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ė(r, t) + � · je(r, t) = 0

je(r, t) = jq(r, t) � (p + �e�) v(r, t)

Jq(t) =

�
je(r, t)dr

=

�
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We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6$ 1:2 and that k ¼ 20$ 5 Wm%1 K%1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.%f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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insights	from	classical	mechanics

+
�
P(�) · J(0)

�
�

�
P(0) · J(0)

�

+
�
P(0) · J(0)

�
�

�
P(��) · J(0)

�

+
�
P(�) · Ṗ(0)
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Ṗ(t) · Ṗ(0)
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�
�

�
P(0) · Ṗ(0)
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)

J′(t) = J(t) + Ṗ(t)
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We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6$ 1:2 and that k ¼ 20$ 5 Wm%1 K%1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.
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Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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based on density functional theory in the local density
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forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
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conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we
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We herein present a first-principles formulation of the Green-Kubo method that allows the accurate
assessment of the phonon thermal conductivity of solid semiconductors and insulators in equilibrium
ab initio molecular dynamics calculations. Using the virial for the nuclei, we propose a unique ab initio
definition of the heat flux. Accurate size and time convergence are achieved within moderate computational
effort by a robust, asymptotically exact extrapolation scheme. We demonstrate the capabilities of the
technique by investigating the thermal conductivity of extreme high and low heat conducting materials,
namely, Si (diamond structure) and tetragonal ZrO2.
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Macroscopic heat transport is a ubiquitous phenomenon
in condensed matter that plays a crucial role in a multitude
of applications, e.g., energy conversion, catalysis, and
turbine technology. Whenever a temperature gradient
∇TðRÞ is present, a heat flux JðRÞ spontaneously develops
to move the system back toward thermodynamic equilib-
rium. The temperature- and pressure-dependent thermal
conductivity κðT; pÞ of the material describes the propor-
tionality between heat flux and temperature gradient
(Fourier’s law):

JðRÞ ¼ −κðT; pÞ ·∇TðRÞ: ð1Þ

In insulators and semiconductors, the dominant contribution
to κðT; pÞ stems from the vibrational motion of the atoms
(phonons) [1]. In spite of significant efforts, a parameter-free,
accurate theoretical approach that allows us to assess the
thermal conductivity tensor in the case of both weak and
strong anharmonicity is still lacking: Studies of model
systems via classical molecular dynamics (MD) based on
force fields (FF) can unveil general rules and concepts [2].
However, the needed accuracy for describing anharmonic
effects is often not correctly captured by FFs [3], and
trustworthy FFs are generally not available for “real”
materials used in scientific and industrial applications.
Naturally, first-principles electronic-structure theory

lends itself to overcoming this deficiency by allowing a
reliable computation of the interatomic interactions.
However, severe limitations affect the approaches that have

hitherto been employed in ab initio frameworks for study-
ing the thermal conductivity of solids. (a) Approaches
based on the Boltzmann transport equation [4–7] account
for the leading, lowest order contributions to the anharmo-
nicity. Accordingly, these approaches are justified at low
temperatures, at which they also correctly describe relevant
nuclear quantum effects. At elevated temperatures and/or in
the case of strong anharmonicity, this approximation is,
however, known to break down [8,9]. (b) Nonequilibrium
approaches [10–12] require us to impose an artificial
temperature gradient, which becomes unreasonably large
(≫ 109 K=m) in the limited system sizes accessible in first-
principles calculations. Especially at high temperatures,
this can lead to nonlinear artifacts [13–15] that prevent the
assessment of the linear response regime described by
Fourier’s law.
In this Letter, we present an ab initio implementation of

the Green-Kubo (GK) method [16], which does not suffer
from the aforementioned limitations [4,14], since κðT; pÞ is
determined from ab initio molecular dynamics simulations
(aiMD) in thermodynamic equilibrium that account for
anharmonicity to all orders. Accordingly, this approach is
exact at temperatures at which nuclear quantum effects are
negligible. Hitherto, fundamental challenges have pre-
vented an application of this technique in a first-principles
framework: Conceptually, a definition of the heat flux
associated with vibrations in the solid is required; numeri-
cally, the necessary time and length scales need to be
reached. First, we succinctly describe how we overcome
the conceptual hurdles, i.e., the unique ab initio definition
of the microscopic heat flux (and its fluctuations) for solids.
Second, we discuss how this allows us to overcome the
numerical hurdles by introducing a robust extrapolation
scheme, so that time and size convergence is achieved
within moderate computational effort. Third, we validate

