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1 Introduction1

Density Functional Theory (DFT) has emerged as ade factostandard for simulat-2

ing and modeling the properties of materials at the atomic (“nano”) scale. In spite3

of all the successes met in forty years of DFT practice, some of its mathematical4

foundations are still poorly understood, and the limits of current approximations5

to it (not all of which can be systematically improved, not even in principle) barely6

begin to show in a clear way. The aim of the present short course is to provide7

an overview of the conceptual foundations of the theory, as well as a glimpse of8

its successes and failures, with an eye on the prospects to overcome its present9

limitations.10

In a nutshell, DFT is a technique that allows to describe the properties of a sys-11

tem of interacting electrons in terms of its ground-state electron charge-density12

distribution, rather than of the external potential acting upon it. In a way that13

will be made more clear in Sec.3, this change of variables closely parallels the14

switch between conjugate variables (volume and pressure, entropy and tempera-15

ture, particle number and chemical potential, etc.) in elementary thermodynamics.16

The mathematics of thermodynamics is rooted in the properties ofLegendre trans-17

forms. The possibility of formulating DFT in terms of Legendre transforms hardly18

comes as a surprise, and has in fact popped up in the literature ever since the early19

eighties [1, 2, 3, 4, 5, 6]. What is surprising is the minor attention generally paid to20

such a formulation which is in fact largely overlooked. I do not know if this lack21

of attention is due to some fundamental mathematical flaws in the arguments. I do22

not believe so. In any event, I do believe that the analogies between DFT and ther-23

modynamics serve the purpose of demystifying themagicof DFT and shed light24

on some deep, fundamental aspects of the theory. Furthermore, these analogies25

arebeautiful(or at least, so they look to me) and lend themselves to the introduc-26

tion of some general mathematical concepts which are ubiquitous in theoretical27

physics and hardly properly taught in curricular courses.28

My lectures will be divided in three rather independent parts. In the first, I will29

introduce and briefly discuss some basic mathematical concepts, such asfunc-30

tionals, variational principles, a generalized version of theHellmann-Feynman31

theorem[7, 8], Legendre transforms, etc. The second part will be devoted to an32

introduction of DFT along the lines sketched above. No attempt will be made at33

mathematical rigor (nor would I be able to even try!). Rather, I will try to highlight34

the analogies between the mathematical structure of DFT and that of elementary35

thermodynamics, without entering (nor even mentioning, most of the times!) the36

many mathematical subtleties that arise in basing DFT entirely on such similari-37

ties. In the last part, I will present a (very limited) sample of applications of DFT38

to materials modeling, and try to contrast its many successes with some of the39

failures which still need to be overcome.40
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I wish the students will enjoy these lectures (and learn from them!) no less1

than I enjoyed their preparation (and learned from it!).2

1.1 Disclaimer3

I spent quite some time writing these notes, but the time to leave for Les Houches4

inexorably came before I could complete them (or at least, complete them the5

way I had wished in the first place). A few hours before takeoff, these notes still6

lack any reference to actual applications, which I wish I could include. All of7

the sections need revision to some extent. This is particularly so for the last few8

sections where this need is explicitly stated (whereas for the others it is simply to9

be understood!). The literature is also way incomplete and inhomogeneous.10

In spite of all these limitations, I wish you will find these notes useful, but I11

would like to urge you to treat them as what they are: the draft of a work still12

to be completed. Do not blindly trust each and every statement you find in these13

pages (nor should you do so for any, even most respectable, scientific text). If you14

find typos, errors, inconsistencies, or obscure statements, please send me your15

suggestions and complaints: I will incorporate them in the (hopefully) soon-to-16

be-completed version. Meanwhile, you may want to check from time to time for17

up-to-date versions at18

http://www.democritos.it/˜baroni19
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2 Mathematical preliminaries1

2.1 What is a functional?2

A real-valued function,F : Ω 7→ R, is a binary relation that associates to every3

elementω ∈ Ω a well defined real number,y = F (ω). Suppose thatΩ is some4

functional space, F , so that its elements are real-valued functions of a real argu-5

ment,f : R 7→ R. Elements ofF will be called test functions. For instance,6

F could be the (linear) space of polynomials up to some ordern, or the set of7

functions integrable on some domain, etc. Then afunctionF : F 7→ R is called a8

functional. Trivial examples of functionals are:9

1. F [f ] = f(x0) (the value that the test function has at a given point,x0).10

2. F [f ] =
∫ b

a
f(x)dx (the integral of the test function over a given interval).11

3. F [f ] =
∫ b

a
f ′(x)2dx (the integral of the squared derivative of the test func-12

tion over a given interval).13

4. F [f ] =
∫ b

a
µ(f(x))g(x)dx (µ andg are here generic real-valued functions),14

· · ·15

5. · · · or any other rule that would allow one to univocally associate a real16

number to a test function,f(x).17

Complex-valued (F : F 7→ C) or vector-valued (F : F 7→ Rn) functionals18

are obvious generalizations of the concept of real-valued functionals, and so are19

multivariate test functions.20

2.1.1 Functional derivatives21

Let us suppose that the test functions,f ∈ F , are defined on a finite intervalI =22

[a, b]. Then, under rather general smoothness conditions, each one of them can be23

well represented by the set of values it has on a discrete mesh:{xi = a + i
N

(b −24

a)} ⊂ I, for i = 1, 2, . . . N : {fi = f(xi)}. Such a discrete representation of real-25

valued functions is common practice in scientific computing where it is used,e.g.,26

to calculate numerical derivatives and integrals, to solve differential equations, etc.27

When a discrete representation of test functions is adopted, afunctionalis simply28

represented by an ordinary function of many variables:F [f ] ' F̄ : RN 7→ R.29

In this sense, a functional may be simply thought as a function of infinitely many30

variables,f(x), labeled by a continuous index,x.31
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Let us now suppose that̄F is differentiable, and let us consider its Taylor1

expansion:2

F̄ (f + ∆) = F̄ (f) +
∑

i

∆iF̄
′
i +O

(
∆2
)
, (1)

where∆i = ∆(xi) and F̄ ′
i = ∂F̄

∂fi
are the partial derivatives of̄F . The sum3

appearing in Eq. (1) is a discrete approximation of the integral of∆(x) times4

a function that wedefineas thefunctional derivativeof F , F ′(x) ≡ δF
δf(x)

:5 ∫ b

a

F ′(x)∆(x)dx ≈ h
∑

i

∆iF
′(xi) +O

(
n−1
)
, (2)

whereh = b−a
N

. By comparing Eq. (1) with Eq. (2), we arrive at the conclusion6

that:7

F ′(xi) ≈
1

h
F̄ ′

i . (3)

Eq. (3) is sufficient in many cases to calculate functional derivatives. Let us for8

instance calculate the derivative of the functional in Example 4 of Sec.2.1:9

F̄ = h
∑

i

µ(fi)gi, (4)

