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serious answers to three silly questions
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& how come the electric conductivity of non-ionic fluids vanishes,
when the current fluctuations that determine it, do not?




serious answers to three silly questions

& how come the conductivity of (stoichiometric) electrolytes is
correctly predicted when real-valued, time-dependent, tensor
Born eftective charges are replaced with integer-valued, time-
independent, scalar atomic oxidation states”
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& what are oxidation states, in the first place”




linear-response theory of transport

J = A\F




linear-response theory of transport

J = A\F

Jo=) aVi
/
Fo=-V¢

A = electric conductivity




linear-response theory of transport

J = A\F

1
Jo=) qV Je ZZG/V/JFEZ(V/ - Fi;)(RI — R))
/ /

|
Fo=—V Fe=—VT

A\ = electric conductivity A = heat conductivity




linear-response theory of transport

J = A\F

Z e = = Oe/
, AR,
1
Jo=) aV Je=) @V + 5 > (Vi-ED)(R - R))
/ / I
Fo = —V¢ Fe=—VT

A\ = electric conductivity A = heat conductivity




linear-response theory of transport

J = A\F

Y=k o
/ OR
1
Jo = E/: n% Je = z/: eV + 5 ;(V/ -F1J)(R — R,)
Fo=—-V¢ Fe = —-VIT
A = electric conductivity A = heat conductivity

A\ X /OOOU(t)J(O))dt Green-Kubo




Green-Kubo

linear-response theory of transport

J=AF \ 0(3(0)
Ao~
A o /O (J()J(0))dt
()T [ oo
b~




Green-Kubo

—Instein-Helfand

linear-response theory of transport

J = A\F

1

A X lIm —var
t—oo 2t

\ J(£))(0))




lonic transport




J

J =0E




H

Q| =

]
N
<










the conundrum

0.2

molecular H>0O

0.0




the conundrum

)T = 777

molecular H>0O

0.2

0.0

time (ps)




the conundrum

week ending

PRL 107, 185901 (2011) PHYSICAL REVIEW LETTERS 28 OCTOBER 2011

Dynamical Screening and Ionic Conductivity in Water from Ab Initio Simulations

Martin French,! Sebastien Hamel,” and Ronald Redmer!
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week ending
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“Interestingly, the use of predefined constant charges can yield
the same conductivity as is found with the fully time-dependent
charge tensors, but only if they have values of Zn=1 and Zo=-2."
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“Interestingly, the use of predefined constant charges can yield
the same conductivity as is found with the fully time-dependent
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atomic
“‘oxidation states”
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and what are oxidation states, in the first place?
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D.J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 2083 (1983)



. they are topological invariants!
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* All loops can be shrunk to a point without
closing the gap (strong adiabaticity);

* Any two like atoms can be swapped
without closing the gap
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* All loops can be shrunk to a point without

closing the gap (strong adiabaticity);
diaB — QS(i)éa,B

* Any two like atoms can be swapped atomic oxidation state
without closing the gap




a numerical experiment on molten KCI/

a topologically non-trivial minimum-energy path
connecting two identical configurations of a ionic melt
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a numerical experiment on molten KCI/
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a numerical experiment on molten KCI/

transported charge

the charges transported by K and Cl
around z cancel exactly




a numerical experiment on molten KCI/
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the charges transported by K and Cl
around z cancel exactly




gauge invariance of charge transport
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gauge invariance of charge transport
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gauge invariance of charge transport

S

1

’/
o> D eup =
”
“d

o o lim z—tvar[p,AA,(t)]

s
——”

H(B) # H(A)
H(A") A

A
H(A)

D.J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 2083 (1983)



currents from atomic oxidation numbers
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non-stoichiometric melts
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non-stoichiometric melts

Path
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breach of strong adiabaticity
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breach of strong adiabaticity
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not trivial weakly adiabatic conauctivity
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conclusions

@ topological quantisation of adiabatic charge transport allows for a rigorous definition
of the atomic oxidation states;

@ Qgauge invariance and quantisation of charge transport make the electric conductivity
of stoichiometry electrolytes depend on the formal oxidation numbers of the ionic
species, via the Green-Kubo formula;
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topological quantisation of adiabatic charge transport allows for a rigorous definition
of the atomic oxidation states;
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