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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associated with vibrations in the solid is required; numeri-
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the conceptual hurdles, i.e., the unique ab initio definition
of the microscopic heat flux (and its fluctuations) for solids.
Second, we discuss how this allows us to overcome the
numerical hurdles by introducing a robust extrapolation
scheme, so that time and size convergence is achieved
within moderate computational effort. Third, we validate

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PRL 118, 175901 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

28 APRIL 2017

0031-9007=17=118(17)=175901(5) 175901-1 Published by the American Physical Society

Christian Carbogno, Rampi Ramprasad, and Matthias SchefflerJvðtÞ using Eq. (6), since neglecting the convective term
JcðtÞ from the beginning allows us to integrate out the
internal electronic contributions to the heat flux (see
Supplemental Material [23]). This also holds true in our
practical implementation of the virial and the analytical
stress tensor [30], since Pulay terms and alike that can arise
can again be associated to individual atoms. Since both
Eqs. (6) and (8) are exact and nonperturbative, evaluating
JvðtÞ along the ab initio trajectory accounts for the full
anharmonicity.
To validate our implementation of the proposed approach

in the all-electron, numeric atomic orbital electronic structure
code FHI-aims [31], we compare the heat flux autocorrela-
tion function (HFACF) computed from first principlesG½Jv$
with the respective harmonicHFACFG½Jha−Rv $ by evaluating
the approximate virial heat flux Jha−Rv ðtÞ using the harmonic
force constants Φαβ

IJ ¼ ∂2U=∂Rα
I ∂Rβ

J. In the harmonic
approximation, the virials

ðσIαβÞha−R ¼ 1

2V

X

J≠I
Φαβ

IJ ðΔRα
I − ΔRα

JÞðR
β
I − Rβ

JÞ ð9Þ

depend only on the positions and displacements from
equilibrium ΔRI ¼ RI − Req

I [8], so that Jha−Rv ðtÞ can be
evaluated using Eqs. (6) and (9) along the exact same first-
principles trajectory used to compute JvðtÞ. As an example,
Fig. 1 shows such a comparison:G½Jv$ andG½Jha−Rv $ closely
resemble each other and become equal for large time lags τ,
which demonstrates the validity of the introduced first-
principles definition of the heat flux and its applicability
in ab initio GK calculations.

However, Fig. 1 also neatly exemplifies the severe
computational challenges of such first-principle GK sim-
ulations: Because of the limited time scales accessible in
aiMD runs, thermodynamic fluctuations dominate the
HFACF, which in turn prevents a reliable and numerically
stable assessment of the thermal conductivity via Eq. (2).
Furthermore, achieving convergence with respect to system
size is numerically even more challenging, as classical MD
studies based on FFs [15,22] have shown, so that ab initio
GK simulations of solids appear to be computationally
prohibitively costly. However, as we will show below, the
computational effort can be reduced by several orders of
magnitude by a correct extrapolation technique employing
a proper interpolation in reciprocal space.
For this purpose, we first note that in the harmonic

approximation the HFACF can be equivalently [8] evalu-
ated in reciprocal space using the heat flux definition in the
phonon picture [32]:

Jha−qv ðtÞ ¼ 1

V

X

sq

Esðq; tÞvsðqÞ: ð10Þ

Here, the sum goes over all reciprocal space points q
commensurate with the chosen supercell; vsðqÞ are the
group velocities of the phonon modes s with frequencies
ωsðqÞ, which are obtained by Fourier transforming and
diagonalizing the mass-scaled force constant matrix Φαβ

IJ
introduced in Eq. (9). The time-dependent contribution
Esðq; tÞ of each phonon mode to the total energy can be
extracted from the MD trajectory using the techniques
described in Ref. [32] (see Supplemental Material [23]).
Accordingly, we can reformulate the HFACF as
Ĝ ¼ G½Jv$ −G½Jha−Rv $ þ G½Jha−qv $. For fully time and size
converged calculations, Ĝ equals G½Jv$; for undercon-
verged calculations (cf. Fig. 1), Ĝ exhibits significantly
less thermodynamic fluctuations, since the phases of the
individual modes do not enter Esðq; tÞ and thus the phases
also do not enter the heat flux definition Jha−qv given
in Eq. (10).
Even more importantly, this formalism enables a

straightforward size extrapolation by extending the sum
over (the finite number of commensurate) reciprocal space
points q in Eq. (10) to a denser grid. The required
frequencies ωsðq0Þ and group velocities vsðq0Þ can be
determined on arbitrary q0 points that are not commensurate
with the supercell by Fourier interpolating the force
constants Φαβ