F̄ ′
i = hµ′(fi)gi. (5)

By using Eq. (3) we readily obtain:10

F ′(x) = µ′(f(x))g(x). (6)

When the definition of the functional contains derivatives of the test function,11

such as in Example 3 of Sec.2.1, this procedure can also be applied by discretizing12

the functional with an appropriate finite-difference approximation of the derivative13

(f ′(xi) ≈ fi−fi−1

h
, or the like). However, it is often more convenient in these cases14

to use a definition of the functional derivative in terms of a functional Taylor15

expansion. Letf andg be two test functions andε a real number. The functional16

derivative,F ′(x) = δF
δf(x)

, can bedefinedby the relation:17

F [f + εg] = F [f ] + ε

∫
F ′(x)g(x)dx +O

(
ε2
)
. (7)

Let us apply this definition to the functional of Example 3 of Sec.2.1, and calcu-18

late its derivative. In order to simplify the algebra, we suppose that the functional19

is defined over a space of test functions that vanish at the end points of the in-20

terval [a, b] (this would correspond to the usual definition of the kinetic-energy21

6
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functional in quantum mechanics):1

F [f + εg] =

∫ b

a

(f ′(x) + εg′(x))2dx

= F [f ] + 2ε

∫ b

a

f ′(x)g′(x)dx +O
(
ε2
)

= F [f ] + 2ε

[
g(x)f ′(x)|ba −

∫ b

a

g(x)f ′′(x)dx

]
. (8)

Using the boundary conditions,g(a) = g(b) = 0, we readily see thatF ′(x) =2

−2f ′′(x).3

All in all, a useful rule of thumb for calculating functional derivatives is the4

following:5

δF

δf(y)
= lim

ε→0

F [f(x) + εδ(x− y)]− F [f(x)]

ε
. (9)

Notice thaty is the actual argument of the functional derivative (which is a func-6

tion of a real argument itself), whereasx is the dummy argument of the argument7

of the functional,f(x).8

2.2 Variational principles9

Many fundamental laws of nature can be formulated in terms ofvariational prin-10

cipleswhich assert that the variables describing the state of a system (state vari-11

ables) minimize some appropriate functions (thestate functions). Such functions12

may depend on one or more parameters which describe the interaction of the sys-13

tem with the external world (control parameters). It is often useful to understand14

how the state variables, as well as the value of the state function at its minimum,15

depend on control parameters. Both the state variables and the control parame-16

ters may befunctions(and the state function would then be afunctional), but for17

simplicity in the following discussion we will assume that they are simply real18

numbers.19

insert a few examples here20

Let us indicate byx andv the state variable and external parameter, respec-21

tively, and letf(x, v) be the state function whose minima determine the physical22

states of the system as functions ofv. If f(x, v) has a minimum with respect tox,23

its position is determined by the equation:24

∂f(x, v)

∂x
= 0. (10)

If the functionf is convexwith respect tox, i.e. ∂2f(x,v)
∂x2 > 0 all over its domain25

of definition, the solution of Eq. (10), if any, is unique (see Sec.2.3.2). If f were26

7
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concave, rather than convex, the same would hold for its maximum. Let us now1

indicate the solution of Eq. (10) by x(v). The value of the minimum as a function2

of v defines a function:3

F (v) = min
x

f(x, v) (11)

≡ f(x(v), v) (12)

that describes the physical states of the system corresponding to different values4

of the control parameterv.5

2.2.1 The (generalized) Hellmann-Feynman theorem6

It is often useful to study the derivative of the value of the minimum,F (v),7

with respect to the control parameterv. For instance, the ground-state energy8

of a molecule can be thought as the minimum of the Schrödinger functional9

〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉 with respect to the wave-function,Ψ, whereĤ is the Hamil-10

tonian. In the Born-Oppenheimer approximation, the molecular Hamiltonian de-11

pends parametrically on the nuclear coordinates,Ĥ = Ĥ(R), and the derivatives12

of the minimum of the functional would yield in this case the forces acting on in-13

dividual atoms. The expectation value of the Hamiltonian depends on nuclear po-14

sitionsexplicitly, because the molecular Hamiltonian does so through the external15

potential, andimplicitly, through the ground-state wave-function which obviously16

depends on nuclear coordinates. The Hellmann-Feynman (HF) theorem [7, 8]17

states that the forces acting on atoms are the expectation values of the derivatives18

of the external potential, and hence the implicit dependence of the energy on the19

nuclear coordinates does not contribute to the derivative. The validity of thisthe-20

oremis not limited to the quantum-chemical framework in which it was originally21

formulated. The HF theorem states instead a general property of the solution of22

any variational problem.23

Let us calculate the derivative ofF (v) using Eq. (12):24

F ′(v) =
∂f(x, v)

∂x

∣∣∣∣
x=x(v)

x′(v) +
∂f(x, v)

∂v

∣∣∣∣
x=x(v)

(13)

=
∂f(x, v)

∂v

∣∣∣∣
x=x(v)

, (14)

where the first term in Eq. (13) vanishes because of the extremum condition,25

Eq. (10). In a nutshell, the HF theorem states that the derivative of the extrema26

of a function with respect to the control parameters upon which it may depend is27

only determined by the explicit dependence on them, and not by the implicit one.28

8
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2.2.2 Constrained minimization and the method of Lagrange multipliers1

Let us suppose that a function,f(X), depending onN variables,X = {x1, x2,2

· · ·xN}, has to be minimized subject to the constraint thatP auxiliary functions3

have preassigned values:gi(X) = γi, with i = 1, · · ·P . Each one of these4

equations is satisfied on a manifold of dimensionN − 1. The dimension of the5

intersection of all theP such manifolds (one for each constraint) isN − P . The6

linear manifold orthogonal at a pointX to this intersection space has dimension7

P , and points belonging to it are linear combinations of the gradients of theP con-8

straining functions at that point:
∑

i λi
∂gi

∂X
. The condition thatf(X) is extremum9

subject to the constraint thatX is varied within the intersection manifold amounts10

to requesting that the gradient off belongs to the orthogonal manifold:11

∂f

∂X
=
∑

i

λi
∂gi

∂X
. (15)

Eq. (15) can be lumped together with theP equations of the constraints by requir-12

ing that the auxiliary function:13

F (X, Λ; Γ) = f(X)−
∑

i

λi(gi(X)− γi), (16)

whereΛ = {λ1, λ2 · · ·λP} andΓ = {γ1, γ2 · · · γP}, is stationary with respect14

to unconstrained variationsof the N + P variablesX andΛ. Variation of the15

λ’s gives the P equations of the constraints, whereas variation of thex’s gives16

the parallelity condition, (15). Note that the stationary point is not in general a17

minimum nor a maximum, but just a saddle point. The resulting extremum is a18

function of theΓ constants which appear in the variational problem as parameters:19

20

Φ(Γ) = extr
{X,Λ}

F (X, Λ; Γ). (17)

