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serious answers to four silly questions
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& how come the electric conductivity of molecular non-ionic fluids
vanishes, when the current fluctuations that determine it, do not”




serious answers to four silly questions

& how come the conductivity of (stoichiometric) electrolytes is
correctly predicted when real-valued, time-dependent, tensor
Born effective charges are replaced with integer-valued, time-
independent, scalar atomic oxidation states”
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& what are oxidation states, in the first place”




serious answers to four silly questions

& to start with: how come the heat conductivity is well defined,
when the energy current that determines it, is not”
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linear-response theory of transport
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a prequel:
neat transport




classical and quantum adiabatic heat transport
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sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it 1s impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.
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Nnow come”?

how Is It that a formally exact theory of
the electronic ground state cannot predict
all measurable adiabatic properties?
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energy Is extensive
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thermodynamic invariance E'[Q] = E[Q] + O[oQ]
gauge Invariance e’(r) — e(r) — V- p(r)
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gauge invariance of transport coefficients

energy Is extensive

E[C21 US| = E[Q ] + E[C] + W[OS
L £ + E[Q]

£ :/Qe(r)dr

thermodynamic invariance E'[Q] = E[Q] + O[oQ]

gauge Invariance e’(r) — e(r) — V- p(r)
i'(r.t) =i(r. t) +p(r, t)
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gauge invariance of transport coefficients

energy Is extensive

thermodynamic invariance

gauge invariance

E[C21 US| = E[Q ] + E[C] + W[OS
L £ + E[Q]
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Q
E'[Q] = E[Q] + O[oQ]

e'(r) = e(r) = V- p(r)

J(t) =J(t) + P(t)
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gauge invariance of transport coefficients
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gauge invariance of transport coefficients
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gauge invariance of transport coefficients

any two conserved densities that differ by the divergence of a
(bounded) vector field are physically equivalent

the corresponding conserved fluxes differ by a total time
derivative, and the transport coefficients coincide
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sensitive to the form of the potential. The widely used
Green-Kubo relation [14] does not serve our purposes,
because in first-principles calculations it 1s impossible to
uniquely decompose the total energy into individual con-
tributions from each atom.

CNOOSsE local representation of the energy that
integrates to the correct value and whose
correlations decay at large distance — the
conductivity computed from the resulting current
will be of the chosen representation.
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lonic transport




J

J =0E




H

Q| =

]
N
<










the conundrum
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“Interestingly, the use of predefined constant charges can yield
the same conductivity as is found with the fully time-dependent
charge tensors, but only if they have values of /=1 and Zo=-2."
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and what are oxidation states, in the first place?



quantisation of adiabatic particle transport
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quantisation of adiabatic particle transport
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quantisation of adiabatic particle transport

classical PBC guantum time periodicity
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quantisation of adiabatic particle transport

C\assmal PBC guantum time periodicity
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D.J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 2083 (1983)
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* All loops can be shrunk to a point without
closing the gap (strong adiabaticity);

* Any two like atoms can be swapped
without closing the gap




what are oxidation states, in the first place?

Ra [C] — %,U'a [C]

— Qa(rIlX, My, Nz, - nNz)
Qoz [Cl O CQ] — Qa [Cl] + Qa[CQ]

QOL(”].X! n1y1 n].Zr T n/\/Z) — Z qIOL,BnI,B
I8

* All loops can be shrunk to a point without

closing the gap (strong adiabaticity);
Jiap = q5(i)0ap

* Any two like atoms can be swapped atomic oxidation state
without closing the gap

... they are topological invariants!
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a numerical experiment on molten KCI/
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a numerical experiment on molten KCI/

transported charge

the charges transported by K and Cl
around z cancel exactly




a numerical experiment on molten KCI/
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the charges transported by K and Cl
around z cancel exactly
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currents from atomic oxidation numbers
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non-stoichiometric melts

Path
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breach of strong adiabaticity
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breach of strong adiabaticity
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not trivial weakly adiabatic conauctivity

Ap = e/tJ(t’)dt’
0
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conclusions

@ heat conductivity is a well defined, measurable property, iwhile the energy tlux from
which it can be computed from the Green-Kubo formula is not, because of a general
gauge invariance principle stemming from energy additivity and conservation;

@ topological quantisation of adiabatic charge transport allows for a rigorous definition
of the atomic oxidation states;




conclusions

heat conductivity is a well defined, measurable property, iwhil

e the energy flux from

which it can be computed from the Green-Kubo formula is not, because of a general

gauge invariance principle stemming from energy additivity a

Nnd conservation;

topological quantisation of adiabatic charge transport allows for a rigorous definition

of the atomic oxidation states;

gauge invariance and quantisation of charge transport make

he electric conductivity

of stoichiometry electrolytes depend on the formal oxidation r
species, via the Green-Kubo formula;

umbers of the ionic



conclusions

heat conductivity is a well defined, measurable property, iwhile the energy flux from
which it can be computed from the Green-Kubo formula is not, because of a general
gauge invariance principle stemming from energy additivity and conservation;

topological quantisation of adiabatic charge transport allows for a rigorous definition

of the atomic oxidation states;

gauge invariance and guantisation of charge transport make

he electric conductivity

of stoichiometry electrolytes depend on the formal oxidation r
species, via the Green-Kubo formula;

umbers of the ionic

breach of strong adiabaticity in non-stoichiometric electrolytes triggers an anomalous
transport regime, intermediate between metallic and ionic, whereby charge may be

transported without any concurrent mass displacement.
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