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correlation functions from molecular dynamics
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sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because 1n first-principles calculations it 1s impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
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gauge invariance of transport coefficients

any two conserved densities that differ by the divergence of a
(bounded) vector field are physically equivalent

the corresponding conserved fluxes differ by a total time
derivative, and the transport coefficients coincide
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CNOOSsE local representation of the energy that
integrates to the correct value and whose
correlations decay at large distance — the
conductivity computed from the resulting current
will be of the chosen representation.
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cepstral analysis provides a rigorous and practical means of exploiting the information on
the spectral properties of the current being sampled, to evaluate transport coefficients and
their statistical uncertainties with MD simulations of the order of a few hundred ps.
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