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Introduction

Narrow-band materials, like transition-metal oxides, geeerally characterized
by a strong competition between the tendency of the elesttordelocalize on
the whole crystal and the Coulomb repulsion among the ckavgach drives the
system towards localization. Indeed, when the latter daurtion is predominant,
it can dramatically change the properties of the systemuamcst metal into Mott
insulator [1]. Besides the Mott-insulating character, most of theemats char-
acterized by strong correlation show unusual propertiety igh-temperature
superconductivity being the most spectacular example][ZFde lack of a con-
sistent microscopic description of these phenomena, varelstill much debated
both experimentally and theoretically, clearly implieatta better understanding
of correlation effects is needed.

Since the early pioneering work on transition-metal oxjdles theoretical ap-
proach to Mott insulators has focused on the half-filled Hardbmodel [5], the
simplest model which takes into account electron corm@atAlthough very sim-
ple in its formulation, the Hubbard model is generally ndvable with the avail-
able analytical techniques, apart from the one-dimensicese [6]. Therefore,
with the support of numerical calculations, several appnate schemes have
been introduced.

Within the standard band-theory approach, widely usedaatednic structure
calculations, such as Hartree-Fock or Local Density meghibds not possible to
obtain a metal-insulator transition when the band is hdddj unless some kind
of magnetic order is imposed. As a consequence, these tpe®iwhich turn
the Mott transition into a conventional metal-band insaddtansition, miss the
essence of the Mott phenomenon, where a charge gap appdapeidently of
spin order.

Very recently, Dynamical Mean Field Theory [7] offered ateahative route
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to this problem, giving a description of the Mott metal-itegar transition without
need for symmetry breaking. However, this scheme fully @etglspatial correla-
tions and becomes exact only in the limit of infinite dimemsility. Since charge
fluctuations are very strong in low-dimensional systemsaardcontribute to de-
termine their physical properties, an alternative methbativallows one to make
predictions in the case of reduced dimensionality, by ftaking into account the
role of charge fluctuations, would be very useful.

Another widely employed route to characterize the Mott lasng state is to
consider effective spin models, that describe the lowggnphysics of the Hub-
bard model in the limit of large Coulomb interaction [8]. Beeeffective models
allow one to work in a reduced Hilbert space, where the ongyrekes of freedom
reside in the different arrangements of the spins. Howévetotal suppression of
charge fluctuations, assumed in the strong-coupling limffigrs a rather unrealis-
tic picture of correlated insulators, where charge fluctunatare surely present at
small length scales.

In this thesis we consider the variational approach as algessute to de-
scribe the Mott transition in the Hubbard model. Our goaloidind a realistic
description of Mott insulators, which allows for charge flustions without break-
ing any symmetry and makes it possible to connect the stcongling insulating
state to the weak-coupling region. Our approach is based apjroximate form
for the ground-state wavefunction which contains the ptajlli relevant terms for
the correct description of the Mott insulating state, anth@same time, is simple
enough to allow a straightforward calculation of the phgkguantities. We show
that, with a good guess of the ground-state wavefunctiorghtain a transparent
and physically intuitive way to understand the correlatiotiuced localization of
electrons.

In the context of the — J and Heisenberg model, the general form for a cor-
related wavefunction corresponds to a fully-projectedouredated determinant,
where the configurations having a finite number of double panaies are com-
pletely neglected [9, 10]. At half-filling, with one electrper site, this wavefunc-
tion is obviously insulating, since no charge fluctuatioas occur. Remarkably,
in the case of frustrated systems, a fully-projected met&later determinant (or
a BCS mean-field wavefunction), without magnetic long-eagler, turns out to
be very close to the exact ground state.
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On the other hand, in the Hubbard model, previous variaticagulations
showed that the variational description of an insulatiregespurely induced by
correlation, which still allows for charge fluctuationsaison-trivial problem. In-
deed, the Gutzwiller on-site correlation factor [11], whiat first sight could be
considered as the natural extension of the full projectdnhéncase of finite inter-
action, gives an insulating state only in the limit of infeniepulsion (apart from
infinite dimension), while for finite Coulomb interactionallways corresponds to
a correlated metallic state. The reason for its failure fmlwidely discussed in
the past, and an intuitive argument has been found in theofeairrelation among
the charge carriers, which correspond to the empty sitdsrfepand doubly oc-
cupied sites (doublons) created by charge fluctuations iéé fimteractions [12].
Indeed, the holons possess an effective positive chargee ene electron is miss-
ing, and the doublons are negatively charged objects, baye more electron
with respect to the average occupation number. If the syst@erturbed with the
insertion of an electric field, this implies that, in absewteorrelation, holons
and doublons can move freely in opposite directions, thaditg to a metallic
behavior. However, subsequent variational attempts dgraelting a short-range
correlation term up to a distangeamong holons and doublons, turned out to be
likewise unsuccessful [12, 13]. Naively, this happens beeahe configurations
where holons and doublons are at distances larger&rae not subject to any
correlation term, hence they can move freely on the lattrme@nduct. Follow-
ing this insight, it turns out that, in order to describe aetated insulator without
breaking any symmetry, it is necessary to correlate pagioVer all length scales.

