associates to every
elementv € Q a well defined real numbey, = F(w). Suppose tha® is some
functional spaceF, so that its elements are real-valued functions of a real argu-
ment, f : R — R. Elements ofF will be calledtest functions For instance,

F could be the (linear) space of polynomials up to some ordeor the set of
functions integrable on some domain, etc. ThéarectionF' : 7 — R is called a
functional Trivial examples of functionals are:

1. F[f] = f(zo) (the value that the test function has at a given paig,

2. F[f] = f;f(x)dx (the integral of the test function over a given interval).

3. Flf] = fab f'(z)?dz (the integral of the squared derivative of the test func-
tion over a given interval).

4. F[f] = ff w(f(x))g(z)dz (L andg are here generic real-valued functions),

5. .- or any other rule that would allow one to univocally associate a real
number to a test functiory,(z).

Complex-valued ¥ : F — C) or vector-valued ¥ : F — R") functionals
are obvious generalizations of the concept of real-valued functionals, and so are
multivariate test functions.

2.1.1 Functional derivatives

Let us suppose that the test functioyiss F, are defined on a finite interval=

la, b]. Then, under rather general smoothness conditions, each one of them can be
well represented by the set of values it has on a discrete fesh: a + + (b —

a)} c I,fori=1,2,...N: {f; = f(x;)}. Such a discrete representation of real-
valued functions is common practice in scientific computing where it is @sgd,

to calculate numerical derivatives and integrals, to solve differential equations, etc.
When a discrete representation of test functions is adopteactionalis simply
represented by an ordinary function of many variablE§f] ~ ' : RY — R.

In this sense, a functional may be simply thought as a function of infinitely many

variables,f(x), labeled by a continuous index,
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Let us now suppose thdt is differentiable, and let us consider its Taylor
expansion:

F(f+A)=F(f)+ > AF +0(A?), (1)

where A; = A(z;) and F] = g—f are the partial derivatives af. The sum

appearing in Eq. 1) is a discrete approximation of the integral &fz) times

a function that welefineas thefunctional derivativeof F', F'(x) = %:

b
/ F(@)A@de = b YD AF () + O (a7, @)

a

whereh = b*T“ By comparing Eq.X) with Eq. (2), we arrive at the conclusion
that: )

Fl(z;) ~ EF{- 3)
Eq. (3) is sufficient in many cases to calculate functional derivatives. Let us for
instance calculate the derivative of the functional in Example 4 of &éc.

Fo= h) uf)g (4)

Fo= mil(fan ©)
By using Eq. 8) we readily obtain:

Fl(x) = 1/ (f(x))g(z). (6)

When the definition of the functional contains derivatives of the test function,
such as in Example 3 of Sez.1, this procedure can also be applied by discretizing
the functional with an appropriate finite-difference approximation of the derivative
(f'(x;) = ==L or the like). However, it is often more convenient in these cases
to use a definition of the functional derivative in terms of a functional Taylor
expansion. Leff andg be two test functions anda real number. The functional

derivative,F"' (z) = % can bedefinedby the relation:

F[f+eg]:F[f]+6/F’(x)g(z)d:1:—|—(9(62). (7)

Let us apply this definition to the functional of Example 3 of S&4, and calcu-

late its derivative. In order to simplify the algebra, we suppose that the functional
is defined over a space of test functions that vanish at the end points of the in-
terval [a, b] (this would correspond to the usual definition of the kinetic-energy
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functional in quantum mechanics):
b
Fiited = [ () +eg@)ids
¢ b
= F[f]+ 26/ f(z)g (z)dz + O (€)

= Ff]+2€ {g(ﬂf)f’(af)lz - /abg(fv)f”(ﬂc)dﬂﬁ} - (8)

Using the boundary conditiong({a) = ¢(b) = 0, we readily see that’(z) =
—2f"(x).
All'in all, a useful rule of thumb for calculating functional derivatives is the

following:
OF _ . Flf(@) +es(e—y)) - FIf@)] )
0f(y) 0 €
Notice thaty is the actual argument of the functional derivative (which is a func-
tion of a real argument itself), whereass the dummy argument of the argument

of the functional,f(x).

2.2 Variational principles

Many fundamental laws of nature can be formulated in term&dtional prin-
cipleswhich assert that the variables describing the state of a systeie {ari-
ables) minimize some appropriate functions (tbtate functions Such functions
may depend on one or more parameters which describe the interaction of the sys-
tem with the external worldcpntrol parameterk It is often useful to understand
how the state variables, as well as the value of the state function at its minimum,
depend on control parameters. Both the state variables and the control parame-
ters may bdunctions(and the state function would then béumctiona), but for
simplicity in the following discussion we will assume that they are simply real
numbers.

insert a few examples here

Let us indicate byr andv the state variable and external parameter, respec-
tively, and letf(z, v) be the state function whose minima determine the physical
states of the system as functionsvoff f(z,v) has a minimum with respect tg
its position is determined by the equation:

of (x,v)

ox
If the function f is convexwith respect tor, i.e. Z1@v) - () all over its domain

Oz2

of definition, the solution of Eq.10), if any, is unique (see Se2.3.2. If f were

= 0. (10)

7
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concave, rather than convex, the same would hold for its maximum. Let us now
indicate the solution of Eq10) by z(v). The value of the minimum as a function
of v defines a function:

Fv) = mgnf(x,v) (11)
= f(a(v),v) (12)

that describes the physical states of the system corresponding to different values
of the control parameter.

