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lonic transport

nothing flows as simply as it appears
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a conundrum in transport theory
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a conundrum in transport theory

‘Interestingly, the use of predefined constant charges can yield the
same condaductivity as is found with the fully time-dependent charge
tensors, but only if they have values of Zrn=1 and Zo=-2."
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... they are topological invariants!




a numerical experiment on molten KCI/

a topologically non-trivial minimum-energy path
connecting two identical configurations of a ionic melt
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transported charge

the charges transported by K and Cl
around z cancel exactly




gauge invariance of charge transport
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currents from atomic oxidation numbers
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non-trivial particle transport
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breach of strong adiabaticity
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breach of strong adiabaticity
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not trivial weakly adiabatic conauctivity
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effects of self-interactions

=== PBE
=== PBEO

0 3 6 9

Y2 C)
. e 1
e " o e ®
'
®

VOLUME 59, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AUGUST 1987 30

Localization, Hopping, and Diffusion of Electrons in Molten Salts PBE PBEO

A. Selloni Total Total

International School for Advanced Studies, Trieste, Italy

=== Bipolaron === Bipolaron

P. Carnevali
IBM European Center for Scientific and Engineering Computing, Roma, Italy

Ions | Ions

()
-

and

R. Car and M. Parrinello

International School for Advanced Studies, Trieste, Italy
(Received 24 April 1986; revised manuscript received 3 April 1987)

[
-

Mean square displaced dipole
(|Apl?)/(6kgTL) (Scm™'ps)

0 1 0 1
Time 7 (ps) Time 7 (ps)




conclusions




Topo
defin

ogica

tion of

O O

Ual

[OMm

conclusions

tization of adiabatic charge transport provides a rigorous

IC oxidation states.:



conclusions

@ lopological quantization of adiabatic charge transport provides a rigorous
definition of atomic oxidation states.;
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electric conductivity of stoichiometric electrolytes depends on the formal

oxidation numbers of the ionic species, as expressed through the Green-
Kubo relation;
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@ In non-stoichiometric electrolytes, a breakdown of strong adiabaticity gives
rise to an anomalous transport regime—intermediate between metallic and
lonic—where charge can be transferred without accompanying mass
displacement;
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