The Hellmann-Feynman theorem and the definition of theF function, Eq. (16),21

show that the partial derivatives of the extremum with respect to the constraining22

constants are the corresponding Lagrange multipliers:23

∂Φ(Γ)

∂γi

= λi. (18)

2.3 Legendre transforms24

Let us consider a functionF (v) which we suppose to be concave (F ′′(v) < 0;25

convexity would also do—the important thing is thatF ′′ does not change sign).26

The auxiliary function27

g(v, p) = F (v)− vp (19)

9
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has an extremum with respect tov for1

F ′(v) = p. (20)

This extremum is a maximum because2

∂2g

∂v2
= F ′′(v) < 0, (21)

by virtue of the concavity ofF . Concavity also implies that the solution of3

Eq. (20), if any, is unique. This property is easily seen by graphic inspection (see4

Fig. 1), and it will be stated more formally in the case of multivariate transforms5

in Sec.2.3.2.6

The value of the maximum ofg(v, p) with respect tov defines a function ofp,7

G(p) = max
v

(
F (v)− vp

)
(22)

≡ F (v(p))− pv(p), (23)

wherev(p) is the solution of Eq. (20), which is called theLegendre transformof8

F (v). The functionf depends onp as a parameter, hence the derivative ofG(p) is9

given by the HF theorem as the value of the partial derivative off(v, p), calculated10

at the maximum (see Sec.2.2.1):11

G′(p) =
∂g(v, p)

∂p

∣∣∣∣
v=v(p)

= −v. (24)

It follows that the Legendre transform of a concave function is convex, because12

G′′(p) = −dv
dp

= −1/F ′′(v) > 0.13

The Legendre transform of a Legendre transform equals the original function:14

H(v) = G(p(v))− p(v)G′(p(v))

= G + pv

= F (v). (25)

Convexity of the Legendre transform, together with Eq. (24), implies that the15

original function satisfies a variational principle analogous to Eq. (22), in terms of16

its Legendre transform:17

F (v) = min
p

(
G(p) + pv

)
. (26)

The uniqueness of the solution of Eq. (20) implies that there is a one-to-one cor-18

respondence between thev andp variables which can therefore be both assumed19

10



dr
af

ty=F(x) y=F’(x)

y=p

Figure 1: The left panel features a concave function (F ′′(x) < 0), the right panel
its first derivative (full line). The solution of the equationF ′(x) = p (dotted line),
if any, is unique.

as state variables of the system. The variablesv andp are said to beconjugateto1

each other.2

Let us now assume that the functionF depends on a control parameterλ:3

F = F (v, λ). The Legendre transform ofF will also depend onλ:4

G(p, λ) = F (v(p, λ), λ)− pv(p, λ), (27)

wherev(p, λ) indicates theλ-dependent solution of Eq. (20). Because the Leg-5

endre obeys a variational principle, Eq. (22), and because of the HF theorem (see6

Sec.2.2.1), the partial derivative ofG with respect to the control parameterλ has7

only contributions from the explicit dependence ofg(v, p, λ)—see Eq. (19)—upon8

λ:9

∂G(p, λ)

∂λ
=

∂F (v, λ)

∂λ
. (28)

Eq. (28) shows thatG as a function ofp depends on external parameters the same10

way asF as a function ofv. For this reason,F andG are considered to benatural11

functions ofv andp, respectively.12

insert here a few examples13

2.3.1 Multivariate Lagendre transforms14

The concept of Legendre transform can be readily generalized to functions of15

many variables (multivariateLegendre transforms). Let F(V) be a concave func-16

tion of N variables,V = {v1, v2, · · · vN}, with F ′′
ij ≡ ∂2F

∂vi∂vj
< 0 (here and in the17

11
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Figure 2: A concave function,y = F (x), can intercept a straight line in two points
at most. The value of the function in between the two intercepts is larger than the
value of the linear function represented by the straight line. This condition can
be expressed in general as:F

(
αx1 + (1 − α)x2

)
> αF (x1) + (1 − α)F (x2)

for 0 < α < 1. This condition naturally extends to concave functions of many
variables.

following “<” and “>”, as referred to matrices and operators, indicate negative1

and positive definiteness, respectively). The functionf(V, P ) = F (V )−
∑

i vipi2

has a maximum for3

F ′
i ≡

∂F

∂vi

= pi. (29)

The value of the maximum, as a function ofP = {p1, p2, · · · pN}, is the Legendre4

transform ofF :5

G(P ) = F (V (P ))−
∑

i

pivi(P ), (30)

where thev’s are functions of thep’s, as defined by the solution of Eq. (29).6

2.3.2 Uniqueness of the Legendre transform7

As it was the case for univariate transforms, in the multivariate case concavity (or8

convexity) guarantees the uniqueness of the solution of Eq. (29) and, hence, of the9

Legendre transform. One possible demonstration of this proceeds viareductio ad10

absurdum. Let us suppose that Eq. (29) has two solutions,V1 6= V2, and let us11

show that this contradicts the hypothesis thatF (V ) is concave. Concavity requires12

that:13

F (αV1 + (1− α)V2) > αF (V1) + (1− α)F (V2) (31)

12
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for any0 < α < 1 (see Fig.2). Summing this inequality with the equivalent one1

obtained by interchangingV1 with V2, one obtains:2

F (V1 + α∆V ) + F (V2 − α∆V ) > F (V1) + F (V2) , (32)

where∆V = V2 − V1. We now expand this inequality up to second order inα.3

The zero-order terms cancel on both sides; first-order terms vanish because by4

hypothesisF ′
i (V1) = F ′

i (V2); higher-order terms give:5

∑
ij

(
∂F

∂vi∂vj

∣∣∣∣
V =V1

+
∂F

∂vi∂vj

∣∣∣∣
V =V0

)
∆vi∆vj +O(α) > 0. (33)

For small enoughα, the termO(α) can be neglected, and Eq. (33) contradicts the6

fact that the Hessian matrix of a concave function is negative definite.7

13
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3 Density-functional theory1

3.1 The Schr̈odinger “potential” functional2

Much of elementary quantum mechanics can be derived from the Ralyleigh-Ritz3

variational principle which states that the Schrödinger functional,4

ES[Ψ] = 〈Ψ|Ĥ|Ψ〉, (34)

is stationary around the eigenfunctions of the Schrödinger equation, subject to the5

constraint that the eigenfunctions be normalized:6

δES

δΨ
= 0, 〈Ψ|Ψ〉 = 1 ⇒ ĤΨ = εΨ, (35)

where the energy eigenvalue,ε, is the Lagrange multiplier corresponding to the7

normalization constraint. In order to keep the notation as simple as possible, we8

assume that the wave-functions are real, which is always permitted whenever the9

Hamiltonian is time-reversal invariant. The ground-state wave-function,Ψ0, is the10

global (constrained) minimum of the Schrödinger functional.11

Let us now specialize to a system ofN interacting electrons (Hartree atomic12

units,~ = m = e = 1, will be used throughout):13

Ĥ = −1

2

∑
i

∂2

∂r2
i

+
1

2

∑
i6=j

1

|ri − rj|
+
∑

i

V (ri). (36)