IJ [33]. In the same spirit, we introduce the
dimensionless quantity

ΔEsðq; ~tÞ ¼
Es(q; t ¼ ~t=ωsðqÞ) − hEsðqÞi

hEsðqÞi
; ð11Þ

which accounts for the fact that the equilibrium fluctuations
of the mode-specific total energies are proportional to their
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FIG. 1. Early (a) and late (b) decay of the heat flux autocorre-
lation function (HFACF) of silicon computed in a 64-atom
supercell with DFT LDA at a temperature of 960 K (trajectory
length ∼207 ps). The green line (G½Jv$) employs the virial
ab initio heat flux JvðtÞ that incorporates all anharmonic effects,
whereas the blue and orange lines show the HFACFs G½Jha−Rv $
and G½Jha−qv $ for approximate heat fluxes computed for the exact
same trajectory, but imposing the harmonic approximation, i.e.,
using Jha−Rv ðtÞ and Jha−qv ðtÞ defined via Eqs. (9) and (10),
respectively.
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� Ŝ(k)
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Ŝ(k)

�
= log

�
S(�k)

�
+ log

�
�̂k

�



squeezing	more	juice	from	a	Dme	series

S(�) log
�
S(�)

�
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We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6$ 1:2 and that k ¼ 20$ 5 Wm%1 K%1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.
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Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society

Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†

Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡

Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 27 August 2009; revised manuscript received 9 March 2010; published 17 May 2010)

We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6$ 1:2 and that k ¼ 20$ 5 Wm%1 K%1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.%f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society

Stephen Stackhouse, Lars Stixrude, and Bijaya B. Karki
Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†

Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡

Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 27 August 2009; revised manuscript received 9 March 2010; published 17 May 2010)

We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6$ 1:2 and that k ¼ 20$ 5 Wm%1 K%1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.%f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5–7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9–11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society

Ab Initio Green-Kubo Approach for the Thermal Conductivity of Solids

Christian Carbogno,1 Rampi Ramprasad,2 and Matthias Scheffler1,3,4
1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

2University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, USA
3Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, USA

4Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, USA
(Received 30 May 2016; published 28 April 2017)

We herein present a first-principles formulation of the Green-Kubo method that allows the accurate
assessment of the phonon thermal conductivity of solid semiconductors and insulators in equilibrium
ab initio molecular dynamics calculations. Using the virial for the nuclei, we propose a unique ab initio
definition of the heat flux. Accurate size and time convergence are achieved within moderate computational
effort by a robust, asymptotically exact extrapolation scheme. We demonstrate the capabilities of the
technique by investigating the thermal conductivity of extreme high and low heat conducting materials,
namely, Si (diamond structure) and tetragonal ZrO2.
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Macroscopic heat transport is a ubiquitous phenomenon
in condensed matter that plays a crucial role in a multitude
of applications, e.g., energy conversion, catalysis, and
turbine technology. Whenever a temperature gradient
∇TðRÞ is present, a heat flux JðRÞ spontaneously develops
to move the system back toward thermodynamic equilib-
rium. The temperature- and pressure-dependent thermal
conductivity κðT; pÞ of the material describes the propor-
tionality between heat flux and temperature gradient
(Fourier’s law):

JðRÞ ¼ −κðT; pÞ ·∇TðRÞ: ð1Þ

In insulators and semiconductors, the dominant contribution
to κðT; pÞ stems from the vibrational motion of the atoms
(phonons) [1]. In spite of significant efforts, a parameter-free,
accurate theoretical approach that allows us to assess the
thermal conductivity tensor in the case of both weak and
strong anharmonicity is still lacking: Studies of model
systems via classical molecular dynamics (MD) based on
force fields (FF) can unveil general rules and concepts [2].
However, the needed accuracy for describing anharmonic
effects is often not correctly captured by FFs [3], and
trustworthy FFs are generally not available for “real”
materials used in scientific and industrial applications.
Naturally, first-principles electronic-structure theory

lends itself to overcoming this deficiency by allowing a
reliable computation of the interatomic interactions.
However, severe limitations affect the approaches that have

hitherto been employed in ab initio frameworks for study-
ing the thermal conductivity of solids. (a) Approaches
based on the Boltzmann transport equation [4–7] account
for the leading, lowest order contributions to the anharmo-
nicity. Accordingly, these approaches are justified at low
temperatures, at which they also correctly describe relevant
nuclear quantum effects. At elevated temperatures and/or in
the case of strong anharmonicity, this approximation is,
however, known to break down [8,9]. (b) Nonequilibrium
approaches [10–12] require us to impose an artificial
temperature gradient, which becomes unreasonably large
(≫ 109 K=m) in the limited system sizes accessible in first-
principles calculations. Especially at high temperatures,
this can lead to nonlinear artifacts [13–15] that prevent the
assessment of the linear response regime described by
Fourier’s law.
In this Letter, we present an ab initio implementation of