Let us consider a more general argument in view of the abowsiderations.
According to a well accepted picture, for realistic Hamlans, the dynamical
properties of a system reflect the long-distance behavitimettatic correlation
functions of its ground state. Within the variational apgmio, this implies that a
good ansatz for an insulating state requires the correcrigéisn of the charge-
density correlation function at large distances or, edady, the correct behavior
of the charge-density structure factor at small momenta.fétanionic systems,
the standard form for a correlated wavefunction is constitlby a correlation
term acting on a Slater determinant, the latter being anmeleded metallic state
at half filling and in absence of symmetry breaking. As a cquosece, a varia-
tional wavefunction built with a short-range correlati@ctor cannot change the
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metallic character of the determinant, unless one fullypsepses the charge fluc-
tuations, since the large distance physics, which is relef@ the conducting
properties of the system, remains untouched.

The above arguments suggest that a long-range correlaitbor is needed in
order to correctly describe the insulating state. In paldic since we are inter-
ested in the charge-charge correlations, a natural chéitteeaorrelation factor
contains a two-body charge-density term in its expressiutnch corresponds to
the definition of the Jastrow correlation factor [14].

The Jastrow factor has been widely used in the context afligelium, where

it gives the correct behavior of the charge-density stmectactor [15, 16]. In that
case, sincéHe is a gapless system, the analytic form of the Jastrow parame-
ters is successfully deduced from weak-coupling calaoeti like the Random-
Phase Approximation. However, to the purpose of descriam@sulating state,

a proper analytic form of the Jastrow parameters cannot bensa by means

of similar weak-coupling techniques. The lack of a funcéibform for the Jas-
trow term, together with the large number of variationalgmaeters required for

a long-range correlation factor, constitutes the mainasdstto the use of this
wavefunction in presence of strong correlation.

In this thesis, this difficulty is successfully overcome twihe help of the
Stochastic minimization algorithm [17], which allows usdptimize many vari-
ational parameters independently, without assuming angtional form. Con-
sidering the half-filled Hubbard model, we find that the loagge correlations
introduced by the Jastrow factor are the crucial ingredierdescribe the Mott
insulating state. Remarkably, the long-distance behafitre optimized Jastrow
parameters is deeply connected to the form of the chargsigiestructure factor,
in analogy with the previous results on liquid Helium. Thisas us to generalize
the relations found at weak coupling and to obtain a simpteustanding on the
properties of the Jastrow wavefunction in different dimens and for different
behaviors of the Jastrow parameters. Indeed, we find thadtigerange Jastrow
factor not only is able to open a gap in the charge excitatioumisalso can induce
anomalous properties, like a vanishing quasiparticle teigoth in metals and
insulators, and can suppress the off-diagonal long-rander @resent in the un-
correlated determinant. Therefore, by exploring the “zbplases” that can be
obtained with different forms of the Jastrow factor andetéint determinants, we
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gain a notable insight into the properties induced by stromgelation effects.

Though limited to zero temperature, this variational applomay represent
a very important tool in the theory of strongly correlatedteyns. Remarkably,
within our approach, the “Mott fingerprint” clearly emergesa genuine ground-
state property of strongly correlated systems.
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Introduction

Overview

The thesis is organized as follows:

In Chapter 1 we introduce the physics of Mott insulatorsrtistg with
Mott’s original argument and considering several expentakeexamples
where correlation effects lead to electron localizatiombsquently, we in-
troduce the Hubbard model and the previous variationaigite employed
to describe the Mott insulating state.

In Chapter 2 we describe the Jastrow wavefunction and thiytantieat-
ments which were used to gain insights into its propertiesreddver, we
present the criteria that we adopt in order to detect thewctivth properties
of our variational state.

In Chapter 3 we describe the Stochastic minimization allgoriwhich al-
lows us to optimize several variational parameters indeeetty.

In Chapter 4 we show our variational results for the one-disienal Hub-
bard model and for the— ¢ Hubbard model.

