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a conundrum in transport theory

week ending
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a conundrum in transport theory

‘Interestingly, the use of predefined constant charges can yield the
same conductivity as is found with the fully time-dependent charge
tensors, but only if they have values of Zrn=1 and Zo=-2."
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.. but what are
oxlgation states,
N the first place”




Gold Book

the oxidation state of an atom is the charge of this atom
after ionic approximation of its heteronuclear bonds

https://doi.org/10.1351/goldbook.004365

© 2005-2024 International Union of Pure and Applied Chemistry



quantisation of adiabatic particle transport

classical PBC
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quantisation of adiabatic particle transport

classical PBC
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quantisation of adiabatic particle transport

classical PBC guantum time periodicity

W

V(x, t+ Tt) = V(x, t)

D.J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 2083 (1983)
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[O, L]3N PBC , 3N
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what are oxydation states, in the first place?

No=1

Qa(AA/) — Qa(AA/) — Qa[nl = 1,np = 1]
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* All loops can be shrunk to a point without
closing the gap (strong adiabaticity);

* Any two like atoms can be swapped
without closing the gap
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Ra [C] — %,u'oc [C]
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* All loops can be shrunk to a point without

closing the gap (strong adiabaticity);
Jiag = 45(1)0ag

* Any two like atoms can be swapped atomic oxidation state
without closing the gap

... they are topological invariants!




a numerical experiment on molten KCI/

a topologically non-trivial minimum-energy path
connecting two identical configurations of a ionic melt
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a numerical experiment on molten KCI/
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a numerical experiment on molten KCI/

transported charge

the charges transported by K and Cl
around z cancel exactly
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transported charge

the charges transported by K and Cl
around z cancel exactly




gauge invariance of charge transport
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gauge invariance of charge transport
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gauge invariance of charge transport
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currents from atomic oxidation numbers
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non-stoichiometric melts
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non-trivial particle transport
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breach of strong adiabaticity
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breach of strong adiabaticity




strongly adiabatic transport weakly adiabatic transport
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not trivial weakly adiabatic conauctivity

Ap = e/tJ(t’)dt’
0
Ja(t) =) Zig(t)vig(t)
10
Jo (1) = Z Gs(iyVia(t) — 2P (1)

Cross term




conclusions

@ topological quantisation of adiabatic charge transport allows for
a rigorous definition of the atomic oxidation states;

@ gauge invariance and gquantisation of charge transport make
the electric conductivity of stoichiometry electrolytes depend on
the formal oxidation numbers of the ionic species, via the
Green-Kubo formula;

@ breach of strong adiabaticity in non-stoichiometric electrolytes
triggers an anomalous transport regime, intermediate between

metallic and ionic, whereby charge may be transported without
any concurrent mass displacement.
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