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what	heat	transport	is	all	about
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why	should	we	care?
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why	heat	transport
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hydrodynamic	fluctuaFons
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We combine first-principles calculations of forces with the direct nonequilibrium molecular dynamics

method to determine the lattice thermal conductivity k of periclase (MgO) up to conditions representative

of the Earth’s core-mantle boundary (136 GPa, 4100 K). We predict the logarithmic density derivative

a ¼ ð@ lnk=@ ln!ÞT ¼ 4:6 $ 1:2 and that k ¼ 20 $ 5 Wm% 1 K% 1 at the core-mantle boundary, while also

finding good agreement with extant experimental data at much lower pressures.

DOI: 10.1103/PhysRevLett.104.208501 PACS numbers: 91.60.Tn, 66.70.% f, 83.10.Rs

Thermal conductivity is central to our understanding of
planetary evolution as it sets the time scale of cooling.
Thus the thermal evolution of Earth’s core and the history
of the geomagnetic field are controlled by the conduction
of heat into the overlying mantle [1]. The style and effi-
ciency of mantle convection are also strongly influenced by
depth variations in the thermal conductivity [2]. Here we
focus on periclase (MgO), thought to be a major constitu-
ent of Earth’s deep mantle [3].

Despite the importance of this basic physical property,
the thermal conductivity of dielectrics remains unknown at
pressures typical of planetary interiors. Experimental mea-
surements are challenging and have not been attempted
above 40 GPa [4]. The predictions of Debye theory are
strongly model dependent with estimated values of the
isothermal logarithmic density derivative a ranging from
4 to 8 [5– 7], leading to uncertainties in the extrapolated
value of the thermal conductivity at the base of the mantle
of a factor of 5.

MgO periclase, as a wide-gap insulator with a simple
structure (B1) and no phase transformations to well above
400 GPa [8], is an ideal system to study the pressure
dependence of the lattice thermal conductivity. Although
its thermal conductivity is unknown at the conditions of
Earth’s core-mantle boundary, numerous experimental and
theoretical studies have determined thermodynamic prop-
erties under such conditions. These show that calculations
based on density functional theory in the local density
approximation predict properties, such as its equation of
state, heat capacity, and elasticity, in good agreement with
experimental values [9– 11].

We predict the thermal conductivity of periclase by
combining density functional theory with the so-called
‘‘direct’’ nonequilibrium molecular dynamics method
[12,13]. This method has previously been used in combi-

nation with classical potentials, but not before in combi-
nation with ab initio molecular dynamics in which the
forces are computed quantum mechanically from density
functional theory. Classical potentials are unlikely to give
accurate predictions at the extreme pressure-temperature
conditions of interest here: lattice thermal conductivity is
limited by phonon-phonon scattering, which may be very
sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it is impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
In the direct method, the thermal conductivity is com-

puted as the ratio of an imposed heat flux to the resulting
temperature gradient. The heat flux JðtÞ is imposed by
dividing the simulation cell into notional sections of equal
width, and exchanging kinetic energy between ‘‘hot’’ and
‘‘cold’’ sections. The temperature gradient dT=dx is com-
puted from the mean temperature of the intervening sec-
tions. Once steady state is reached, the lattice thermal
conductivity, k, is calculated from Fourier’s law:

k ¼ % hJðtÞi
hdT=dxi ; (1)

where the angle brackets indicate time averages. The pre-
cision is improved by averaging temperatures in the two
symmetrically equivalent sections in the periodic cell.
Because the exchange of kinetic energy renders dynamics
in the hot and cold sections non-Newtonian, only the linear
portion of the temperature gradient is considered in the
calculation of the conductivity.
In order to account for the effects of finite system size we

follow the method of [15]. The thermal conductivity is
related to the phonon mean-free path via kinetic theory
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I	can	safely	say	
that	nobody	

understands	quantum	
mechanics
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insights	from	classical	mechanics
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insights	from	classical	mechanics
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J′ = J+ Ṗ



E[�1 � �2] = E[�1] + E[�2] + W [��]

?
= E [�1] + E [�2]

E[�1 � �2] = E[�1] + E[�2] + q[��]

� E [�1] + E [�2]

gauge	invariance
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e′(r) = e(r)−∇ · p(r)

Any	two	energy	densiFes	that	differ	by	
the	divergence	of	a	(bounded)	vector	

field	are	physically	equivalent.	

The	corresponding	energy	fluxes	differ	
by	a	total	Fme	derivaFve,	and	the	
heat	transport	coefficients	coincide.
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ĤKS�v(r)

�

eH(r) = �1

2
�(r)vH(r)

eXC(r) = (�XC(r) � vXC(r)) �(r)

the	DFT	energy	density

eDFT (r) = e0(r) + eKS(r) + eH(r) + eXC(r)

e0(r) =
�

I

�(r � RI)

�
1

2
MIV

2
I + wI

�

eKS(r) = Re
�

v

��
v(r)

�
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the	DFT	energy	current
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rėDFT (r, t)dr

= JKS + JH + J�0 + J0 + JXC



JKS =
�

v

�
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• |�̇v� and ĤKS |�̇v� orthogonal to the
occupied-state manifold
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rėDFT (r, t)dr

= JKS + JH + J�0 + J0 + JXC



a	benchmark
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liquid	(heavy)	water
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Einstein	vs.	Green-Kubo

�GK(T) =

� T

0
�v(t)v(0)�dt

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�

�T(t)

0 T0

1
�GK(T) =

� T

0
�v(t)v(0)�dt

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�



�T(t) = 1 � t
T

0 T0

1

�T(t)

Einstein	vs.	Green-Kubo

�GK(T) =

� T

0
�v(t)v(0)�dt

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�

�E(T) =
1
2T

�����
� T

0
v(t)dt

����
2�

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�

�T(t)

0 T0

1

�E(T) =
1
2T

�����
� T

0
v(t)dt

����
2�

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�



Einstein	vs.	Green-Kubo

�GK(T) =

� T

0
�v(t)v(0)�dt

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�

�E(T) =
1
2T

�����
� T

0
v(t)dt

����
2�

=

� �

0
�v(t)v(0)��T(t)dt

=

� �

��
C̃v(�)�̃T(�)

d�
2�

0 T0

1

�T(t) = 1 � t
T

�T(t)

0 2 p 4 p 6 p

00

1
�̃T(�)

�̃T(�)



summary

heat	currents	are	intrinsically	ill-defined	at	the	atomic	scale;	

energy	conservaFon	and	extensivity	make	heat-transport	
coefficients	independent	of	such	an	indeterminacy;	

this	gauge	invariance	of	thermal	transport	makes	it	possible	
to	compute	thermal	transport	coefficients	from	DFT	using	
equilibrium	AIMD	and	the	Green-Kubo	formalism;	

Einstein’s	relaFon	is	less	sensiFve	to	finite-frequency	
features	of	the	spectrum	than	straight	Green-Kubo;	

The	staFsFcal	theory	of	Fme	series	can	be	leveraged	to	
significantly	improve	the	accuracy	of	the	transport	
coefficients	esFmated	from	MD	(in	progress).
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