the Green-Kubo (GK) method [16], which does not suffer
from the aforementioned limitations [4,14], since κðT; pÞ is
determined from ab initio molecular dynamics simulations
(aiMD) in thermodynamic equilibrium that account for
anharmonicity to all orders. Accordingly, this approach is
exact at temperatures at which nuclear quantum effects are
negligible. Hitherto, fundamental challenges have pre-
vented an application of this technique in a first-principles
framework: Conceptually, a definition of the heat flux
associated with vibrations in the solid is required; numeri-
cally, the necessary time and length scales need to be
reached. First, we succinctly describe how we overcome
the conceptual hurdles, i.e., the unique ab initio definition
of the microscopic heat flux (and its fluctuations) for solids.
Second, we discuss how this allows us to overcome the
numerical hurdles by introducing a robust extrapolation
scheme, so that time and size convergence is achieved
within moderate computational effort. Third, we validate

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.
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Christian Carbogno, Rampi Ramprasad, and Matthias SchefflerJvðtÞ using Eq. (6), since neglecting the convective term
JcðtÞ from the beginning allows us to integrate out the
internal electronic contributions to the heat flux (see
Supplemental Material [23]). This also holds true in our
practical implementation of the virial and the analytical
stress tensor [30], since Pulay terms and alike that can arise
can again be associated to individual atoms. Since both
Eqs. (6) and (8) are exact and nonperturbative, evaluating
JvðtÞ along the ab initio trajectory accounts for the full
anharmonicity.
To validate our implementation of the proposed approach

in the all-electron, numeric atomic orbital electronic structure
code FHI-aims [31], we compare the heat flux autocorrela-
tion function (HFACF) computed from first principlesG½Jv$
with the respective harmonicHFACFG½Jha−Rv $ by evaluating
the approximate virial heat flux Jha−Rv ðtÞ using the harmonic
force constants Φαβ

IJ ¼ ∂2U=∂Rα
I ∂Rβ

J. In the harmonic
approximation, the virials

ðσIαβÞha−R ¼ 1

2V

X

J≠I
Φαβ

IJ ðΔRα
I − ΔRα

JÞðR
β
I − Rβ

JÞ ð9Þ

depend only on the positions and displacements from
equilibrium ΔRI ¼ RI − Req

I [8], so that Jha−Rv ðtÞ can be
evaluated using Eqs. (6) and (9) along the exact same first-
principles trajectory used to compute JvðtÞ. As an example,
Fig. 1 shows such a comparison:G½Jv$ andG½Jha−Rv $ closely
resemble each other and become equal for large time lags τ,
which demonstrates the validity of the introduced first-
principles definition of the heat flux and its applicability
in ab initio GK calculations.

However, Fig. 1 also neatly exemplifies the severe
computational challenges of such first-principle GK sim-
ulations: Because of the limited time scales accessible in
aiMD runs, thermodynamic fluctuations dominate the
HFACF, which in turn prevents a reliable and numerically
stable assessment of the thermal conductivity via Eq. (2).
Furthermore, achieving convergence with respect to system
size is numerically even more challenging, as classical MD
studies based on FFs [15,22] have shown, so that ab initio
GK simulations of solids appear to be computationally
prohibitively costly. However, as we will show below, the
computational effort can be reduced by several orders of
magnitude by a correct extrapolation technique employing
a proper interpolation in reciprocal space.
For this purpose, we first note that in the harmonic

approximation the HFACF can be equivalently [8] evalu-
ated in reciprocal space using the heat flux definition in the
phonon picture [32]:

Jha−qv ðtÞ ¼ 1

V

X

sq

Esðq; tÞvsðqÞ: ð10Þ

Here, the sum goes over all reciprocal space points q
commensurate with the chosen supercell; vsðqÞ are the
group velocities of the phonon modes s with frequencies
ωsðqÞ, which are obtained by Fourier transforming and
diagonalizing the mass-scaled force constant matrix Φαβ

IJ
introduced in Eq. (9). The time-dependent contribution
Esðq; tÞ of each phonon mode to the total energy can be
extracted from the MD trajectory using the techniques
described in Ref. [32] (see Supplemental Material [23]).
Accordingly, we can reformulate the HFACF as
Ĝ ¼ G½Jv$ −G½Jha−Rv $ þ G½Jha−qv $. For fully time and size
converged calculations, Ĝ equals G½Jv$; for undercon-
verged calculations (cf. Fig. 1), Ĝ exhibits significantly
less thermodynamic fluctuations, since the phases of the
individual modes do not enter Esðq; tÞ and thus the phases
also do not enter the heat flux definition Jha−qv given
in Eq. (10).
Even more importantly, this formalism enables a

straightforward size extrapolation by extending the sum
over (the finite number of commensurate) reciprocal space
points q in Eq. (10) to a denser grid. The required
frequencies ωsðq0Þ and group velocities vsðq0Þ can be
determined on arbitrary q0 points that are not commensurate
with the supercell by Fourier interpolating the force
constants Φαβ