2.2.1 The (generalized) Hellmann-Feynman theorem

It is often useful to study the derivative of the value of the minimufiy),
with respect to the control parameter For instance, the ground-state energy
of a molecule can be thought as the minimum of the &dimger functional
(U|H|W)/(U|T) with respect to the wave-function;, where H is the Hamil-
tonian. In the Born-Oppenheimer approximation, the molecular Hamiltonian de-
pends parametrically on the nuclear coordinatés: H (R), and the derivatives
of the minimum of the functional would yield in this case the forces acting on in-
dividual atoms. The expectation value of the Hamiltonian depends on nuclear po-
sitionsexplicitly, because the molecular Hamiltonian does so through the external
potential, andmplicitly, through the ground-state wave-function which obviously
depends on nuclear coordinates. The Hellmann-Feynman (HF) theareih [
states that the forces acting on atoms are the expectation values of the derivatives
of the external potential, and hence the implicit dependence of the energy on the
nuclear coordinates does not contribute to the derivative. The validity ofhtivs
oremis not limited to the quantum-chemical framework in which it was originally
formulated. The HF theorem states instead a general property of the solution of
any variational problem.

Let us calculate the derivative &f(v) using Eq. 12):

oy Of(xv) : Of(z,v)
" <U> A T z=xz(v) ! (U) " T z=xz(v) (13)
of(z,v)
o | (14)

where the first term in Eq.1Q) vanishes because of the extremum condition,

Eqg. (1L0). In a nutshell, the HF theorem states that the derivative of the extrema
of a function with respect to the control parameters upon which it may depend is
only determined by the explicit dependence on them, and not by the implicit one.
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2.2.2 Constrained minimization and the method of Lagrange multipliers

Let us suppose that a functiofi(X ), depending onV variables, X = {z;, 25,
---xy}, has to be minimized subject to the constraint tRauxiliary functions
have preassigned valueg;(X) = ~;, with ¢ = 1,.-- P. Each one of these
equations is satisfied on a manifold of dimensign- 1. The dimension of the
intersection of all the” such manifolds (one for each constraintis— P. The
linear manifold orthogonal at a poit¥ to this intersection space has dimension
P, and points belonging to it are linear combinations of the gradients d@? ten-
straining functions at that poini_, \; gﬁg‘. The condition thaff (X) is extremum
subject to the constraint that is varied within the intersection manifold amounts
to requesting that the gradient belongs to the orthogonal manifold:

9f N 99
0x i '0X’

(15)

Eq. (15) can be lumped together with tliéequations of the constraints by requir-
ing that the auxiliary function:

F(X,AT) = f(X) = Z Aigi(X) = ), (16)

whereA = {A;, Ay Ap} andT = {v1,7% ---vp}, IS stationary with respect

to unconstrained variationsf the N + P variablesX and A. Variation of the

A’'s gives the P equations of the constraints, whereas variation of’shgives

the parallelity condition, X5). Note that the stationary point is not in general a
minimum nor a maximum, but just a saddle point. The resulting extremum is a
function of thel’ constants which appear in the variational problem as parameters:

O(I) = extr F(X,A;T). (17)

The Hellmann-Feynman theorem and the definition of ihfinction, Eq. (6),
show that the partial derivatives of the extremum with respect to the constraining
constants are the corresponding Lagrange multipliers:

od(T)

2.3 Legendre transforms

Let us consider a functiof’(v) which we suppose to be concave’(v) < 0;
convexity would also do—the important thing is thiat does not change sign).
The auxiliary function

g(v,p) = F(v) —vp (19)

9
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has an extremum with respectiddor

F'(v) = p. (20)
This extremum is a maximum because
0%g
w = F”(’U) < 0, (21)

by virtue of the concavity off’. Concavity also implies that the solution of
Eq. (20), if any, is unique. This property is easily seen by graphic inspection (see
Fig. 1), and it will be stated more formally in the case of multivariate transforms
in Sec.2.3.2

The value of the maximum af(v, p) with respect ta defines a function of,

G(p) = max(F(v) - vp) (22)
= F(v(p)) = pu(p), (23)

whereu(p) is the solution of Eq.Z0), which is called thé_egendre transfornof
F(v). The functionf depends op as a parameter, hence the derivativé¢p) is
given by the HF theorem as the value of the partial derivativg of p), calculated
at the maximum (see Sez.2.1):

: 9g(v,p)
G'(p)
O omotp)
= —u. (24)

It follows that the Legendre transform of a concave function is convex, because
G"(p) = = = —1/F"(v) > 0.
The Legendre transform of a Legendre transform equals the original function:

H(v) = G(p(v)) —p(v)G (p(v))
G+ pv
Fv). (25)

Convexity of the Legendre transform, together with Exf)) (implies that the
original function satisfies a variational principle analogous to E@), {n terms of
its Legendre transform:

F(v) = min(G(p) + pv). (26)

p

The uniqueness of the solution of EGQY implies that there is a one-to-one cor-
respondence between th@ndp variables which can therefore be both assumed

10
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y=F(x) y=F'(x)
y=p

Figure 1: The left panel features a concave functibf\({) < 0), the right panel
its first derivative (full line). The solution of the equatiéi(z) = p (dotted line),
if any, is unique.

as state variables of the system. The variablasdp are said to beonjugateto
each other.