The first two terms in Eq. (36) are the kinetic-energy and electron-electron (e-e)14

interaction operators which will be indicated bŷK andŴ , respectively, while the15

third term is the external (one-electron) potential,V̂ .16

The very existence of a ground state for the Hamiltonian of many-electron17

systems, Eq. (36), indicates that its energy is afunctionalof the external potential:18

19

E◦[V ] = min
Ψ

ES[Ψ; V ], 〈Ψ|Ψ〉 = 1, (37)

where the parametric dependence of the Schrödinger functional, Eq. (34), upon20

the external potential,V , has been explicitly indicated. The functional of Eq. (37)21

will be called thepotential functional. Its actual evaluation would of course re-22

quire the solution of the many-body Schrödinger equation:23 [
−1

2

∑
i

∂2

∂r2
i

+
1

2

∑
i6=j

1

|ri − rj|
+
∑

i

V (ri)

]
Ψ(r1, r2 · · · rN)

= E◦[V ] Ψ(r1, r2 · · · rN).

(38)

14
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In order to proceed further, let us introduce theelectron charge-density distri-1

bution, ρ(r), as the ground-state expectation value of the electron charge-density2

operator,̂ρ(r) =
∑

i δ(r− ri):3

ρ(r) = 〈Ψ|ρ̂(r)|Ψ〉 (39)

= N

∫
|Ψ(r, r2, · · · rN)|2dr2 · · · drN . (40)

In order to simplify the notation, in Eq. (40), as well as in the rest of these notes,4

electrons will be assumed to be spinless, unless otherwise explicitly stated. Notice5

that the argument ofρ(r), r, is a parameter which labels theρ̂ operator at different6

points of space (strictly speaking,ρ̂ is a collection of Hermitean operators, one7

for each point in the 3D space). In terms of the electron density distribution, the8

Schr̈odinger functional reads:9

ES[Ψ; V ] = 〈Ψ|K̂ + Ŵ |Ψ〉+

∫
V (r)ρ(r)dr (41)

≡ FS[Ψ] +

∫
V (r)ρ(r)dr. (42)

Eq. (42) shows that the Schrödinger functional depends on the external potential,10

V (r), through a linear coupling to the electron charge density. The functional11

derivative ofES[Ψ; V ] with respect toV is ρ:12

δES

δV (r)
= ρ(r). (43)

As the potential functional is defined in terms of a variational principle, Eq. (37),13

the Hellmann-Feynman theorem can be used to equate the functional derivative of14

E◦ with respect toV to the partial (functional) derivative ofES with respect toV :15

16

δE◦

δV (r)
=

δES

δV (r)
= ρ(r). (44)

The above considerations hold unambiguously whenever the ground state is17

non-degenerate. In case of degeneracy, the correspondenceV 7→ ρ is not univo-18

cal. Univocality is restored by consideringE◦[V ] as the zero-temperature limit19

of the system’s free energy. In this case, the relevantground-state electron den-20

sity distribution is the average of the distributions corresponding to the various21

components of the ground-state multiplet, and Eq. (44) still holds.22

3.1.1 Concavity of the potential functional23

The definition of the potential functional in terms of a variational principle, Eq.24

(37), naturally entails concavity [1]. Let Vα = αV1 + (1 − α)V0, and Ĥα =25
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αĤ1 + (1−α)Ĥ0 andΨ◦

α the corresponding Hamiltonian and ground-state wave-1

function. One has that:2

E◦[V α] = 〈Ψ◦
α|Ĥα|Ψ◦

α〉 = α〈Ψ◦
α|Ĥ1|Ψ◦

α〉+ (1− α)〈Ψ◦
α|Ĥ0|Ψ◦

α〉
> αE◦[V1] + (1− α)E◦[V0], (45)

where the inequality of the second line comes from the fact that the Hamiltonian3

expectation values in the previous line are calculated with respect to a “wrong”4

wave-function.5

It is instructive to derive the same result as a property of the second (func-6

tional) derivative ofE◦. According to Eq. (44), the second derivative ofE◦ with7

respect toV is the derivative ofρ with respect toV , i.e. the density linear-response8

function, or polarizability,χ:9

δ2E◦

δV (r)δV (r′)
=

δρ(r)

δV (r′)
(46)

≡ χ(r, r′). (47)

The polarizability, as a linear operator, is negative definite. To see this, let us make10

a short detour to perturbation theory and consider the Hamiltonian:11

Ĥλ = Ĥ0 + λV̂ ′, (48)

whereV̂ ′ is a local operator:̂V ′ =
∑

i V
′(ri). The Hellmann-Feynman theorem12

states that:13

dEλ

dλ
= 〈Ψλ|V̂ ′|Ψλ〉 (49)

=

∫
ρλ(r)V

′(r)dr. (50)

By differentiating Eq. (50), one obtains:14

d2Eλ

dλ2
=

∫
ρ′λ(r)V

′(r)dr, (51)

where:15

ρ′λ(r) =
∂ρλ(r)

∂λ
(52)

=

∫
χ(r, r′)V ′(r′)dr′. (53)

By inserting Eq. (53) into a Taylor expansion of the ground-state energy in powers16

of λ, we can express the second-order correction to the energy in terms of the17

polarizability:18

E(2) =
1

2
λ2

∫
χ(r, r′)V ′(r)V ′(r′)drdr′. (54)

16



dr
af

t
The second-order correction to the ground-state energy,E(2), can also be obtained1

from standard perturbation theory:2

E(2) = λ2
∑

n

|〈Ψn|V̂ ′|Ψ0〉|2

ε0 − εn

. (55)

Whenever the ground state is non degenerate all the denominators of Eq. (55) are3

strictly negative and the second order correction to the ground-state energy is thus4

strictly negative. By comparing Eq. (54) with the sign of Eq. (55), we conclude5

that the polarizability is negative definite, and the potential functional is therefore6

concave[1, 9].7

3.2 The Hohenberg-Kohn density functional8

3.2.1 The first Hohenberg-Kohn theorem9

In Sec.2.3.2we have seen that, whenever a functionF (X) is concave (or convex,10

for that matter), the mapping between its independent variables and its partial11

derivatives,X 7→ ∂F
∂X

is invertible. When applied to the potential functional of12

Sec.3.1, this property amounts to thefirst Hohenberg-Kohn theorem(HK) [10]13

which states that the mappingV 7→ ρ is invertible,i.e. the ground-state electron-14

density distributions of two systems with a same number of electrons in the field15

of two different external potentials (i.e. such that their difference is not a constant)16

are necessarily different.17

The potential functional, of Sec.3.1can be written as:18

E◦[V ] = 〈Ψ[V ]|K̂ + Ŵ |Ψ[V ]〉+

∫
ρ[V ](r)V (r)dr, (56)

whereΨ[V ] is the solution of Eq. (38), resulting from the variational principle of19

