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compa3ble	with	ab-ini3o	
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structure	theory	
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hurdles	toward	an	ab	ini3o	Green-Kubo	theory	
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We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6 $ 1:2 and that k ¼ 20 $ 5 Wm% 1 K% 1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.
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Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5– 7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9– 11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society

Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†

Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡

Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 27 August 2009; revised manuscript received 9 March 2010; published 17 May 2010)

We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6 $ 1:2 and that k ¼ 20 $ 5 Wm% 1 K% 1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.% f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5– 7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9– 11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society

Stephen Stackhouse, Lars Stixrude, and Bijaya B. Karki

Thermal Conductivity of Periclase (MgO) from First Principles

Stephen Stackhouse*

Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan, 48109-1005, USA

Lars Stixrude†

Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom

Bijaya B. Karki‡

Department of Computer Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
and Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 27 August 2009; revised manuscript received 9 March 2010; published 17 May 2010)

We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6 $ 1:2 and that k ¼ 20 $ 5 Wm% 1 K% 1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.% f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5– 7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9– 11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory

PRL 104, 208501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
21 MAY 2010

0031-9007=10=104(20)=208501(4) 208501-1 ! 2010 The American Physical Society



insights	from	classical	mechanics
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insights	from	classical	mechanics

κ′ = κ

J′ = J+ Ṗ
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Any	two	energy	densi3es	that	differ	by	
the	divergence	of	a	(bounded)	vector	field	

are	physically	equivalent	

The	corresponding	energy	fluxes	differ	
by	a	total	3me	deriva3ve,	and	the	
heat	transport	coefficients	coincide
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the	DFT	energy	current
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Einstein	vs.	Green-Kubo
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Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5– 7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9– 11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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FIG. 1: Early (a) and late (b) decay of the heat flux autocor-
relation function (HF-ACF) of Silicon computed in a 64 atom
supercell with DFT-LDA at a temperature of 960 K (tra-
jectory length ⇠ 207 ps). The green line (G[Jv]) employs
the virial ab initio heat flux Jv(t) that incorporates all an-
harmonic e↵ects, whereas the blue and orange lines show
the HF-ACFs G[Jha

v ] and G[Jqp
v ] for approximate heat fluxes

computed for the exact same trajectory, but imposing the har-
monic approximation, i.e., using Jha

v (t) and Jqp
v (t) defined via

Eq. (9) and (10), respectively.

To validate our implementation of the proposed ap-
proach in the all-electron, numeric atomic orbital elec-
tronic structure code FHI-aims [24] we compare the heat
flux autocorrelation function (HF-ACF) computed from
first principles G[Jv] with the respective harmonic HF-
ACF G[Jha

v ] by evaluating the approximate virial heat
flux Jha

v (t) using the harmonic force constants �↵�
IJ =

@2U/@R↵
I @R

�
J . In the harmonic approximation, the viri-

als

�
�I

↵�
�ha�R

=
1

2V

X

J 6=I

�↵�
IJ (�R↵

I ��R↵
J )(R

�
I �R�

J) (9)

depend only on the positions and displacements from
equilibrium �RI = RI � Req

I [8], so that Jha
v (t) can

be evaluated using Eq. (6) and (9) along the exact same
first-principles trajectory used to compute Jv(t). As an
example, Fig. 1 shows such a comparison: G[Jv] and
G[Jha

v ] closely resemble each other and become equal for
large time-lags ⌧ , which demonstrates the validity of the
introduced first-principles definition of the heat flux and
its applicability in ab initio GK calculations.

However, Fig. 1 also neatly exemplifies the severe com-
putational challenges of such first-principle GK simu-
lations: Due to the limited time scales accessible in
aiMD runs, thermodynamic fluctuations dominate the
HF-ACF, which in turn prevents a reliable and nu-
merically stable assessment of the thermal conductivity
via Eq. (2). Furthermore, achieving convergence with re-
spect to system size is numerically even more challenging,
as classical MD studies based on FFs [15, 22] have shown,
so that ab initio GK simulations of solids appear to be
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FIG. 2: Thermal conductivity ↵↵ of Si at 300 and 1000 K
computed with the Terso↵-FF. Values extrapolated (left: in
time; right graph: in time and size) with our aiGK method
are denoted by circles, whereas the dashed lines show the
values resulting from a brute force evaluation of G[Jv] using
only Jv, i.e., without any extrapolation. 6912 q-points corre-
sponding to a 12 ⇥ 12 ⇥ 12 cubic supercell were used for the
size extrapolation in the right plot.

