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... sheer curiosity ...
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even if it were, coping with statistical
noise requires impractically long
molecular dynamics simulations
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hydrodynamic fluctuations

Extensive, conserved, quantities are characterised by two relations:

A[Ql U QQ] = A[Ql] —+ A[QQ] — A[Q] — /Qa(r)dr

dA Oa(r,t) ,
E = — By — —V-ja(r,t)
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the longer the wavelength, the slower the mode
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ab initio simulations
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gauge invariance

Any two energy densities that differ by
the divergence of a (bounded) vector
field are physically equivalent

The corresponding energy fluxes differ
by a total time derivative, and the
heat transport coefficients coincide
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the DFT energy current
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a benchmark

108 “LDA Ar” atoms
@bp density, T= 250 K

100 ps CP trajectory

same behavior at T=400 K
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liquid (heavy) water

64 molecules, T=385 K
expt density @ac
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summary

heat currents are intrinsically ill-defined at the atomic
scale;

energy conservation and extensivity make heat-transport
coefficients independent of such an indeterminacy;

this gauge invariance of thermal transport makes it
possible to compute thermal transport coefficients from
DFT using equilibrium AIMD and the Green-Kubo
formalism;

The statistical theory of time series can be leveraged to
significantly improve the accuracy of the transport
coefficients estimated from MD.
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