Eq. (37). Using Eq. (44), the Legendre transform ofE◦[V ] reads:20

F [ρ] = 〈Ψ[ρ]|K̂ + Ŵ |Ψ[ρ]〉, (57)

whereΨ[ρ] is the ground-state wave-function generated by the external potential21

corresponding toρ, which is unique according to the first HK theorem.F [ρ] is22

thus auniversalfunctional of the density (i.e independent of the external potential23

V ) and it is called theHohenberg-Kohn functional.24

3.2.2 The Levy-Lieb density functional25

Let us now define the Levy-Lieb (LL) density functional as the minimum of the26

kinetic pluse-e interaction operators over the set of many-body wave-functions27
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which correspond to a same given density,ρ(r):1

FLL[ρ] = min
Ψ
〈Ψ|K̂ + Ŵ |Ψ〉; 〈Ψ|ρ̂(r)|Ψ〉 = ρ(r). (58)

This constrained variational problem can be solved using the method of Lagrange2

multipliers of Sec.2.2.2:3

δ

(
〈Ψ|K̂ + Ŵ |Ψ〉+

∫
V (r)[〈Ψ|ρ̂(r)|Ψ〉 − ρ(r)]dr

)
= 0, (59)

whereV (r) plays the role of a (functional) Lagrange multiplier. As usual, varia-4

tion with respect to the Lagrange multipliers gives the equations for the constraints5

[see Eq. (58)], whereas variation with respect toΨ gives:6 (
K̂ + Ŵ +

∫
V (r)ρ̂(r)dr

)
Ψ = 0, (60)

which is the Schr̈odinger equation for a system of interacting electrons in the7

external potentialV (r) whose arbitrary reference energy has been chosen so as8

to make the eigenvalue vanish. This shows that, whenever the minimum of Eq.9

(58) exists, the value of the LL functional equals the expectation value ofK̂ + T̂10

evaluated over the ground-state wave-function that hasρ as density distribution,11

and henceFLL[ρ] = FHK [ρ]. The minimum may not exist for someρ(r). In this12

case, the HK functional is not defined, which means thatρ(r) is not the ground-13

state charge density of any physical system (ρ(r) is said in this case to be not14

v-representable).15

The conditions that a density has to fulfill in order to bev-representable are16

poorly known. The concavity of the polarizability, Sec.3.1.1, can be used to show17

that if a density isv-representable, any normalized function sufficiently close to18

it is alsov-representable [9]. When a density is notv-representable, the LL func-19

tional can be equally defined as theinfimumof K̂ + Ŵ , rather than the minimum,20

provided thatρ is at least ‘N -representable’ ( i.e. it can be expressed by Eq. (40)21

for some antisymmetric wave-function,Ψ, not necessarily the ground state of any22

physical system).23

3.2.3 The second Hohenberg-Kohn theorem24

According to the results of Sec.2.3, the originalpotentialfunctional,E◦[V ], can25

be obtained as theinverse Legendre transformof the density functional,F [ρ]. In26

particular, using the variational principle expressed by Eq. (26), one has:27

E◦[V ] = min
ρ

(
F [ρ] +

∫
V (r)ρ(r)dr

)
(61)

= F
[
ρ[V ]

]
+

∫
V (r)ρ[V ](r)dr, (62)
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whereρ[V ] is the density distribution that solves the variational problem, Eq. (61).1

Eq. (61) is usually referred to as thesecond Hohenberg-Kohn theorem. Its differ-2

ential form usually includes a Lagrange multiplier,µ:3

δF

δρ(r)
+ V (r) = µ, (63)

which would account for the constraint on the total number of electrons:
∫

ρ(r)dr =4

N . The value ofµ can be incorporated in the definition ofV if the variation ofρ5

is restricted to the set ofN -representable densities, which has to be done in any6

case (otherwise, nor the HK, nor even the more general LL functional, would be7

defined).8

3.3 The Kohn-Sham equations9

The theory of Hohenberg and Kohn, as encompassed in the twotheoremsof sec-10

tion 3.2, would be almost trivial if all the arguments based on the use of Legendre11

transforms could be made rigorous. Unfortunately this is not the case and many12

important properties of the energy functional, including its very domain of def-13

inition, are poorly known, not to mention our inability to compute it from first14

principles, other than solving the Schrödinger equation (which is exactly what15

DFT was designed to avoid in the first place). DFT would thus be kind of void if16

workable and sufficiently accurate approximations to the density functional were17

not available. The fundamental paper of Kohn and Sham (KS) [12] provides a18

path to an entire class of such approximations.19

The central idea of Kohn and Sham is to subtract from the HK (or LL) density20

functional any sensible contribution to it that isi) physically motivated andii)21

easily calculable. By doing so one would confine all of our ignorance into the22

difference, in the hope that it is small and easy to approximate accurately. The23

HK density functional is the sum of a kinetic plus ane-einteraction term. When24

applied to a system of non interacting electrons, thefirst HK theoremstates that the25

kinetic energy of its ground state,T0, is a well defined functional of its ground-26

state density:ρ 7→ V 7→ Ψ 7→ T0[ρ]. T0[ρ] is in fact the HK (or LL, if one27

prefers) density functional for a system of non interacting electrons. Of course,28

T0 is not the kinetic energy of any system of interacting electrons, but it can be29

used in the KS construction as a first approximation to it. Analogously, we can30

separate out of thee-e interaction energy a classical contribution, corresponding31

to the electrostatic self-interaction of a classical charge-density distribution,ρ(r).32

For reasons that will become apparent shortly, this classical contribution is usually33

referred to as theHartreeenergy:34

EH [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′. (64)

19



dr
af

t
Following KS, the following ansatz can be made for the HK functional:1

F [ρ] = T0[ρ] + EH [ρ] + Exc[ρ], (65)

where the exchange-correlation (XC) energy,Exc, is the sum of the differences2

between the system’s kinetic ande-einteraction energies andT0 andEH , respec-3

tively. Strictly speaking, Eq. (65) is nothing but adefinitionof the XC energy4

which was in fact namedstupidity energyby R.P. Feynman [13], because it is the5

difference between what we can compute and what we can’t! The actual use of6

the very concept of XC energy will depend on our ability to find approximations7

to it which are accurate enough and easy to compute in practice. Before dwelling8

further upon the definition, computation, and use of the XC functional, let us make9

the final step of the Kohn-Sham’s path which leads to a practical scheme for using10

DFT in actual calculations. By using the ansatz of Eq. (65), the differential form11

of the HK variational principle, Eq. (63), would read:12

δT0

δρ(r)
+ V (r) + VH(r) + µxc(r) = µ, (66)

where the Hartree potential,VH(r), is the functional derivative of the Hartree13

energy functional, Eq. (64):14

VH(r) =

∫
ρ(r′)

|r− r′|
dr′, (67)

andµxc(r) is the (unknown) functional derivative of the (unknown) XC functional:15