Let us now assume that the functidhdepends on a control parameter
F = F(v, \). The Legendre transform @f will also depend on\:

G(p, /\) = F(U(p, /\)7/\) _pv(pa )‘>7 (27)

wherewv(p, \) indicates the\-dependent solution of Eq2(). Because the Leg-
endre obeys a variational principle, EG2), and because of the HF theorem (see
Sec.2.2.]), the partial derivative of7 with respect to the control parametehas
only contributions from the explicit dependence;6f, p, \)—see Eq.19)—upon

Al

0G(p,\)  OF(v,\)
o On
Eq. 28) shows that7 as a function op depends on external parameters the same
way asF' as a function ob. For this reasont’ andG are considered to beatural
functions ofv andp, respectively.
insert here a few examples

(28)

2.3.1 Multivariate Lagendre transforms

The concept of Legendre transform can be readily generalized to functions of
many variablesrultivariateLegendre transforms). Let F(V) be a concave func-

tion of N variables,V = {vy, v, - -- vy}, with F} = 8‘3_2;;, < 0 (here and in the
10Vj

11
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y=F(x)

Figure 2: A concave function, = F(z), can intercept a straight line in two points

at most. The value of the function in between the two intercepts is larger than the
value of the linear function represented by the straight line. This condition can
be expressed in general aB(ax; + (1 — a)zs) > aF(z;) + (1 — a)F(2,)

for 0 < a < 1. This condition naturally extends to concave functions of many
variables.

following “<” and “>", as referred to matrices and operators, indicate negative
and positive definiteness, respectively). The function, P) = F'(V) — > . vip;

has a maximum for
= or ‘
T — a'Ui _p’t'

The value of the maximum, as a function®f= {p, p2, - - - pn }, is the Legendre
transform ofF:

(29)

G(P)=F(V(P)) - ZZ%’%’(P)’ (30)
where thev’s are functions of the’s, as defined by the solution of EQ9).

2.3.2 Uniqueness of the Legendre transform

As it was the case for univariate transforms, in the multivariate case concavity (or
convexity) guarantees the uniqueness of the solution ofZ)and, hence, of the
Legendre transform. One possible demonstration of this proceedsduatio ad
absurdum Let us suppose that Eq29) has two solutions}y; # V5, and let us
show that this contradicts the hypothesis that") is concave. Concavity requires
that:

FaVi+ (1 =a)Vz) > aF (V1) + (1 — a)F (V) (31)

12



forany0 < a < 1 (see Fig2). Summing this inequality with the equivalent one
obtained by interchanging; with V5, one obtains:

F(Vi +aAV) + F (Vo — aAV) > F (V) + F (Va), (32)

whereAV = V5 — V4. We now expand this inequality up to second ordedvin
The zero-order terms cancel on both sides; first-order terms vanish because by
hypothesis! (V1) = F! (V,); higher-order terms give:

OF
Z ( 81)2(%]»

)

N OF
ﬁvﬁvj

) Av;Av; + O(a) > 0. (33)

V=W V=W

For small enougly, the termO(«) can be neglected, and E@3j contradicts the
fact that the Hessian matrix of a concave function is negative definite.

13



1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

3 Density-functional theory

3.1 The Schibdinger “potential” functional

Much of elementary quantum mechanics can be derived from the Ralyleigh-Ritz
variational principle which states that the Satiinger functional,

Eg[V] = (V|H|T), (34)

is stationary around the eigenfunctions of the $dmiger equation, subject to the
constraint that the eigenfunctions be normalized:

0Es
g
where the energy eigenvalug,is the Lagrange multiplier corresponding to the
normalization constraint. In order to keep the notation as simple as possible, we
assume that the wave-functions are real, which is always permitted whenever the
Hamiltonian is time-reversal invariant. The ground-state wave-funcligns the
global (constrained) minimum of the Sddlinger functional.
Let us now specialize to a system dfinteracting electrons (Hartree atomic
units,h = m = e = 1, will be used throughout):

- 1 0? 1 1
H__§Za_rz2+§;m+ZV(rz) (36)

The first two terms in Eg.36) are the kinetic-energy and electron-electrerg(
interaction operators which will be indicated hyandV, respectively, while the
third term is the external (one-electron) potential,

The very existence of a ground state for the Hamiltonian of many-electron
systems, Eq.36), indicates that its energy isanctionalof the external potential:

=0,(U|¥) =1 = HU =D, (35)

(V] = min Bs[0; V], (2[¥) = 1, 37)

where the parametric dependence of the 8dimger functional, Eq.34), upon
the external potential/, has been explicitly indicated. The functional of Egj7)
will be called thepotential functional Its actual evaluation would of course re-
quire the solution of the many-body Sékiinger equation:

1 0? 1 1
_= g 4z A
5 zz: o2 + 5 ; Ea— + Z; V(r;)| U(ry,re---ry) (38)

= EO[V] \I/(I'l,rg tet I'N).