computationally prohibitively costly. However, as we will
show below, the computational e↵ort can be reduced by
several orders of magnitude by a correct extrapolation
technique employing a proper interpolation in reciprocal
space.
For this purpose, we first note that in the harmonic

approximation the HF-ACF can be equivalently [8] eval-
uated in reciprocal space using the heat flux definition in
the phonon picture [25]:

Jha�q
v (t) =

1

2V

X

sq

ns(q, t) !
2
s(q) vs(q) . (10)

Here, the sum goes over all reciprocal space points q
commensurate with the chosen supercell; !s(q) are the
eigenfrequencies and vs(q) are the group velocities of the
phonon mode s, which are obtained by Fourier trans-
forming and diagonalizing the mass-scaled force con-
stant matrix �↵�

IJ introduced in Eq. (9). The time-
dependent phonon amplitudes and thus the occupation
numbers ns(q, t) can be extracted from the MD trajec-
tory using the techniques described in Ref. [26]. Accord-
ingly, we can reformulate the HF-ACF as Ĝ = G[Jv] �
G[Jha�R

v ] +G[Jha�q
v ]. For fully time and size converged

calculations, Ĝ equals G[Jv]; for underconverged calcu-
lations (cf. Fig. 1), Ĝ exhibits significantly less thermo-
dynamic fluctuations, since the phases of the individual
modes do not enter Eq. (10).
Even more importantly, this formalism enables a

straightforward size-extrapolation by extending the sum
over (the finite number of commensurate) reciprocal
space points q in Eq. (10) to a denser grid. The re-
quired frequencies !s(q0) and group velocities vs(q0) can
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We herein present a first-principles formulation of the Green-Kubomethod that allows the accurate
assessment of the phonon thermal conductivity of solid semiconductors and insulators in equilibrium
ab initio molecular dynamics calculations. Using the virial for the nuclei, we propose a unique ab

initio definition of the heat flux. Accurate size- and time convergence are achieved within moderate
computational e↵ort by a robust, asymptotically exact extrapolation scheme. We demonstrate the
capabilities of the technique by investigating the thermal conductivity of extreme high and low heat
conducting materials, namely diamond Si and tetragonal ZrO2.

PACS numbers: 63.20.kg, 66.10.cd, 66.70.-f, 63.20.dk,

Macroscopic heat transport is an ubiquitous phe-
nomenon in condensed matter that plays a crucial role
in a multitude of applications, e.g., energy conversion,
catalysis, and turbine technology. Whenever a tempera-
ture gradient rT (R) is present, a heat flux J(R) spon-
taneously develops to move the system back toward ther-
modynamic equilibrium. The temperature- and pressure-
dependent thermal conductivity (T, p) of the material
describes the proportionality between heat flux and tem-
perature gradient (Fourier’s law)

J(R) = �(T, p) ·rT (R) . (1)

In insulators and semiconductors, the dominant contri-
bution to (T, p) stems from the vibrational motion of
the atoms (phonons) [1]. In spite of significant e↵orts, a
parameter-free, accurate theoretical approach that allows
to assess the thermal conductivity tensor both in the case
of weak and strong anharmonicity is still lacking: Studies
of model systems via classical molecular dynamics (MD)
based on force fields (FF) can unveil general rules and
concepts [2]. However, the needed accuracy for describ-
ing anharmonic e↵ects is often not correctly captured by
FFs [3] and trustworthy FFs are generally not available
for “real” materials used in scientific and industrial ap-
plications.

Naturally, first-principles electronic-structure theory
lends itself to overcome this deficiency by allowing a reli-
able computation of the inter-atomic interactions. How-
ever, severe limitations a↵ect the approaches that have
hitherto been employed in ab initio frameworks for study-
ing the thermal conductivity of solids: (a) Approaches
based on the Boltzmann Transport Equation [4–7] ac-
count for the leading, lowest order contributions to the
anharmonicity. Accordingly, these approaches are justi-
fied at low temperatures, at which they also correctly de-
scribe relevant nuclear quantum e↵ects. At elevated tem-
peratures and/or in the case of strong anharmonicity, this

approximation is however known to break down [8, 9].
(b) Non-Equilibrium approaches [10–12] require to im-
pose an artificial temperature gradient, which becomes
unreasonably large (� 109 K/m) in the limited system
sizes accessible in first-principles calculations. Especially
at high temperatures, this can lead to non-linear arti-
facts [13–15] that prevent the assessment of the linear
response regime described by Fourier’s law.