16

µxc(r) =
δExc

δρ(r)
. (68)

Eq. (66) is formally equivalent to the HK variational principle for a system ofnon17

interactingelectrons, subject to an effective potential:18

VKS(r) = V (r) + VH(r) + µxc(r). (69)

The cleverness of this observation stems from the fact that we do know how to19

calculate the ground-state density—as well as any other property which can be ex-20

pressed as the expectation value of a local one-electron operator,Ô =
∑

i O(ri)—21

of non-interacting electron systems:22

〈Ψ|Ô|Ψ〉 =

∫
O(r)ρ(r)dr, (70)

ρ(r) =
∑

n

|φn(r)|2, (71)
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where the sum extends over the firstN low-lying eigenfunctions of the one-body1

Schr̈dinger equation:2 (
−1

2

∂2

∂r2
+ VKS(r)

)
φn(r) = εnφn(r). (72)

Once this equation has been solved, the ground-state energy can in principle be3

calculated using (62), (65), and (71), and the obvious prescription for the non-4

interacting kinetic energy:5

T0[ρ] = −1

2

∑
n

∫
φ?

n(r)
∂2φn(r)

∂r2
dr. (73)

The result reads:6

E◦[V ] = −1

2

∑
n

∫
φ?

n(r)
∂2φn(r)

∂r2
dr +

∫
V (r)ρ(r)dr + EH [ρ] + Exc[ρ]. (74)

Eq. (74) can be rewritten in a different form which is often used in applications.
Let us consider the ground-state energy of the auxiliary Kohn-Sham system of
non-interacting electrons, which equals the sum of theN lowest-lying eigenvalues
of Eq. (72):∑

n

εn = −1

2

∑
n

∫
φ?

n(r)
∂2φn(r)

∂r2
dr +

∫
V (r)ρ(r)dr+∫

VH(r)ρ(r)dr +

∫
µxc(r)ρ(r)dr. (75)

By comparing Eq. (75) with Eq. (74), we arrive at the expression:7

E◦[V ] =
∑

n

εn −
∫

µxc(r)ρ(r)dr− 1

2
EH [ρ] + Exc[ρ]. (76)

All in all, the Kohn-Sham ansatz allows one to replace the very complicated8

many-body Schr̈odinger equation, Eq. (38), for the ground state of a system of9

interacting electrons with the much handier Schrödinger equation for a system of10

non-interacting electrons, Eq. (72), where, however, the effective potential,VKS,11

depends on its own solutions through Eqs. (69) and (71). For this reason, this12

Schr̈odinger equation is said to beself-consistentor non-linear. Eq. (72) has a13

very similar structure to the Hartree equation [14], where the Hartree potential14

generated by the classical charge-density distribution,ρ(r), is supplemented with15

an appropriate XC term,µxc(r), Eq. (68). Of course, our ability to even state Eq.16

(72) depends on our knowledge (or lack thereof) of the XC energy, Eq. (65), and17

potential, Eq. (68).18
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3.4 The local-density approximation1

In a homogeneous system (V (r) = cnst: thehomogeneous electron gas), the den-2

sity is constant,ρ(r) = N
Ω
≡ n, and any functional ofρ(r) reduces to a function of3

n: E[ρ] = Nε(n), whereΩ andN are the total volume and number of electrons,4

respectively, andε(n) the energy per particle in the homogeneous electron gas as5

a function of the density. A common approximation to the density dependence of6

energy functionals assumes that each small volume of the system,ωi, contributes7

to the energy the same amount that a same volume would in a homogeneous elec-8

tron gas with a density equal to the local density of the inhomogeneous system9

(local density approximation, LDA):10

E[ρ] ≈
∑

i

ρiωiε(ρi)

≈
∫

ε
(
ρ(r)

)
ρ(r)dr. (77)

When applied to the independent-electron kinetic energy functional,T0[ρ], Eq.11

(77) gives rise to the Thomas-Fermi approximation [15, 16]:12

TTF [ρ] =
3~2

10m
(3π)

2
3

∫
ρ(r)

5
3 dr. (78)

Eq. (78) results in a rather poor approximation for the kinetic energy, which13

is however capable to provide qualitatively meaningful results for atoms. The14

Hartree energy, Eq. (64), cannot be approximated by any sensible local-density15

form because of the long-range Coulomb interaction between distant charge fluc-16

tuations. It turns out, however, that when applied to the exchange-correlation17

energy functional, the LDA gives surprisingly good results. In the LDA, the XC18

energy functionals reads:19

ELDA
xc [ρ] =

∫
εxc

(
ρ(r)

)
ρ(r)dr, (79)

whereεxc(n) is the difference between the energy per particle of a homogeneous20

electron gas at densityn, which can be obtained from very accurate Quantum21

Monte Carlo calculations [17], and the corresponding independent-electron result,22

ε0(n) = 3~2

10m
(3π)

2
3 n

2
3 , cf. Eq. (78). The functional derivative of Eq. (79) gives the23

LDA XC potential:24

µLDA
xc = εxc

(
ρ(r)

)
+ ρ(r)ε′xc

(
ρ(r)

)
, (80)

whereε′xc(n) is the derivative ofεxc(n).25
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The LDA was demonstrated to be exact in the two limits of slowly varying1

densities,2

|∇ρ(r)|
ρ(r)

� kF (r) =
(
3π2ρ(r)

) 1
3 , (81)

wherekF (r) is thelocal Fermi momentum, and in that of high density (ρ(r)a3
0 �3

1, a0 being the Bohr radius) [12].4

3.5 Pair correlations, correlation holes, and energy functionals5

Real materials hardly satisfy the conditions originally set for the validity of the6

LDA. The success met by over 40 years of DFT practice demonstrates though that7

the predictive power of LDA is much superior than could be expected from the8

original statements by Kohn and Sham. Some of this success can be explained on9

the basis of the properties of theexchange-correlation hole[18] that we are now10

going to introduce and describe.11

We have seen in Sec.3.2, Eq. (57), that the HK density functional is the sum12

of the ground-state expectation values of the kinetic-energy ande-e interaction13

operators, which are one-body and two-body operators, respectively. Let us see14

how one- and two-body expectation values can be expressed in general in terms15

of reduced density matrices.16

Let Ô =
∑

i ô(i) be a (generally non-local) one-body operator. Its ground-17

state expectation value reads:18

〈Ψ|Ô|Ψ〉 =
∑

i

∫
Ψ?(r1, r2, · · · ri, · · · rN)o(ri, r

′
i)×

Ψ(r1, r2, · · · r′i, · · · rN) dr1dr2 · · · dridr
′
i · · · drN (82)