14



©o o] ~ (=] (5] B

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

In order to proceed further, let us introduce #ectron charge-density distri-
bution, p(r), as the ground-state expectation value of the electron charge-density

operatorp(r) = >, 6(r — r;):
p(r) = (V[p(r)|¥) (39)
= N/|\I/ r,ro, - -Ty)|2dry - - - dry. (40)

In order to simplify the notation, in Eq40), as well as in the rest of these notes,
electrons will be assumed to be spinless, unless otherwise explicitly stated. Notice
that the argument gf(r), r, is a parameter which labels th@perator at different
points of space (strictly speaking,is a collection of Hermitean operators, one
for each point in the 3D space). In terms of the electron density distribution, the
Schibdinger functional reads:

Eg[¥; V] = <\11|K+W|x1/>+/v<r)p(r)dr (41)

= Fs[¥] +/V(r)p(r)dr. (42)

Eq. @2) shows that the Schdinger functional depends on the external potential,
V(r), through a linear coupling to the electron charge density. The functional
derivative of Eg[W; V] with respect td/ is p:

0FEg
oV (r)
As the potential functional is defined in terms of a variational principle, &q, (

the Hellmann-Feynman theorem can be used to equate the functional derivative of
E° with respect td/ to the partial (functional) derivative dis with respect td/:

= p(r). (43)

E° dEs
Vi)~ ove) P (44)
The above considerations hold unambiguously whenever the ground state is
non-degenerate. In case of degeneracy, the correspontdereg is not univo-
cal. Univocality is restored by consideririgf[V'] as the zero-temperature limit
of the system’s free energy. In this case, the relegamind-state electron den-
sity distributionis the average of the distributions corresponding to the various
components of the ground-state multiplet, and EB4) étill holds.

3.1.1 Concavity of the potential functional

The definition of the potential functional in terms of a variational principle, Eq.
(37), naturally entails concavityl]. LetV, = oVi + (1 — )V, and H, =

15



© [e+] ~ o (& e w

10

11

12

13

14

15

16

17

18

oHy + (1 — a)Hy and¥° the corresponding Hamiltonian and ground-state wave-
function. One has that:

E°IVO] = (U5 Ha|03) = a(We Hi|WE) + (1 — a)(Wg| Hol¥7)
> aE* Vi + (1 = a)E°[V], (45)

where the inequality of the second line comes from the fact that the Hamiltonian
expectation values in the previous line are calculated with respect to a “wrong”
wave-function.

It is instructive to derive the same result as a property of the second (func-
tional) derivative ofE°. According to Eq. 44), the second derivative agf° with
respect td/ is the derivative op with respect td/, i.e. the density linear-response
function, or polarizabilityy:

62E° ~ 0p(r)
SV(r)dV(x') — oV (r) (46)
= x(r,r). (47)

The polarizability, as a linear operator, is negative definite. To see this, let us make
a short detour to perturbation theory and consider the Hamiltonian:

Hy, = Hy + \V', (48)

whereV” is a local operatorV’ = 3, V/(r;). The Hellmann-Feynman theorem
states that:

N (@9)
= [ mwvi. (50)
By differentiating Eq. $0), one obtains:
= [ AV, (51)
where:
Opy(r
) = 2o 52
= /X(r,r’)\/'(r’)dr’. (53)

By inserting Eq. $3) into a Taylor expansion of the ground-state energy in powers
of \, we can express the second-order correction to the energy in terms of the
polarizability:

1
E(z) — 5)\2/X(r,r’)V’(r)V’(r')drdr/. (54)
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The second-order correction to the ground-state enéigy, can also be obtained
from standard perturbation theory:

@ _ 2N~ V%)
E _)\; pa— (55)
Whenever the ground state is non degenerate all the denominators &5rgrg
strictly negative and the second order correction to the ground-state energy is thus
strictly negative. By comparing Eg54) with the sign of Eqg. §5), we conclude

that the polarizability is negative definite, and the potential functional is therefore
concavd 1, 9].

3.2 The Hohenberg-Kohn density functional
3.2.1 The first Hohenberg-Kohn theorem

In Sec.2.3.2we have seen that, whenever a functfopX') is concave (or convex,
for that matter), the mapping between its independent variables and its partial
derivatives, X +— g—ﬁ; is invertible. When applied to the potential functional of
Sec.3.], this property amounts to thest Hohenberg-Kohn theoretK) [10]
which states that the mapping— p is invertible,i.e. the ground-state electron-
density distributions of two systems with a same number of electrons in the field
of two different external potentials €. such that their difference is not a constant)
are necessarily different.

The potential functional, of Se8.1can be written as:

E°[V] = (UK + W|p)) + /pm(r)V(r)dn (56)

where Wy, is the solution of Eq. 38), resulting from the variational principle of
Eqg. 37). Using Eq. @4), the Legendre transform d@i°[V'] reads:

Flp] = (UK + W|[T,), (57)

whereV, is the ground-state wave-function generated by the external potential
corresponding t®, which is unique according to the first HK theorerflp] is

thus auniversalfunctional of the densityie independent of the external potential
V) and it is called thédohenberg-Kohn functional

3.2.2 The Levy-Lieb density functional

Let us now define the Levy-Lieb (LL) density functional as the minimum of the
kinetic pluse-einteraction operators over the set of many-body wave-functions
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which correspond to a same given density,):
Frrlp] = min(W|K +W[T);  (V]p(r)|¥) = p(r). (58)

This constrained variational problem can be solved using the method of Lagrange
multipliers of Sec2.2.2

0 (<‘1’|f< + W) + /V(r)[<‘1’|ﬁ(r)|\1’> h p(r)]dr> =0, (59)

whereV (r) plays the role of a (functional) Lagrange multiplier. As usual, varia-
tion with respect to the Lagrange multipliers gives the equations for the constraints
[see Eq. $8)], whereas variation with respect fogives:

(K + W+ / V(r)ﬁ(r)dr) T =0, (60)

which is the Schidinger equation for a system of interacting electrons in the
external potential’(r) whose arbitrary reference energy has been chosen so as
to make the eigenvalue vanish. This shows that, whenever the minimum of Eq.
(58) exists, the value of the LL functional equals the expectation valué ef T’
evaluated over the ground-state wave-function thatshas density distribution,
and hencd’;, . [p] = Fukl[p]. The minimum may not exist for somgr). In this
case, the HK functional is not defined, which means thaf is not the ground-
state charge density of any physical systerfr) is said in this case to be not
v-representable

The conditions that a density has to fulfill in order to deepresentable are
poorly known. The concavity of the polarizability, S&c1.1, can be used to show
that if a density isv-representable, any normalized function sufficiently close to
it is alsov-representabled]. When a density is nat-representable, the LL func-
tional can be equally defined as tilimumof K + I, rather than the minimum,
provided thap is at least V-representable(i.e. it can be expressed by E¢Q)
for some antisymmetric wave-functios, not necessarily the ground state of any
physical system).