In this letter, we present an ab initio implementation
of the Green-Kubo (GK) method [16], which does not
su↵er from the aforementioned limitations [4, 14], since
(T, p) is determined from ab initio molecular dynamics
simulations (aiMD) in thermodynamic equilibrium that
account for anharmonicity to all orders. Hitherto, funda-
mental challenges have prevented an application of this
technique in a first-principles framework: Conceptually,
a definition of the heat flux associated with vibrations
in the solid is required; numerically, the necessary time-
and length scales need to be reached. First, we succinctly
describe how we overcome the conceptual hurdles, i.e.,
the unique ab initio definition of the microscopic heat
flux (and its fluctuations) for solids. Second, we dis-
cuss how this allows to overcome the numerical hurdles
by introducing a robust extrapolation scheme, so that
time- and size convergence is achieved within moderate
computational e↵ort. Third, we validate our formalism
and demonstrate its wide applicability by investigating
the thermal conductivity of diamond Si and tetragonal
ZrO2 (P42/nmc), two materials that feature especially
large/low thermal conductivities due to being particu-
larly harmonic/anharmonic.

For a given pressure p, volume V , and temperature T ,
the fluctuation-dissipation theorem, which is the only as-
sumption entering the GK formula, relates the cartesian
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summary

heat	currents	are	intrinsically	ill-defined	at	the	atomic	scale;	

energy	conserva3on	and	extensivity	make	heat-transport	coefficients	
independent	of	such	an	indeterminacy;	

this	gauge	invariance	of	thermal	transport	makes	it	possible	to	compute	
thermal	transport	coefficients	from	DFT	using	equilibrium	AIMD	and	the	
Green-Kubo	formalism;	

Einstein’s	rela3on	is	less	sensi3ve	to	finite-frequency	features	of	the	spectrum	
than	straight	Green-Kubo;	

The	sta3s3cal	theory	of	3me	series	can	be	leveraged	to	significantly	improve	
the	accuracy	of	the	transport	coefficients	es3mated	from	MD	(in	progress).
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Microscopic theory and quantum simulation of
atomic heat transport
Aris Marcolongo1, Paolo Umari2 and Stefano Baroni1*

Quantum simulation methods based on electronic-structure theory are deemed unfit to cope with atomic heat transport within
theGreen–Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the atomic
scale. We show that, although this di�culty would also a�ect classical simulations, thermal conductivity is indeed insensitive
to such ill-definedness by virtue of a kind of gauge invariance resulting from energy extensivity and conservation. On the basis
of these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat
transport to be simulated using ab initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing
its predictions to those of classical equilibrium and ab initio non-equilibrium (Müller–Plathe) simulations for a liquid-argon
model, and by applying it to heavy water at ambient conditions.

Understanding heat transport is key in many fields of
science and technology, such as materials and planetary
sciences, energy saving, heat dissipation and shielding, or

thermoelectric conversion, to name but a few. Heat transport in
insulators is determined by the dynamics of atoms, the electrons
following adiabatically in their ground state. Simulating atomic heat
transport usually relies on Boltzmann’s kinetic approach1, or on
molecular dynamics (MD), both in its equilibrium (Green–Kubo,
GK; refs 2–5) and non-equilibrium4–6 flavours. The Boltzmann
equation applies only to crystalline solids well below melting,
whereas classical MD (CMD) bears on those materials and
conditions that can be modelled by interatomic potentials.
Equilibrium ab initio (AI) MD (refs 7,8) is set to overcome these
limitations, but it is still surprisingly thought to be unfit to cope
with thermal transport ‘because in first-principles calculations it is
impossible to uniquely decompose the total energy into individual
contributions from each atom’ (excerpted from ref. 9). Such a
unique decomposition is not possible in classical mechanics either,
because the potential energy of a system of interacting atoms
can be partitioned into local contributions in an infinite number
of equivalent ways. The quantum-mechanical energy density is
also a�ected by a similar indeterminacy. Notwithstanding, the
expression for the heat conductivity derived from any sensible
energy partitioning or density should obviously be well defined, as
any measurable quantity must.

