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global market of 1.45 billion USD in 2009 /

p fotal production of 50,000 tons / year

natural dyes market grown by 35% in the 2005-2009 quinquennium




the food Iindustry is subject

O adln

iIncreasing global pressure f

rOIMm

customers and lawmakers who
demand a shift towards ingredients
and additives that are perceived as
more natural and, “theretore”, healthier




In 2007 Research funded by the UK FSA was
published, suggesting that the consumption of
certain mixes of artificial food colours and
preservatives could be linked to attention
deficit and increased hyperactivity in some

children.

the Southampton six

Box A: The Seven
Southampton Additives

Colours:

Eg Tartrazine (E102)

Eg Quinoline yellow (E104)
Eg Sunset yellow (E110)
x Carmoisine (E122)

x Ponceau 4R (E124)

xAIIura red (E129)

Preservative:

x Sodium benzoate (E211)

Since 2010 an EU-wide compulsory
warning must be put on any food
and drink product that contains any
of these six colours:

‘May have an adverse
effect on activity and
attention in children”
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very little is known of the
molecular mechanisms that
determine the chromatic
properties and the stability of
anthocyanins and the relation
between structure and color
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now to predict the color optical
properties of materials®




The fundamental laws necessary for the
mathematical treatment of a large part of physics
and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of
these laws leads to equations that are too
complex to be solved.
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optical spectra from TDDF(p)T

n(r,t) = Z Py (T, t)|2

0, (1, 1)
"ot

= (—A + UKS(I'a t))gbv (I’, t)
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E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
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TDDF(p)T: Lanczos’ recursion method




optical spectra from TDDF(p)T

(w—L)f (@) = B’

a(w) = (d, (w—L)"" - [z.p°])

TDDF(p)T: Lanczos’ recursion method

L Casida’s equations: iterative
/0 B wp diagonalization of large
matrices (DIIS or Davidson)

D. Rocca et al. JCP 128, 154105 (2008)
X. Ge et al. Comp. Phys. Commun. 185, 2080 (2014)




chlorophyll a

CssH72MgN4O




chlorophyll a

tddft (gga)

Wf\r expt

400

600 700
A [nm]




chlorophyll a

tddft (gga)
expt

400 500 600 700
A [nm]




from chemistry to color




from chemistry to color




from chemistry to color




from chemistry to color

-




from chemistry to color




the dance of colors

OH

absorption

450 600 750
wavelength [nm]




20 ps

the dance of colors

i O N [
/\{TJ \\.‘\‘\,-"’ \/ ; V'
\4\ )'5\/ l\v/\\.‘/
2 “11

180 14 1.5

OH

absorption

450 600 750
wavelength [nm]



20 ps

the dance of colors

i O N [
/\{TJ \\.‘\‘\,-"’ \/ ; V'
\4\ )'5\/ l\v/\\.‘/
2 “11

180 14 1.5

OH

absorption

450 600 750
wavelength [nm]



the dance of colors
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conformational analysis

1492 27 JUNE 2014 « VOL 344 ISSUE 6191 sciencemag.org SCIENCE

MACHINE LEARNING

Clustering by fast search and find of
density peaks

Alex Rodriguez and Alessandro Laio
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1. estimate conformational populations from long (> 1us) classical
MD simulations in explicit water solvent;

2. for each of the most populated molecular conformers thus
identified, run a 10-20 ps Car-Parrinello quantum MD simulation;

3. for each CPMD trajectory thus generated, compute TDDFpT
spectra on the fly = 1ps apart, treating the solvent as a dielectric
continuum:

L5,(t) = wn(t)p,(t)

THE JOURNAL OF CHEMICAL PHYSICS 142, 034111 (2015)

Self-consistent continuum solvation for optical absorption of complex
molecular systems in solution

lurii Timrov,! Oliviero Andreussi,? Alessandro Biancardi,' Nicola Marzari,® and Stefano Baroni'-32




the multi-scale protocol

4. average the spectra within each conformer and over different
conformers:

Sc(w) — <Z fn(t)ﬁ(w — wn(t))>




the multi-scale protocol

estimate conformational populations from long (> 1us) classical
MD simulations in explicit water solvent;

2. for each of the most populated molecular conformers thus
identified, run a 10-20 ps Car-Parrinello quantum MD simulation;

3. for each CPMD trajectory thus generated, compute TDDFpT
spectra on the fly = 1ps apart, treating the solvent as a dielectric
continuum:

4. average the spectra within each conformer and over different
conformers:

‘ I ‘ Journal of Chemical Theory and Computation
pubs.acs.org/JCTC

Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Turii Timrov,”"! Marco Micciarelli,” Marta Rosa,’ Arrigo Calzolari,” and Stefano Baroni*"

ACS Publications © 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417
g J. Chem. Theory Comput. 2016, 12, 4423—4429




the multi-scale protocol

QAUANTUMESPRESSO

‘ I ‘ Journal of Chemical Theory and Computation
pubs.acs.org/JCTC

Multimodel Approach to the Optical Properties of Molecular Dyes in
Solution
Turii Timrov,H[ Marco Micciarelli,T Marta Rosa,T Arrigo Calzolalri,]IE and Stefano Baroni*'

ACS Publications © 2016 American Chemical Society 4423 DOI: 10.1021/acs.jctc.6b00417
g J. Chem. Theory Comput. 2016, 12, 4423—4429
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comparing predictions with experiments

M) Check for updates Unraveling the molecular mechanisms of color
expression in anthocyaninsfy

Cite this: Phys. Chem. Chem. Phys.,
2019, 21, 8757 Mariami Rusishvili, 2 °° Luca Grisanti, i #° Sara Laporte, (2 Marco Micciarelli, 2 §°

Marta Rosa, (2) §° Rebecca J. Robbins,® Tom Collins,” Alessandra Magistrato (2 €
and Stefano Baroni (2 *°¢
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conclusions

the color optical properties of anthocyanins depend
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the protomeric state of the negative species also affects the
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molecular simulations have been instrumental in the
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applied research can be fun and instructive for theoretical
physicists as well ...
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