3.2.3 The second Hohenberg-Kohn theorem

According to the results of Se2.3, the originalpotentialfunctional, £°[V'], can
be obtained as thieverse Legendre transforof the density functionalf[p]. In
particular, using the variational principle expressed by E6), ©ne has:

E°[V] = min (F[p]—i— / V(r)p(r)dr) (61)

p

= Flow] + [ Vo) (62)
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wherepyy is the density distribution that solves the variational problem, Ed). (
Eq. 61) is usually referred to as treecond Hohenberg-Kohn theorelts differ-
ential form usually includes a Lagrange multipligr,

5F
5o V(r) =p,

which would account for the constraint on the total number of electrpp$r)dr =

N. The value ofu can be incorporated in the definition &fif the variation ofp

is restricted to the set aV-representable densities, which has to be done in any
case (otherwise, nor the HK, nor even the more general LL functional, would be
defined).

(63)

3.3 The Kohn-Sham equations

The theory of Hohenberg and Kohn, as encompassed in théheeoemsf sec-
tion 3.2, would be almost trivial if all the arguments based on the use of Legendre
transforms could be made rigorous. Unfortunately this is not the case and many
important properties of the energy functional, including its very domain of def-
inition, are poorly known, not to mention our inability to compute it from first
principles, other than solving the Séldinger equation (which is exactly what
DFT was designed to avoid in the first place). DFT would thus be kind of void if
workable and sufficiently accurate approximations to the density functional were
not available. The fundamental paper of Kohn and Sham (K)grovides a
path to an entire class of such approximations.

The central idea of Kohn and Sham is to subtract from the HK (or LL) density
functional any sensible contribution to it thati)sphysically motivated and)
easily calculable. By doing so one would confine all of our ignorance into the
difference, in the hope that it is small and easy to approximate accurately. The
HK density functional is the sum of a kinetic plus ereinteraction term. When
applied to a system of non interacting electronsfitis¢ HK theorenstates that the
kinetic energy of its ground statéy, is a well defined functional of its ground-
state density:;p — V — WU — Ty[p]. To[p] is in fact the HK (or LL, if one
prefers) density functional for a system of non interacting electrons. Of course,
Ty is not the kinetic energy of any system of interacting electrons, but it can be
used in the KS construction as a first approximation to it. Analogously, we can
separate out of the-einteraction energy a classical contribution, corresponding
to the electrostatic self-interaction of a classical charge-density distribytion,
For reasons that will become apparent shortly, this classical contribution is usually
referred to as thelartreeenergy:

_ L [ p)p()
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Following KS, the following ansatz can be made for the HK functional:
Flp] = Tolpl + Enlp] + Exclpl, (65)

where the exchange-correlation (XC) energjy,, is the sum of the differences
between the system’s kinetic apeeinteraction energies arfl and £, respec-
tively. Strictly speaking, Eq. 65) is nothing but adefinitionof the XC energy
which was in fact namestupidity energyy R.P. Feynmanl[3], because it is the
difference between what we can compute and what we can’t! The actual use of
the very concept of XC energy will depend on our ability to find approximations
to it which are accurate enough and easy to compute in practice. Before dwelling
further upon the definition, computation, and use of the XC functional, let us make
the final step of the Kohn-Sham’s path which leads to a practical scheme for using
DFT in actual calculations. By using the ansatz of E&p)the differential form

of the HK variational principle, Eq.63), would read:

5Ty
dp(r)

where the Hartree potential/;(r), is the functional derivative of the Hartree
energy functional, Eq.64):

+ V() + Vi (1) + prae(r) = (66)

Va(r) = / ) (67)
v — |
andy.(r) is the (unknown) functional derivative of the (unknown) XC functional:
oE
we(r) = —=. (68)
Hae(T) = - o)

Eq. 66) is formally equivalent to the HK variational principle for a systermoh
interactingelectrons, subject to an effective potential:

Vis(r) = V(r) + Vi(r) + pize(r). (69)

The cleverness of this observation stems from the fact that we do know how to
calculate the ground-state density—as well as any other property which can be ex-
pressed as the expectation value of a local one-electron op@a&ogi O(r;)—

of non-interacting electron systems:

(WO[T) = / O(x)p(r)dr. (70)
p(r) = > |u(x)], (71)
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where the sum extends over the firélow-lying eigenfunctions of the one-body
Schdinger equation:

( ;52 + Vies(r )) G () = enhn (1), (72)

Once this equation has been solved, the ground-state energy can in principle be
calculated using62), (65), and (1), and the obvious prescription for the non-
interacting kinetic energy:

Tl = —5 3 [ o058

(73)

The result reads:

:__Z/¢ 82¢” ) g +/V(r)p(r)dr—|—EH[P]—l—Ezc[P]- (74)