In this work we first demonstrate that the thermal conductivity
resulting from the GK relation is una�ected by the indeterminacy
of the microscopic energy density; we then introduce a form of
energy density, and a corresponding adiabatic energy flux, from
which heat-transport coe�cients can be computed within the
GK formalism, using density-functional theory10,11 (DFT). Our
approach is validated by comparing the results of equilibriumAIMD
to those of non-equilibrium (Müller–Plathe, MP; ref. 6) AIMD and
equilibrium CMD simulations for a liquid-argon model, for which
accurate interatomic potentials are derived by matching the forces
generated by them with quantum-mechanical forces computed
along the AIMD trajectories. The case of molecular fluids is finally
addressed, and illustrated in the case of water at ambient conditions.

Theory
According to the GK theory2,3, the atomic thermal conductivity of
an isotropic system is given by:

 =
1

3VkBT 2

Z
1

0
hJq(t) · Jq(0)idt (1)

where brackets h·i indicate canonical averages, kB is the Boltzmann
constant, V and T are the system volume and temperature, Jq(t)=R

(je(r, t)+(p+ hei)v(r, t))dr is themacroscopic heat flux, with je, v,
p, and hei being the energy-current density, local velocity field, and
equilibrium values of pressure and energy density, respectively12,13.
For further reference, we define as di�usive a flux that results in
a non-vanishing GK conductivity, according to equation (1). The
integral of the velocity field is non-di�usive in solids and can be
assumed to vanish in one-component fluids, because of momentum
conservation. In these cases, as well as inmolecular fluids, as we will
see, we can therefore assume that heat and energy fluxes coincide.

Energy is extensive: it can thus be expressed as the integral of
a density, which is defined up to the divergence of a bounded
vector field: two densities that di�er by such a divergence, e(r) and
e0(r)=e(r)+@ ·p(r), are indeed equivalent, in that their integrals
over any finite domain di�er by a boundary term, which is irrelevant
in the thermodynamic limit, and can thus be thought of as di�erent
gauges of the same scalar field. Energy is also conserved: therefore,
for any given gauge of its density, e, a corresponding current density,
je, can be defined so as to satisfy the continuity equation:

ė(r, t)+@ · je(r, t)=0 (2)

According to equation (2) the macroscopic fluxes in two di�erent
energy gauges di�er by a total time derivative, which is non-
di�usive: J0e(t)= Je(t)+ Ṗ(t), where P(t)=

R
p(r, t)dr. The equality

of the corresponding heat conductivities results from the following
Lemma. Let J1 and J2 be two macroscopic fluxes defined
for the same system, and J12 = J1 + J2 be their sum. The
corresponding GK conductivities, 1, 2 and 12 satisfy the relation:
|12 �1 �2|2p12.

1SISSA–Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy. 2Dipartimento di Fisica e Astronomia, Università di
Padova, Via Marzolo 8, I-35131 Padova, Italy. *e-mail: baroni@sissa.it

NATURE PHYSICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephysics 1

ARTICLES
PUBLISHED ONLINE: 19 OCTOBER 2015 | DOI: 10.1038/NPHYS3509

Microscopic theory and quantum simulation of
atomic heat transport
Aris Marcolongo1, Paolo Umari2 and Stefano Baroni1*

Quantum simulation methods based on electronic-structure theory are deemed unfit to cope with atomic heat transport within
theGreen–Kubo formalism, because quantum-mechanical energy densities and currents are inherently ill-defined at the atomic
scale. We show that, although this di�culty would also a�ect classical simulations, thermal conductivity is indeed insensitive
to such ill-definedness by virtue of a kind of gauge invariance resulting from energy extensivity and conservation. On the basis
of these findings, we derive an expression for the adiabatic energy flux from density-functional theory, which allows heat
transport to be simulated using ab initio equilibrium molecular dynamics. Our methodology is demonstrated by comparing
its predictions to those of classical equilibrium and ab initio non-equilibrium (Müller–Plathe) simulations for a liquid-argon
model, and by applying it to heavy water at ambient conditions.

