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same conductivity as is found with the fully time-dependent charge
tensors, but only if they have values of Zn=1 and Zo=-2."
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the Einstein-Helfand relations

Einstein (1905)
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Einstein (1905)

Helfand (1960)

(Ix(t) = x(0)I%)

<

/OtJ(t’)dt’

<

/Ot v(t)dt' 2>




gauge transformation of conserved currents

E[C2 U] = E[Q] + E[]




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]

extensivity EC] :/ e(r)dr
Q2




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]

extensivity EC] :/ e(r)dr
Q2

conservation é(r,t) = -V -j(r, t)




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]

extensivity EC] :/ e(r)dr
Q2

conservation é(r,t) = -V -j(r, t)

gauge invariance  E'[Q] = £[Q] + O[0Q)]




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]

extensivity EC] :/ e(r)dr
Q2

conservation é(r,t) = -V -j(r, t)

gauge invariance  E'[Q] = £[Q] + O[0Q)]
e'(r) = e(r) — V- p(r)




gauge transformation of conserved currents

E[€2; U] = E[Qq] + E[C2] + W[O]
L[] + €[]

extensivity EC] :/ e(r)dr
Q2

conservation é(r,t) = -V -j(r, t)

gauge invariance  E'[Q] = £[Q] + O[0Q)]
e'(r) = e(r) — V- p(r)
i(r.t)=i(r,t) +p(r, t)




gauge transformation of conserved currents
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extensivity EC] :/ e(r)dr
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gauge invariance of transport coefficients

any two conserved densities that differ by
the divergence of a (bounded) vector field
are physically equivalent

the corresponding conserved fluxes differ
by a total time derivative, and the transport
coefficients coincide
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choose any local representation of the energy that

iIntegrates to the correct value and whose correlations

decay at large distance — the conductivity computed
. from the resulting current will be independent of the

representation.
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gauge invariance of charge transport
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gauge invariance of charge transport

— N\
AR im = (Juasl?)
/ AV 7 e ot VKA
t
y KA :/ J(t")dt’
0
Aﬁ = Hap + Mo

Var[MAB} — Var[,U'AA’] T vaﬁr A’B! +W

bounded

1

o o fim op (kaal)




Thouless’ quantisation of particle transport
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Thouless’ quantisation of particle transport
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a numerical experiment on molten KCI

a topologically non-trivial minimum-energy path
connecting two identical configurations of a ionic fluid
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a numerical experiment on molten KCI
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a numerical experiment on molten KCI
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transports a net charge equal to +2
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atomic oxidation states
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currents from atomic oxidation numbers
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conclusions

@ conserved currents are intrinsically ill-defined at the atomic scale;

@ conservation and extensivity make transport coefficients
independent of the specitic microscopic representation of the
conserved densities and currents;

@ this gauge invariance of transport coefficients makes it possible
to compute thermal transport coefficients from DFT using
equilibrium AIMD and the Green-Kubo formalism;

@ topological quantization of charge transport allows one to give a
rigorous definition of the atomic oxidation states;

@ (gauge invariance and topological quantization of charge
transport make the electric conductivity of ionic fluids depend on
the formal oxidation numbers of the ionic species, via the Green-
Kubo formula.
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