Eq. (74) can be rewritten in a different form which is often used in applications.
Let us consider the ground-state energy of the auxiliary Kohn-Sham system of
non-interacting electrons, which equals the sum ofthHewest-lying eigenvalues

of Eq. (72):

R LU

d+/V r)dr+

/ Vi () p(e)dr + / ae(£)p(x)dr. (75)

By comparing Eq.{5) with Eq. (74), we arrive at the expression:
1
=Y u [ teledple)de - 3Euld + Eulyl (76)

All'in all, the Kohn-Sham ansatz allows one to replace the very complicated
many-body Schodinger equation, Eqg.3), for the ground state of a system of
interacting electrons with the much handier Schinger equation for a system of
non-interacting electrons, Eqr4), where, however, the effective potenti&l s,
depends on its own solutions through Eqg69)(and (71). For this reason, this
Schibdinger equation is said to lelf-consistenor non-linear Eq. (72) has a
very similar structure to the Hartree equatior]][ where the Hartree potential
generated by the classical charge-density distribugian), is supplemented with
an appropriate XC termy,.(r), Eq. 68). Of course, our ability to even state Eq.
(72) depends on our knowledge (or lack thereof) of the XC energy, &%), &nd
potential, Eq. §8).
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3.4 The local-density approximation

In a homogeneous systef¥i(r) = cnst: thehomogeneous electron gathe den-
sity is constantp(r) = % = n, and any functional of(r) reduces to a function of

n: Elp] = Ne(n), whereQ2 and N are the total volume and number of electrons,
respectively, and(n) the energy per particle in the homogeneous electron gas as

a function of the density. A common approximation to the density dependence of
energy functionals assumes that each small volume of the systeogntributes

to the energy the same amount that a same volume would in a homogeneous elec-
tron gas with a density equal to the local density of the inhomogeneous system

(local density approximatigrLDA):
Elp] ~ ZPiWiG(Pi>
c /e(p(r))p(r)dr. (77)

When applied to the independent-electron kinetic energy functidial], Eq.
(77) gives rise to the Thomas-Fermi approximatian,[16]:

Tl <3w>%b/“p<r>?dr. (78)

~ 10m
Eq. (78) results in a rather poor approximation for the kinetic energy, which
is however capable to provide qualitatively meaningful results for atoms. The
Hartree energy, Eqg.66), cannot be approximated by any sensible local-density
form because of the long-range Coulomb interaction between distant charge fluc-
tuations. It turns out, however, that when applied to the exchange-correlation
energy functional, the LDA gives surprisingly good results. In the LDA, the XC
energy functionals reads:

%ﬁm:/%mwwmw (79)

wherez,.(n) is the difference between the energy per particle of a homogeneous
electron gas at density, which can be obtained from very accurate Quantum
Monte Carlo calculationsl|/], and the corresponding independent-electron result,
go(n) = %(?m)%n%, cf. Eq. (78). The functional derivative of Eq.70) gives the

LDA XC potential:

pEP4 = eu(p(r)) + p(r)el (p(x)), (80)

wheres’,.(n) is the derivative o, .(n).
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The LDA was demonstrated to be exact in the two limits of slowly varying
densities,
[Vo(r)| !

() < kp(r) = (37r p(r))g, (81)

wherek(r) is thelocal Fermi momentugrand in that of high densityo(r)a} >
1, ap being the Bohr radius)1].

3.5 Pair correlations, correlation holes, and energy functionals

Real materials hardly satisfy the conditions originally set for the validity of the
LDA. The success met by over 40 years of DFT practice demonstrates though that
the predictive power of LDA is much superior than could be expected from the
original statements by Kohn and Sham. Some of this success can be explained on
the basis of the properties of tlegchange-correlation holg.&] that we are now
going to introduce and describe.

We have seen in Se8.2, Eq. (67), that the HK density functional is the sum
of the ground-state expectation values of the kinetic-energyeaathteraction
operators, which are one-body and two-body operators, respectively. Let us see
how one- and two-body expectation values can be expressed in general in terms
of reduced density matrices.

LetO = > 0(i) be a (generally non-local) one-body operator. Its ground-
state expectation value reads:

(WO[w) — Z/\If*(rl,rg,-~~rz-,~~rN)0(ri,r§)><
U(ry,re, - rh - -ry) dridry - - - drydr - - - dry (82)

= / o(r,r')y(r, ') drdr’, (83)

whereo(r, rr’) = (r|o|r’) is the kernel of thé operator, and

y(r, 1) = N/\I/*(r, ro, - -TN)U(r', 1o, - - Ty) dradrs - - - dry (84)

is the one-electron density matrix. Expectation values of local one-electron oper-
ators can be expressed in terms of the diagonal of the one-electron density matrix:

p(r) = 7<r7 I‘), (85)

which is of course the electron charge-density distribution, EGS) dnd @0).
The evaluation of expectation values of differential operators, suehgasthe
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kinetic-energy operatak requires the knowledge of off-diagonal elements of the
density matrix:

&) =g [ |grten)] e 6)

2m
Let us now consider the case of a |dcakwo-electron operator,
W = %Zi# w(r;,r;). Without loss of generality we can assume thats the
e-einteraction operator, so that(r;,ry) = — " Its ground-state expectation

. |I‘1—I'
value is: o
A 1
(U)W D) = -/M drydry, (87)
2 |I‘1 — 1'2’
where:
p(2)(r1,r2) = N(N - 1)P(2)(r1,r2) (88)
= F(rlarQ;rlar2)7 (89)