Understanding heat transport is key in many fields of
science and technology, such as materials and planetary
sciences, energy saving, heat dissipation and shielding, or

thermoelectric conversion, to name but a few. Heat transport in
insulators is determined by the dynamics of atoms, the electrons
following adiabatically in their ground state. Simulating atomic heat
transport usually relies on Boltzmann’s kinetic approach1, or on
molecular dynamics (MD), both in its equilibrium (Green–Kubo,
GK; refs 2–5) and non-equilibrium4–6 flavours. The Boltzmann
equation applies only to crystalline solids well below melting,
whereas classical MD (CMD) bears on those materials and
conditions that can be modelled by interatomic potentials.
Equilibrium ab initio (AI) MD (refs 7,8) is set to overcome these
limitations, but it is still surprisingly thought to be unfit to cope
with thermal transport ‘because in first-principles calculations it is
impossible to uniquely decompose the total energy into individual
contributions from each atom’ (excerpted from ref. 9). Such a
unique decomposition is not possible in classical mechanics either,
because the potential energy of a system of interacting atoms
can be partitioned into local contributions in an infinite number
of equivalent ways. The quantum-mechanical energy density is
also a�ected by a similar indeterminacy. Notwithstanding, the
expression for the heat conductivity derived from any sensible
energy partitioning or density should obviously be well defined, as
any measurable quantity must.

In this work we first demonstrate that the thermal conductivity
resulting from the GK relation is una�ected by the indeterminacy
of the microscopic energy density; we then introduce a form of
energy density, and a corresponding adiabatic energy flux, from
which heat-transport coe�cients can be computed within the
GK formalism, using density-functional theory10,11 (DFT). Our
approach is validated by comparing the results of equilibriumAIMD
to those of non-equilibrium (Müller–Plathe, MP; ref. 6) AIMD and
equilibrium CMD simulations for a liquid-argon model, for which
accurate interatomic potentials are derived by matching the forces
generated by them with quantum-mechanical forces computed
along the AIMD trajectories. The case of molecular fluids is finally
addressed, and illustrated in the case of water at ambient conditions.

Theory
According to the GK theory2,3, the atomic thermal conductivity of
an isotropic system is given by:

 =
1

3VkBT 2

Z
1

0
hJq(t) · Jq(0)idt (1)

where brackets h·i indicate canonical averages, kB is the Boltzmann
constant, V and T are the system volume and temperature, Jq(t)=R

(je(r, t)+(p+ hei)v(r, t))dr is themacroscopic heat flux, with je, v,
p, and hei being the energy-current density, local velocity field, and
equilibrium values of pressure and energy density, respectively12,13.
For further reference, we define as di�usive a flux that results in
a non-vanishing GK conductivity, according to equation (1). The
integral of the velocity field is non-di�usive in solids and can be
assumed to vanish in one-component fluids, because of momentum
conservation. In these cases, as well as inmolecular fluids, as we will
see, we can therefore assume that heat and energy fluxes coincide.

Energy is extensive: it can thus be expressed as the integral of
a density, which is defined up to the divergence of a bounded
vector field: two densities that di�er by such a divergence, e(r) and
e0(r)=e(r)+@ ·p(r), are indeed equivalent, in that their integrals
over any finite domain di�er by a boundary term, which is irrelevant
in the thermodynamic limit, and can thus be thought of as di�erent
gauges of the same scalar field. Energy is also conserved: therefore,
for any given gauge of its density, e, a corresponding current density,
je, can be defined so as to satisfy the continuity equation:

ė(r, t)+@ · je(r, t)=0 (2)

According to equation (2) the macroscopic fluxes in two di�erent
energy gauges di�er by a total time derivative, which is non-
di�usive: J0e(t)= Je(t)+ Ṗ(t), where P(t)=

R
p(r, t)dr. The equality

of the corresponding heat conductivities results from the following
Lemma. Let J1 and J2 be two macroscopic fluxes defined
for the same system, and J12 = J1 + J2 be their sum. The
corresponding GK conductivities, 1, 2 and 12 satisfy the relation:
|12 �1 �2|2p12.
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Abstract Thermal transport coefficients are independent of the specific microscopic
expression for the energy density and current from which they can be derived through
the Green–Kubo formula. We discuss this independence in terms of a kind of gauge
invariance resulting from energy conservation and extensivity, and demonstrate it
numerically for aLennard-Jones fluid,where different forms of themicroscopic energy
density lead to different time correlation functions for the heat flux, all of them,
however, resulting in the same value for the thermal conductivity.
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It has long been thought that the inherent indeterminacy of any quantum mechani-
cal expression for the energy density would hinder the evaluation of thermal transport
coefficients from equilibrium ab initio molecular dynamics (AIMD), using the Green–
Kubo (GK) formalism [1–4]. In classical molecular dynamics (CMD) this goal is
achieved by decomposing the total energy of an extended system into localized atomic
contributions and by deriving from this decomposition an explicit (and allegedly
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