IJ [33]. In the same spirit, we introduce the
dimensionless quantity

ΔEsðq; ~tÞ ¼
Es(q; t ¼ ~t=ωsðqÞ) − hEsðqÞi

hEsðqÞi
; ð11Þ

which accounts for the fact that the equilibrium fluctuations
of the mode-specific total energies are proportional to their
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FIG. 1. Early (a) and late (b) decay of the heat flux autocorre-
lation function (HFACF) of silicon computed in a 64-atom
supercell with DFT LDA at a temperature of 960 K (trajectory
length ∼207 ps). The green line (G½Jv$) employs the virial
ab initio heat flux JvðtÞ that incorporates all anharmonic effects,
whereas the blue and orange lines show the HFACFs G½Jha−Rv $
and G½Jha−qv $ for approximate heat fluxes computed for the exact
same trajectory, but imposing the harmonic approximation, i.e.,
using Jha−Rv ðtÞ and Jha−qv ðtÞ defined via Eqs. (9) and (10),
respectively.
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heat	currents	are	intrinsically	ill-defined	at	the	atomic	
scale;	

energy	conservaDon	and	extensivity	make	heat-transport	
coefficients	independent	of	such	an	indeterminacy;	

this	gauge	invariance	of	thermal	transport	makes	it	
possible	to	compute	thermal	transport	coefficients	from	
DFT	using	equilibrium	AIMD	and	the	Green-Kubo	
formalism;	

The	staDsDcal	theory	of	Dme	series	can	be	leveraged	to	
significantly	improve	the	accuracy	of	the	transport	
coefficients	esDmated	from	MD.
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Microscopic theory and quantum simulation of
atomic heat transport
Aris Marcolongo1, Paolo Umari2 and Stefano Baroni1*

Quantum simulation methods based on electronic-structure theory are deemed unfit to cope with atomic heat transport within
theGreen–Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the atomic
scale. We show that, although this di�culty would also a�ect classical simulations, thermal conductivity is indeed insensitive
to such ill-definedness by virtue of a kind of gauge invariance resulting from energy extensivity and conservation. On the basis
of these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat
transport to be simulated using ab initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing
its predictions to those of classical equilibrium and ab initio non-equilibrium (Müller–Plathe) simulations for a liquid-argon
model, and by applying it to heavy water at ambient conditions.

Understanding heat transport is key in many fields of
science and technology, such as materials and planetary
sciences, energy saving, heat dissipation and shielding, or

thermoelectric conversion, to name but a few. Heat transport in
insulators is determined by the dynamics of atoms, the electrons
following adiabatically in their ground state. Simulating atomic heat
transport usually relies on Boltzmann’s kinetic approach1, or on
molecular dynamics (MD), both in its equilibrium (Green–Kubo,
GK; refs 2–5) and non-equilibrium4–6 flavours. The Boltzmann
equation applies only to crystalline solids well below melting,
whereas classical MD (CMD) bears on those materials and
conditions that can be modelled by interatomic potentials.
Equilibrium ab initio (AI) MD (refs 7,8) is set to overcome these
limitations, but it is still surprisingly thought to be unfit to cope
with thermal transport ‘because in first-principles calculations it is
impossible to uniquely decompose the total energy into individual
contributions from each atom’ (excerpted from ref. 9). Such a
unique decomposition is not possible in classical mechanics either,
because the potential energy of a system of interacting atoms
can be partitioned into local contributions in an infinite number
of equivalent ways. The quantum-mechanical energy density is
also a�ected by a similar indeterminacy. Notwithstanding, the
expression for the heat conductivity derived from any sensible
energy partitioning or density should obviously be well defined, as
any measurable quantity must.

In this work we first demonstrate that the thermal conductivity
resulting from the GK relation is una�ected by the indeterminacy
of the microscopic energy density; we then introduce a form of
energy density, and a corresponding adiabatic energy flux, from
which heat-transport coe�cients can be computed within the
GK formalism, using density-functional theory10,11 (DFT). Our
approach is validated by comparing the results of equilibriumAIMD
to those of non-equilibrium (Müller–Plathe, MP; ref. 6) AIMD and
equilibrium CMD simulations for a liquid-argon model, for which
accurate interatomic potentials are derived by matching the forces
generated by them with quantum-mechanical forces computed
along the AIMD trajectories. The case of molecular fluids is finally
addressed, and illustrated in the case of water at ambient conditions.