In Chapter 5 we consider the Jastrow wavefunction in two dsrens and
the possible occurrence of an unconventional metal-itsuia@nsition within
this kind of wavefunction.

In Chapter 6 we consider the Bose-Hubbard model and comparad-
curacy of our wavefunction with the exact results comingrirdiffusion
Monte Carlo calculations.



Chapter 1

Mott insulators and the Hubbard
model

Since its early applications, the independent-electrgmagrh has led to a good
understanding of the electronic properties of many diffeneaterials. This scheme
allows one to distinguish in a straightforward way a metahfran insulator by
simply looking at the filling of the electronic bands. Indeedthin this approach,
the only effect of the electron interaction is to renormalize various bands and
the electrons can still be treated as non-interactinggesti Therefore, the metal-
lic or insulating behavior is determined only by the exisemf an energy gap
between the highest occupied level and the lowest unocdigrie. As a conse-
guence, within this picture, the fact of having an odd nundf@lectrons per unit
cell naturally implies a partially filled conduction banada therefore, a metallic
behavior. Nevertheless, it is now well accepted that, wheretectron interaction
is sufficiently strong, the independent-electron pictaitsfand the system can be
insulating even with an odd number of electrons per unit eliypical example
comes from transition-metal compounds, where the elegttectron interaction
is predominant and determines the localization of the chagagriers. These ma-
terials, whose insulating character is induced by electamelation, are called
Mott insulators

Experimentally most of the materials that are classified adt Mhsulators
show antiferromagnetic ordering at low temperatures. Taus together with the
possibility to recover a consistent band-theory desaiptf Mott insulators in
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presence of antiferromagnetism, led to the assumptioratNaitt insulating state
atT = 0 is always accompanied by magnetic ordering. However, teernee of
the Mott phenomenon surely resides in the presence of ags€onlomb repul-
sion, and, even though it is often masked by magnetic orgeris understand-
ing requires to go beyond the standard band theory approathoaclarify the
role played by strong correlation. From a theoretical pointiew, this can be
achieved through the definition of a microscopic Hamiltaniahich can capture
the main physics of these systems: the Hubbard HamiltoMathin this model,
the electrons move on a lattice within a tight-binding schemd correlation is in-
troduced through an on-site repulsive term. As a result®ttimpetition among
the kinetic and the interaction term, the Hubbard model shawich phase dia-
gram where both the dimensionality and the different latgjeometries play an
important role. Of course, one cannot expect that the Hublvexdel explains in
detail all the properties of strongly correlated materidlevertheless, this model
contains the most relevant terms which allow one to undedst@alitatively the
role of correlation in these systems.

This chapter introduces the main ingredients of the physiddlott insula-
tors and the recent insight obtained through the experiahant theoretical ap-
proaches, focusing on the Hubbard model.

1.1 The Mott Gedankenexperiment

In his pioneering paper [1] Mott considered an ideal systéidyalrogen atoms
arranged in al-dimensional cubic lattice of lattice constant Each Hydrogen
provides one electron, which can move on the lattice formethb protons and
is subject to the Coulomb repulsion due to the other elestrdhe possibility for
the electrons to move on different lattice sites dependsewnverlap between the
s-atomic orbitals, i.e. on the distanaeamong the Hydrogen atoms forming the
lattice.

The properties of the system are the result of two oppogittetecies. On one
side the electrons tend to delocalize on the whole lattité, axconsequent kinetic
energy gain. On the other hand the Coulomb repulsion amanegléctrons drives
the system towards localization, since the presence of leairens on the same
lattice site, which occurs when they hop independently feit@ to site, implies
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Figure 1.1: Schematic representation of the M&tidankenexperimena lattice
of Hydrogen atoms with lattice constarit anda2 > a1 and related band-theory
picture.W,, (W) is the bandwidth associated to the lattice constar{t:2). By
increasing the lattice constant, the bandwidth decredsgghe band is always
half filled, i.e., the system is predicted to be metallic foy #attice constant.