P peing the pair probability density aritithe two-electron density matrix:

[(ry, o5, 1) = N(N — 1)/\11*(1'1,1'2,1‘3, Ty X
U(r},ry,r3, - ry) drs---dry. (90)
The pair probability density can be written as:
P (ry,ry) = PY(r)7(ra|ry), (91)

wherer(ry, rq) is the conditional probability density for an electron sitting at
ry, given that another electron sitsigt If the electrons were uncorrelated, the
conditional probability would be equal to the one-electron reduced probability:
m(ra|r;) = PW(ry) = p(ry)/N. In the presence of electronic correlations, the
pair density, Eq. &8), reads:

pP(ry,my) = (1“1 (N = 1)m(re|ry) (92)
= p(r1)[p(r2) — (N — D)m(rafry) — p(ra)] (93)
= p(r1)p(r2) + p(r1)hec(ry, ra), (94)
where theexchange-correlation holé.,., is defined as:
hae(r1,12) = (N — 1)m(ra(ry) — p(r2). (95)

1We restrict ourselves to local two-electron operators becausefirgteraction, which is the
only relevant such operator occurring in nature, is local. In the case of one-electron operators,

instead there are a few important ones, such as the kinetic energy, momentum, current density, etc.

which are non-local
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The XC hole as a function af,; is normalized to-1 because it is the difference
between two functions normalized 16 — 1 and V.

Eqg. (94) allows one to write the ground-state expectation value ofetee
interaction in terms of the ground-state electron density distribution and XC hole:

A

(W) = Eulo] + / p(0)e(e)dry, (96)

where:

1 hm(r2|r1)
€<r1) - 2 ‘I'l — I’Q‘

dI‘Q. (97)

One would be tempted to identify the expression of Bd) (ith the XC contribu-

tion to the HK functional, Eq.G5). Actually, this cannot be done because the XC
energy, as defined in Ec5%), also contains a kinetic contributiofis) — Ty [p]. In

order to express the sum of the kinetic plus potential energy contributions to the
XC functional in terms of the latter alone, it is convenient to introduce and use the
concept ofadiabatic connectiofld].

Let H, be the Hamiltonian:
Hy = K+ \W + V4, (98)

where0 < )\ < 1 is a parameter, and the external potentiglr) is determined
by the condition that the ground-state charge density determindd big inde-
pendent of\, p,(r) = p(r). This condition shows that fox = 1 V, equals the
physical external potential acting on the systems, whereas o0 it equals the
Kohn-Sham potential:

Vici(r) = V(r) (99)
Vico(r) = Vis(r). (100)

The Hellmann-Feynman theorem gives the derivative of the ground-state energy
with respect to\:

di—f\)\) = <W>/\ + /p(r)V/\’(r)dr, (101)

whereV{(r) = 0V,(r)/0X. Note that the first term on the rhs of E4.0Q) is
the expectation of th@-independent operatd” over a two-electron distribution
which depends on, whereas in the second term the one-electron distribytion
does not depend ok by hypothesis, whilé/{(r) does. Also note that, although
we do not know what’; is, its integral from\ = 0 to 1 is equal to the difference
between the physical external potential and it KS counterpart, see ¥yand
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(100):

/ Vi(r)dh = V(r) — Vgs(r)
= _VH(r) - ch(r>' (102)

The physical § = 1) ground-state energy can be calculated from the fictitious KS
(A = 0) value by integrating its derivative, EqL{1), with respect to the strength
of the coupling constani:

E[V] = Eso+ /0 dig\/\)d/\

- Zen+/ <W>)\d)\—|—/p(r)(V(r)—VKS(r))dr (103)
- Yo / = 2Ealpl = [paelopydr. (108

By comparing Eq.104) with Eq. (76) and using Eqs.96) and @7) for the expec-
tation value ofi?/, we find:

1 h
Bl = 5 [ o), (105)
2 |I'1 — I'2|

whereh,, is an effective XC hole defined as the average over the coupling con-
stant,\, of the XC corresponding to th&, Hamiltonian:

1
Rae(ralry) = / ) (ra|ry)dA. (106)
0

Eq. (105 shows that the XC energy does not depend on many details of the XC
hole. In particular, the XC energy densityr;) of Eq. 97) can be seen as the
classical electrostatic potential generated,dby the charge-density distribution
Shee(ro|ry). This quantity depends only the spherical component of this charge
distribution, as a function af, — r;, because multipolar potentials generated by

a regular charge-density ditribution vanish at the origin. As a consequange,

XC hole possessing the correct spherical component would give the exact XC
energy, no matter how wrong the non-spherical components are. This argument
was used by Gunnarsson and Lundqvis] fo justify the unexpected good quality

of the results provided by the LDA. The latter can in fact be reformulated by the
assumption that the XC hole in real materials is well approximated by the XC hole
of the homogeneous electron gas. In fact, as poor as this approximation may be
in general, it fulfills the sum rul that the XC hole is correctly normalized to -1,
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and furthermore the quality of the XC energy given by this approximation does
not depend on its inability to predict the non-spherical components of the XC hole
(the XC of the homegeneous electron gas is in fact spherically symmetric). Last
but not least, the XC hole was shown to be rather short-range. By dimensional
arguments, its range can only be of the ordep(@f)—3, which is also what the
LDA would predict. All of these considerations taken together are believed to
justify, if not to demonstrate, the unexpected predictive power that the LDA has
displayed all over 40 years of intense benchmarkirid. [