Theory
According to the GK theory2,3, the atomic thermal conductivity of
an isotropic system is given by:

 = 1
3VkBT 2

Z 1

0
hJq(t) · Jq(0)idt (1)

where brackets h·i indicate canonical averages, kB is the Boltzmann
constant, V and T are the system volume and temperature, Jq(t)=R

(je(r, t)+(p+ hei)v(r, t))dr is themacroscopic heat flux, with je, v,
p, and hei being the energy-current density, local velocity field, and
equilibrium values of pressure and energy density, respectively12,13.
For further reference, we define as di�usive a flux that results in
a non-vanishing GK conductivity, according to equation (1). The
integral of the velocity field is non-di�usive in solids and can be
assumed to vanish in one-component fluids, because of momentum
conservation. In these cases, as well as inmolecular fluids, as we will
see, we can therefore assume that heat and energy fluxes coincide.

Energy is extensive: it can thus be expressed as the integral of
a density, which is defined up to the divergence of a bounded
vector field: two densities that di�er by such a divergence, e(r) and
e0(r)=e(r)+@ ·p(r), are indeed equivalent, in that their integrals
over any finite domain di�er by a boundary term, which is irrelevant
in the thermodynamic limit, and can thus be thought of as di�erent
gauges of the same scalar field. Energy is also conserved: therefore,
for any given gauge of its density, e, a corresponding current density,
je, can be defined so as to satisfy the continuity equation:

ė(r, t)+@ · je(r, t)=0 (2)

According to equation (2) the macroscopic fluxes in two di�erent
energy gauges di�er by a total time derivative, which is non-
di�usive: J0e(t)= Je(t)+ Ṗ(t), where P(t)=R

p(r, t)dr. The equality
of the corresponding heat conductivities results from the following
Lemma. Let J1 and J2 be two macroscopic fluxes defined
for the same system, and J12 = J1 + J2 be their sum. The
corresponding GK conductivities, 1, 2 and 12 satisfy the relation:
|12 �1 �2|2p12.
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GK; refs 2–5) and non-equilibrium4–6 flavours. The Boltzmann
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limitations, but it is still surprisingly thought to be unfit to cope
with thermal transport ‘because in first-principles calculations it is
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unique decomposition is not possible in classical mechanics either,
because the potential energy of a system of interacting atoms
can be partitioned into local contributions in an infinite number
of equivalent ways. The quantum-mechanical energy density is
also a�ected by a similar indeterminacy. Notwithstanding, the
expression for the heat conductivity derived from any sensible
energy partitioning or density should obviously be well defined, as
any measurable quantity must.

In this work we first demonstrate that the thermal conductivity
resulting from the GK relation is una�ected by the indeterminacy
of the microscopic energy density; we then introduce a form of
energy density, and a corresponding adiabatic energy flux, from
which heat-transport coe�cients can be computed within the
GK formalism, using density-functional theory10,11 (DFT). Our
approach is validated by comparing the results of equilibriumAIMD
to those of non-equilibrium (Müller–Plathe, MP; ref. 6) AIMD and
equilibrium CMD simulations for a liquid-argon model, for which
accurate interatomic potentials are derived by matching the forces
generated by them with quantum-mechanical forces computed
along the AIMD trajectories. The case of molecular fluids is finally
addressed, and illustrated in the case of water at ambient conditions.

Theory
According to the GK theory2,3, the atomic thermal conductivity of
an isotropic system is given by:

 = 1
3VkBT 2
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hJq(t) · Jq(0)idt (1)

where brackets h·i indicate canonical averages, kB is the Boltzmann
constant, V and T are the system volume and temperature, Jq(t)=R

(je(r, t)+(p+ hei)v(r, t))dr is themacroscopic heat flux, with je, v,
p, and hei being the energy-current density, local velocity field, and
equilibrium values of pressure and energy density, respectively12,13.
For further reference, we define as di�usive a flux that results in
a non-vanishing GK conductivity, according to equation (1). The
integral of the velocity field is non-di�usive in solids and can be
assumed to vanish in one-component fluids, because of momentum
conservation. In these cases, as well as inmolecular fluids, as we will
see, we can therefore assume that heat and energy fluxes coincide.