=

∫
o(r, r′)γ(r, r′)drdr′, (83)

whereo(r, rr′) = 〈r|ô|r′〉 is the kernel of thêo operator, and19

γ(r, r′) = N

∫
Ψ?(r, r2, · · · rN)Ψ(r′, r2, · · · rN) dr2dr3 · · · drN (84)

is the one-electron density matrix. Expectation values of local one-electron oper-20

ators can be expressed in terms of the diagonal of the one-electron density matrix:21

22

ρ(r) = γ(r, r), (85)

which is of course the electron charge-density distribution, Eqs. (39) and (40).23

The evaluation of expectation values of differential operators, such ase.g., the24
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kinetic-energy operator̂K requires the knowledge of off-diagonal elements of the1

density matrix:2

〈K̂〉 = − ~2

2m

∫ [
∂2

∂r′2
γ(r, r′)

]
r=r′

dr. (86)

Let us now consider the case of a local1 two-electron operator,3

Ŵ = 1
2

∑
i6=j w(ri, rj). Without loss of generality we can assume thatŴ is the4

e-e interaction operator, so thatw(r1, r2) = 1
|r1−r2| . Its ground-state expectation5

value is:6

〈Ψ|Ŵ |Ψ〉 =
1

2

∫
ρ(2)(r1, r2)

|r1 − r2|
dr1dr2, (87)

where:7

ρ(2)(r1, r2) = N(N − 1)P (2)(r1, r2) (88)

≡ Γ(r1, r2; r1, r2), (89)

P (2) being the pair probability density andΓ the two-electron density matrix:

Γ(r1, r2; r
′
1, r

′
2) = N(N − 1)

∫
Ψ?(r1, r2, r3, · · · rN)×

Ψ(r′1, r
′
2, r3, · · · rN) dr3 · · · drN . (90)

The pair probability density can be written as:8

P (2)(r1, r2) = P (1)(r1)π(r2|r1), (91)

whereπ(r2, r1) is the conditional probability density for an electron sitting at9

r2, given that another electron sits atr1. If the electrons were uncorrelated, the10

conditional probability would be equal to the one-electron reduced probability:11

π(r2|r1) = P (1)(r2) ≡ ρ(r2)/N . In the presence of electronic correlations, the12

pair density, Eq. (88), reads:13

ρ(2)(r1, r2) = ρ(r1)(N − 1)π(r2|r1) (92)

= ρ(r1)
[
ρ(r2)− (N − 1)π(r2|r1)− ρ(r2)

]
(93)

= ρ(r1)ρ(r2) + ρ(r1)hxc(r1, r2), (94)

where theexchange-correlation hole, hxc, is defined as:14

hxc(r1, r2) = (N − 1)π(r2|r1)− ρ(r2). (95)

1We restrict ourselves to local two-electron operators because thee-einteraction, which is the
only relevant such operator occurring in nature, is local. In the case of one-electron operators,
instead there are a few important ones, such as the kinetic energy, momentum, current density, etc.
which are non-local
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The XC hole as a function ofr2 is normalized to−1 because it is the difference1

between two functions normalized toN − 1 andN .2

Eq. (94) allows one to write the ground-state expectation value of thee-e3

interaction in terms of the ground-state electron density distribution and XC hole:4

5

〈Ŵ 〉 = EH [ρ] +

∫
ρ(r1)ε(r1)dr1, (96)

where:6

ε(r1) =
1

2

∫
hxc(r2|r1)

|r1 − r2|
dr2. (97)

One would be tempted to identify the expression of Eq. (97) with the XC contribu-7

tion to the HK functional, Eq. (65). Actually, this cannot be done because the XC8

energy, as defined in Eq. (65), also contains a kinetic contribution,〈K̂〉−T0[ρ]. In9

order to express the sum of the kinetic plus potential energy contributions to the10

XC functional in terms of the latter alone, it is convenient to introduce and use the11

concept ofadiabatic connection[18].12

Let Ĥλ be the Hamiltonian:13

Ĥλ = K̂ + λŴ + V̂λ, (98)

where0 ≤ λ ≤ 1 is a parameter, and the external potentialVλ(r) is determined14

by the condition that the ground-state charge density determined byĤλ is inde-15

pendent ofλ, ρλ(r) = ρ(r). This condition shows that forλ = 1 Vλ equals the16

physical external potential acting on the systems, whereas forλ = 0 it equals the17

Kohn-Sham potential:18

Vλ=1(r) = V (r) (99)

Vλ=0(r) = VKS(r). (100)

The Hellmann-Feynman theorem gives the derivative of the ground-state energy19

with respect toλ:20

dE(λ)

dλ
= 〈Ŵ 〉λ +

∫
ρ(r)V ′

λ(r)dr, (101)

whereV ′
λ(r) = ∂Vλ(r)/∂λ. Note that the first term on the rhs of Eq. (101) is21

the expectation of theλ-independent operator̂W over a two-electron distribution22

which depends onλ, whereas in the second term the one-electron distributionρ23

does not depend onλ by hypothesis, whileV ′
λ(r) does. Also note that, although24

we do not know whatV ′
λ is, its integral fromλ = 0 to 1 is equal to the difference25

between the physical external potential and it KS counterpart, see Eqs. (99) and26
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(100):1 ∫

V ′
λ(r)dλ = V (r)− VKS(r)

= −VH(r)− µxc(r). (102)

The physical (λ = 1) ground-state energy can be calculated from the fictitious KS2

(λ = 0) value by integrating its derivative, Eq. (101), with respect to the strength3

of the coupling constant,λ:4

E[V ] = Eλ=0 +

∫ 1

0

dE(λ)

dλ
dλ

=
∑

n

εn +

∫ 1

0

〈Ŵ 〉λdλ +

∫
ρ(r)

(
V (r)− VKS(r)

)
dr (103)

=
∑

n

εn +

∫ 1

0

〈Ŵ 〉λ − 2EH [ρ]−
∫

µxc(r)ρ(r)dr. (104)

By comparing Eq. (104) with Eq. (76) and using Eqs. (96) and (97) for the expec-5

tation value ofŴ , we find:6

Exc[ρ] =
1

2

∫
ρ(r1)

h̄xc(r2|r1)

|r1 − r2|
dr1dr2, (105)

whereh̄xc is an effective XC hole defined as the average over the coupling con-7

stant,λ, of the XC corresponding to thêHλ Hamiltonian:8

h̄xc(r2|r1) =

∫ 1

0

hλ
xc(r2|r1)dλ. (106)

Eq. (105) shows that the XC energy does not depend on many details of the XC9

hole. In particular, the XC energy densityε(r1) of Eq. (97) can be seen as the10

classical electrostatic potential generated atr1 by the charge-density distribution11

1
2
hxc(r2|r1). This quantity depends only the spherical component of this charge12

distribution, as a function ofr2 − r1, because multipolar potentials generated by13

a regular charge-density ditribution vanish at the origin. As a consequence,any14