This section has to be reviewed

3.6 The generalized gradient approximation(s)

Ever since the founding papers of Hohenberg, Kohn, and Sham.?], it has
been known that, as the LDA becomes exact in the limit of slowly varying den-
sities, Eg. 81), in this regime corrections to it can be expressed in terms of an
expansion in powers of the density gradients. This observation lead to an attempt
to build energy functionals on the basis of such an expansiar[]. It was soon
to be realized that such an approach is bound to fail as the results provided by
suchimprovedfunctionals are in fact often worse than the original LDA results.
The situation changed dramatically starting from the mid eighties with the
proposal to modify the form of gradient dependence of the density functional from
a power expansion in the density gradient (which is exact in the slowly varying
regime, but inaccurate in practice), to a general functional of the form:

ECO) = [ 49 olw), Vol plo)ir (107)

This section has to be completed

3.7 Orbital energies and excited states

In a system of non-interacting electrons, the eigenvalues of the one-electrén Schr
dinger equation describe the energy necessary to remove one electron from the
system (occupied orbitals) or to add one to it (empty orbitals). Orbital energies
are thus differences between the energy levels of systems/Withl electrons

and theN-electron ground state, and they are often referred wuasi-particle

(QP) energies. This property also holds in the Hartree-Fock approximatipn [

As the mathematical structure of the Kohn-Sham theory is thatrogan-field
approximation(even if it is in principle an exact theory), such as Hartree-Fock,

it is tempting to identify KS orbital energies with electron addition or removal
energies. Although it can be demonstrated that in any finite system the highest oc-
cupied KS eigenvalue equals the first ionization potentig], [this identification
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is not possible in general, and KS energy eigenvalues do not have in general any
physical meaning. In spite of this, and in the lack of equally simple theoretical
tools, KS energy levels are often assumed to be fair approximations for the QP
energies. One of the most striking demonstrations of the limits of this approach is
the well know inability of DFT to predict optical gaps in insulators]

In a paper of 196545], Sham and Kohn provided a theoretical justification
for the practice of identifying KS eigenvalues with QP energies. QP energies are
poles of the one-particle propagator (Green'’s function) which satisfies the Dyson’s
equation:

2
(_18_ +V(r)+ Vy(r) — e) G(r,r’;e)+
/E(r, v’ e)G(x" r';e)dr” = —5(r —1'), (108)

whereX: is the so-called self-energy operator. If the self-energy were Hermitean
and energy-independent, EG.08 would be equivalent to the Sdidinger-like
equation:

(__T +V(r) + vH(r>) (1) + / S(r,1')¢n(r)dr’ = endhn(r),  (109)

whose eigenvalues,, would then be the poles of the propagaier, QP energies.
In the many-body literature, the eigenfunctions of Eid9) (or rather of its full-
fledged form where the self-energy is energy-dependent) are cpléesi-particle
amplitudes or Feynman-Dyson amplitudeslote that the Hartree-Fock equation
has exactly the form of Eq109), with the self-energy approximated by the ex-
change operatorz(r,r’) = ~(r,r’)/|r — 1’|, v being the one-electron density
matrix of Eq. 84).

Sham and Kohn showed that under the assumption that charge inhomogeneities
are both small|(p(r) /N — 1| << 1) and slowly varying [V p(r)|/p(r)s << 1),
the self-energy operator can be approximated by a local potential which has the
same form as the XC potential of the ground-state KS theory! Of course, charge
inhomogeneities in real materials are not small, nor are they slowly varying, and
the justification (or lack thereof) for using KS eigenvalues as estimates of QP
energies can only be rooted into extended practice and in the evaluation of its
successes and failures. The success of such a practice is rather controversial, but
there seems to be a fair consensus that in weakly correlated materials the occu-
pied KS eigenvalues and eigenfunctions are reasonable approximations to the QP
energies and amplitudes, whereas for empty states substantial improvements with
respect to the plain KS model for one-electron excitations are needed. Much work
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is presently being devoted to the development of reliable, accurate, and still nu-
merically workable schemes to the quantum many-body problem. Schemes based
on the partial summation of entire classes of terms in the perturbative expansion
of the one- and two-electron propagators, such aSivand theBethe-Salpether
approaches, seem rather accurate in the weak-correlation regime, albeit the ex-
tent to which they can be used for large-scale materials simulations is still to be
demonstrated.

In strongly correlated materials, such as transition-metal oxides, cuprates, or
manganites to name a few, the ground- and low-lying excited states cannot be ex-
pressed as perturbations with respect to the eigenstates of any reference system
of non interacting electrons. This fact has two important and somewhat related,
although conceptually quite distinct, consequences. On the one hand, DFT, al-
though able in principle to cope with these systems, as well as with any other,
will be severely limited by the fact that the splitting of of the non-interacting
kinetic energy out of the HK density functional would hardly alleviate our igno-
rance about it. As a consequence, the XC energy would be dominated in this
case by our own substantial stupiditys], more than it is tamed by the ingenuity
of the Kohn-Sham construction ?]. On the other hand, the lack of any refer-
ence independent-electron systems, make electron propagators loosgidseir
particle singly peaked features, so that perturbative approaches, s@Wasd
its generalizations, loose much of their predictive power. The quest for methods
which are robust in the strongly correlated regime, and yet simple enough to be
implemented in practice, is a very active field of research, as the very existence
of this summer school indicates. A good introduction to the state of the art in this
field is a review paper recently written by Kotliar and coworkexq [

This section has to be extensively reviewed
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