Energy is extensive: it can thus be expressed as the integral of
a density, which is defined up to the divergence of a bounded
vector field: two densities that di�er by such a divergence, e(r) and
e0(r)=e(r)+@ ·p(r), are indeed equivalent, in that their integrals
over any finite domain di�er by a boundary term, which is irrelevant
in the thermodynamic limit, and can thus be thought of as di�erent
gauges of the same scalar field. Energy is also conserved: therefore,
for any given gauge of its density, e, a corresponding current density,
je, can be defined so as to satisfy the continuity equation:

ė(r, t)+@ · je(r, t)=0 (2)

According to equation (2) the macroscopic fluxes in two di�erent
energy gauges di�er by a total time derivative, which is non-
di�usive: J0e(t)= Je(t)+ Ṗ(t), where P(t)=R

p(r, t)dr. The equality
of the corresponding heat conductivities results from the following
Lemma. Let J1 and J2 be two macroscopic fluxes defined
for the same system, and J12 = J1 + J2 be their sum. The
corresponding GK conductivities, 1, 2 and 12 satisfy the relation:
|12 �1 �2|2p12.
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which heat-transport coe�cients can be computed within the
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conservation. In these cases, as well as inmolecular fluids, as we will
see, we can therefore assume that heat and energy fluxes coincide.

Energy is extensive: it can thus be expressed as the integral of
a density, which is defined up to the divergence of a bounded
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expression for the energy density and current from which they can be derived through
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invariance resulting from energy conservation and extensivity, and demonstrate it
numerically for aLennard-Jones fluid,where different forms of themicroscopic energy
density lead to different time correlation functions for the heat flux, all of them,
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It has long been thought that the inherent indeterminacy of any quantum mechani-
cal expression for the energy density would hinder the evaluation of thermal transport
coefficients from equilibrium ab initio molecular dynamics (AIMD), using the Green–
Kubo (GK) formalism [1–4]. In classical molecular dynamics (CMD) this goal is
achieved by decomposing the total energy of an extended system into localized atomic
contributions and by deriving from this decomposition an explicit (and allegedly
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Abstract A new method is introduced to estimate transport coefficients in extended systems from
optimally short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear
response and the cepstral analysis of time series. Information from the full sample power spectrum of the
relevant current for a single trajectory is leveraged to evaluate and optimally reduce the noise affecting
its zero-frequency value, whose expectation is proportional to the corresponding transport coefficient.
Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made
arbitrarily small in the long-time limit. A simple protocol to evaluate thermal conductivities is finally
proposed and validated in the paradigmatic cases of elemental and molecular fluids (liquid Ar and H2O)
and of crystalline and glassy solids (MgO and a-SiO2).

1 Introduction

Understanding and controlling heat transport in
materials is key in science, as well as in many tech-
nologies related to the harvesting, conversion, sav-
ing, and dissipation of energy. Our microscopic
understanding of heat transport is rooted in the
Green-Kubo (GK) theory of linear response [1, 2],
as applied to the Navier-Stokes equations for the
densities of the conserved extensive variables [3, 4],
which include energy, momentum, and the parti-
cle numbers for each molecular species. In the
GK theory transport coefficients are determined
by the equilibrium fluctuations of the relevant cur-
rents and are in fact proportional to their auto-
correlation times. Heat transport in insulators is
determined by the dynamics of atoms, the elec-
trons following adiabatically in their ground state,
and the GK theory allows one to derive the ther-
mal conductivity from an analysis of equilibrium,
possibly ab-initio, molecular dynamics (MD) tra-
jectories.

In spite of its conceptual soundness and formal
elegance, the practical application of the GK for-
malism to molecular simulations has been ham-
pered so far by two major hurdles. On one hand, it
has long been believed that the GK theory could

not be combined with modern simulation meth-
ods based on electronic-structure theory, such as
ab-initio MD [5, 6], because energy densities and
currents are inherently ill-defined at the quantum-
mechanical level [7]. On the other hand, it is
thought that the application of this theory would
require very long MD simulations, much longer in
fact than the typical heat-current auto-correlation
times one is required to evaluate [8, 9, 10, 11]. Even
though a number of expedients have been devised
to cope with this problem [9, 10, 12], none of them
is fully satisfactory in that no rigorous quantitative
criteria are offered to estimate the optimal length
of a MD simulation needed to achieve a target ac-
curacy. The first hurdle was recently overcome by
a couple papers showing that, while energy densi-
ties and currents are actually ill-defined classically
no less than they are quantum-mechanically, the
heat conductivity resulting from the GK formula
is indeed well defined by virtue of a kind of gauge
invariance stemming from energy extensivity and
conservation [13, 14].