XC hole possessing the correct spherical component would give the exact XC15

energy, no matter how wrong the non-spherical components are. This argument16

was used by Gunnarsson and Lundqvist [18] to justify the unexpected good quality17

of the results provided by the LDA. The latter can in fact be reformulated by the18

assumption that the XC hole in real materials is well approximated by the XC hole19

of the homogeneous electron gas. In fact, as poor as this approximation may be20

in general, it fulfills the sum rul that the XC hole is correctly normalized to -1,21

26
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and furthermore the quality of the XC energy given by this approximation does1

not depend on its inability to predict the non-spherical components of the XC hole2

(the XC of the homegeneous electron gas is in fact spherically symmetric). Last3

but not least, the XC hole was shown to be rather short-range. By dimensional4

arguments, its range can only be of the order ofρ(r)−
1
3 , which is also what the5

LDA would predict. All of these considerations taken together are believed to6

justify, if not to demonstrate, the unexpected predictive power that the LDA has7

displayed all over 40 years of intense benchmarking [19].8

This section has to be reviewed9

3.6 The generalized gradient approximation(s)10

Ever since the founding papers of Hohenberg, Kohn, and Sham [10, 12], it has11

been known that, as the LDA becomes exact in the limit of slowly varying den-12

sities, Eq. (81), in this regime corrections to it can be expressed in terms of an13

expansion in powers of the density gradients. This observation lead to an attempt14

to build energy functionals on the basis of such an expansion [20, 21]. It was soon15

to be realized that such an approach is bound to fail as the results provided by16

suchimprovedfunctionals are in fact often worse than the original LDA results.17

The situation changed dramatically starting from the mid eighties with the18

proposal to modify the form of gradient dependence of the density functional from19

a power expansion in the density gradient (which is exact in the slowly varying20

regime, but inaccurate in practice), to a general functional of the form:21

EGGA
xc [ρ] =

∫
εGGA
xc

(
ρ(r),∇ρ(r)

)
ρ(r)dr. (107)

This section has to be completed22

3.7 Orbital energies and excited states23

In a system of non-interacting electrons, the eigenvalues of the one-electron Schrö-24

dinger equation describe the energy necessary to remove one electron from the25

system (occupied orbitals) or to add one to it (empty orbitals). Orbital energies26

are thus differences between the energy levels of systems withN ± 1 electrons27

and theN -electron ground state, and they are often referred to asquasi-particle28

(QP) energies. This property also holds in the Hartree-Fock approximation [22].29

As the mathematical structure of the Kohn-Sham theory is that of amean-field30

approximation(even if it is in principle an exact theory), such as Hartree-Fock,31

it is tempting to identify KS orbital energies with electron addition or removal32

energies. Although it can be demonstrated that in any finite system the highest oc-33

cupied KS eigenvalue equals the first ionization potential [23], this identification34
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is not possible in general, and KS energy eigenvalues do not have in general any1

physical meaning. In spite of this, and in the lack of equally simple theoretical2

tools, KS energy levels are often assumed to be fair approximations for the QP3

energies. One of the most striking demonstrations of the limits of this approach is4

the well know inability of DFT to predict optical gaps in insulators [24].5

In a paper of 1965 [25], Sham and Kohn provided a theoretical justification
for the practice of identifying KS eigenvalues with QP energies. QP energies are
poles of the one-particle propagator (Green’s function) which satisfies the Dyson’s
equation:(

−1

2

∂2

∂r2
+ V (r) + VH(r)− ε

)
G(r, r′; ε)+∫

Σ(r, r′′; ε)G(r′′, r′; ε)dr′′ = −δ(r− r′), (108)

whereΣ is the so-called self-energy operator. If the self-energy were Hermitean6

and energy-independent, Eq. (108) would be equivalent to the Schrödinger-like7

equation:8 (
−1

2

∂2

∂r2
+ V (r) + VH(r)

)
φn(r) +

∫
Σ(r, r′)φn(r′)dr′ = εnφn(r), (109)

whose eigenvalues,εn, would then be the poles of the propagator,i.e. QP energies.9

In the many-body literature, the eigenfunctions of Eq. (109) (or rather of its full-10

fledged form where the self-energy is energy-dependent) are calledquasi-particle11

amplitudes, or Feynman-Dyson amplitudes. Note that the Hartree-Fock equation12

has exactly the form of Eq. (109), with the self-energy approximated by the ex-13

change operator:Σ(r, r′) = γ(r, r′)/|r − r′|, γ being the one-electron density14

matrix of Eq. (84).15

Sham and Kohn showed that under the assumption that charge inhomogeneities16

are both small (|Ωρ(r)/N − 1| << 1) and slowly varying (|∇ρ(r)|/ρ(r)
4
3 << 1),17

the self-energy operator can be approximated by a local potential which has the18

same form as the XC potential of the ground-state KS theory! Of course, charge19

inhomogeneities in real materials are not small, nor are they slowly varying, and20

the justification (or lack thereof) for using KS eigenvalues as estimates of QP21

energies can only be rooted into extended practice and in the evaluation of its22

successes and failures. The success of such a practice is rather controversial, but23

there seems to be a fair consensus that in weakly correlated materials the occu-24

pied KS eigenvalues and eigenfunctions are reasonable approximations to the QP25

energies and amplitudes, whereas for empty states substantial improvements with26

respect to the plain KS model for one-electron excitations are needed. Much work27
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is presently being devoted to the development of reliable, accurate, and still nu-1

merically workable schemes to the quantum many-body problem. Schemes based2

on the partial summation of entire classes of terms in the perturbative expansion3

of the one- and two-electron propagators, such as theGWand theBethe-Salpether4

approaches, seem rather accurate in the weak-correlation regime, albeit the ex-5

tent to which they can be used for large-scale materials simulations is still to be6

demonstrated.7

In strongly correlated materials, such as transition-metal oxides, cuprates, or8

manganites to name a few, the ground- and low-lying excited states cannot be ex-9

pressed as perturbations with respect to the eigenstates of any reference system10

of non interacting electrons. This fact has two important and somewhat related,11

although conceptually quite distinct, consequences. On the one hand, DFT, al-12

though able in principle to cope with these systems, as well as with any other,13

will be severely limited by the fact that the splitting of of the non-interacting14

kinetic energy out of the HK density functional would hardly alleviate our igno-15

rance about it. As a consequence, the XC energy would be dominated in this16

case by our own substantial stupidity [13], more than it is tamed by the ingenuity17

of the Kohn-Sham construction [12]. On the other hand, the lack of any refer-18

ence independent-electron systems, make electron propagators loose theirquasi-19

particle singly peaked features, so that perturbative approaches, such asGWand20

its generalizations, loose much of their predictive power. The quest for methods21

which are robust in the strongly correlated regime, and yet simple enough to be22

implemented in practice, is a very active field of research, as the very existence23

of this summer school indicates. A good introduction to the state of the art in this24

field is a review paper recently written by Kotliar and coworkers [26].25

This section has to be extensively reviewed26
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