The purpose of the present paper is to pro-
vide a solid starting block to overcome the sec-
ond hurdle, based on rigorous arguments borrowed
from the statistical theory of stationary time se-
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c
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A
new

m
ethod

is
introduced

to
estim

ate
transport

coeffi
cients

in
extended

system
s

from
optim

ally
short

equilibrium
m

olecular
dynam

ics
sim

ulations,based
on

the
G

reen-K
ubo

theory
oflinear

response
and

the
cepstralanalysisoftim

e
series.

Inform
ation

from
the

fullsam
ple

pow
erspectrum

ofthe
relevant

current
for

a
single

trajectory
is

leveraged
to

evaluate
and

optim
ally

reduce
the

noise
affecting

its
zero-frequency

value,
w

hose
expectation

is
proportional

to
the

corresponding
transport

coeffi
cient.

O
ur

m
ethod

is
unbiased

and
consistent,in

that
both

the
resulting

bias
and

statisticalerror
can

be
m

ade
arbitrarily

sm
allin

the
long-tim

e
lim

it.
A

sim
ple

protocolto
evaluate

therm
alconductivities

is
finally

proposed
and

validated
in

the
paradigm

atic
cases

ofelem
entaland

m
olecular

fluids
(liquid

A
r

and
H

2 O
)

and
ofcrystalline

and
glassy

solids
(M

gO
and

a-SiO
2 ).

1
I
n
t
r
o
d
u
c
t
i
o
n

U
nderstanding

and
controlling

heat
transport

in
m

aterials
is

key
in

science,as
w

ellas
in

m
any

tech-
nologies

related
to

the
harvesting,conversion,sav-

ing,
and

dissipation
of

energy.
O

ur
m

icroscopic
understanding

of
heat

transport
is

rooted
in

the
G

reen-K
ubo

(G
K

)
theory

of
linear

response
[1,2],

as
applied

to
the

N
avier-Stokes

equations
for

the
densities

ofthe
conserved

extensive
variables

[3,4],
w

hich
include

energy,
m

om
entum

,
and

the
parti-

cle
num

bers
for

each
m

olecular
species.

In
the

G
K

theory
transport

coeffi
cients

are
determ

ined
by

the
equilibrium

fluctuations
ofthe

relevant
cur-

rents
and

are
in

fact
proportional

to
their

auto-
correlation

tim
es.

H
eat

transport
in

insulators
is

determ
ined

by
the

dynam
ics

of
atom

s,
the

elec-
trons

follow
ing

adiabatically
in

their
ground

state,
and

the
G

K
theory

allow
s

one
to

derive
the

ther-
m

al
conductivity

from
an

analysis
of

equilibrium
,

possibly
ab-initio,

m
olecular

dynam
ics

(M
D

)
tra-

jectories.
In

spite
of

its
conceptual

soundness
and

form
al

elegance,
the

practical
application

of
the

G
K

for-
m

alism
to

m
olecular

sim
ulations

has
been

ham
-

pered
so

far
by

tw
o

m
ajor

hurdles.
O

n
one

hand,it
has

long
been

believed
that

the
G

K
theory

could

not
be

com
bined

w
ith

m
odern

sim
ulation

m
eth-

ods
based

on
electronic-structure

theory,
such

as
ab-initio

M
D

[5,
6],

because
energy

densities
and

currents
are

inherently
ill-defined

at
the

quantum
-

m
echanical

level
[7].

O
n

the
other

hand,
it

is
thought

that
the

application
of

this
theory

w
ould

require
very

long
M

D
sim

ulations,
m

uch
longer

in
fact

than
the

typicalheat-current
auto-correlation

tim
esone

isrequired
to

evaluate
[8,9,10,11].

E
ven

though
a

num
ber

of
expedients

have
been

devised
to

cope
w

ith
this

problem
[9,10,12],none

ofthem
is

fully
satisfactory

in
that

no
rigorous

quantitative
criteria

are
offered

to
estim

ate
the

optim
al

length
ofa

M
D

sim
ulation

needed
to

achieve
a

target
ac-

curacy.
T

he
first

hurdle
w

as
recently

overcom
e

by
a

couple
papers

show
ing

that,
w

hile
energy

densi-
ties

and
currents

are
actually

ill-defined
classically

no
less

than
they

are
quantum

-m
echanically,

the
heat

conductivity
resulting

from
the

G
K

form
ula

is
indeed

w
elldefined

by
virtue

of
a

kind
of

gauge
invariance

stem
m

ing
from

energy
extensivity

and
conservation

[13,14].

T
he

purpose
of

the
present

paper
is

to
pro-

vide
a

solid
starting

block
to

overcom
e

the
sec-

ond
hurdle,based

on
rigorous

argum
ents

borrow
ed

from
the

statistical
theory

of
stationary

tim
e

se-

1
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