an energy cost/. The Mott’'s Gedankenexperimefllows what happens if the
lattice constan is increased from its equilibrium value to larger interatosep-
arations. This corresponds to increase the ratio betweedulomb repulsion
and the kinetic energy. According to band theory, this systevould always be
a metal since the tight-binding valengéand, which becomes narrower when
increasinga, is always half filled (see Figure 1.1). This metallic statendeed
realized for small lattice spacings. In the opposite littiig independent-electron
picture clearly fails, since for very large interatomictdisces the system will be
composed by a set of neutral atoms, which is no more conduciihis happens
because at large distances the overlap between the atonefumations is small,
giving a very small energy gain due to the hopping of chargesra the lattice.
Since the kinetic term is very small, the dominant contidoutwhich is respon-
sible of the localization of the electrons, comes from thelGmb repulsiorV of
two electrons on the same lattice site. In this simple mad®ye a critical value
of the lattice constani., the system becomes an insulator which cannot be de-
scribed by the band theory approach: Mett insulator. Its insulating character
does not result in the lack of available states at low ensy@ig it occurs in con-
ventional band insulators. In a Mott insulator the repuisamong electrons is the
most relevant term and determines their localization ordifferent atoms. The
metal-insulator transition (MIT) just described is the fotgpe of aMott tran-
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sition. In his original paper, Mott considered for the repulsivertemong the
electrons a long-range Coulomb potential. The on-sitelsspul is of course
the most relevant term and is used here in order to have ativetand simple
picture of the main contributions that drive the system talsa MIT. Indeed, in
presence of a long-range repulsion, the previous argunenigw of a metal-
insulator transition driven by electron correlation ati## galid. The only notable
difference concerns the type of transition involved. Byngsmean-field argu-
ments, Mott predicts a discontinuous MIT for a three-dini@msl system in pres-
ence of a long-range Coulomb repulsion, since a finite nurabi&ee charges is
first required to screen the Coulomb potential and destr@yptund states among
positive and negative charges forming the insulator. Tihegewhen the system
enters the conducting state, there is already a finite nuoflfiexe carriers and the
transition is first order. Instead, according to Mott, thegence of a short-range
potential can be compatible with a continuous phase tiansit

1.1.1 Mott insulators and quantum magnetism

In his Gedankenexperimentlott does not consider the spin degrees of freedom
and their possible ordering. Indeed, in presence of stramgdnb interaction,

~Tlla -T2y 0 /& b

Figure 1.2: Schematic illustration of a system with antdemagnetic order and
Brillouin zone for an antiferromagnetic insulator: baneédhy allows one to re-
cover an insulator with one electron per site.

the virtual hopping of electrons between neighboring saesrs an antiferromag-
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netic arrangement of the spin's.Different kinds of spin order can be favoured
for particular lattice geometries and, at temperaturestotlan the magnetic
energy scale, a thermodynamic phase transition towardssaaior with long-
range magnetic order can occur. In general, an insulateig $hat breaks the
translational symmetry can be recovered within the Slatgupe. For example,
in the case of antiferromagnetic ordering, since the dagbdif the unitary cell
corresponds to a reduction of the Brillouin zone by one hak, valence band
turns out to be completely full at half filling (see Figure J1.2n this case the
correlation-induced electron localization is masked byfamomagnetism, miss-
ing the essence of the Mott phenomenon, where a charge geprapjuite inde-
pendently of spin order. The existencelat= 0 of an insulating state of purely
“Mott type”, that does not break any lattice symmetry, is dated issue, both
experimentally and theoretically. In one dimension maignetdering does not
occur because, even &t= 0, quantum fluctuations dominate and contribute to
disorder the system. Instead, in two dimensions the stinasimore complicated
and the result of the competition between the tendency tisvan ordered phase
and the disordering effect of quantum fluctuations canngirbdicted easily.
Theoretically, in order to understand the role of the spgrdes of freedom in
the Mott insulating state, a wide class of spin models has saelied. In these
models, which correspond to the limit of very strong cottiela, where charge
fluctuations are completely suppressed, each latticessdeaupied by one parti-
cle and the remaining degrees of freedom correspond toffleeatit arrangements
of the spins [18]. In several cases the spin rotational iemae is spontaneously
broken and the ground state is magnetic; neverthél€gg) invariant spin struc-
tures that do not break any symmetry are also possible. $rctimtext, the most
effective route that has been employed in order to descridiagiet state with-
out antiferromagnetic long-range order is the so-callesbRating-Valence-Bond
(RVB) state [8]. The RVB state consists of a linear supetpwsof valence bonds,
i.e., configurations in which every lattice site is occugigane particle and all the
electrons are coupled to form singlets. The system ressrat®ng the various
valence-bond configurations, recalling the Pauling ideeesbnance in the ben-
zene molecule. Since the set of all possible singlet cordigars forms a (over-

LA more rigorous proof of the antiferromagnetic nature ofékehange term will be given in
Section 1.3.2.
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Figure 1.3: Schematic illustration of the RVB state. Stiekzresent singlet bonds.
(a) spin liquid (b) non-magnetic symmetry breaking RVB stat

complete) basis in the singlet sector, it naturally follavat also the magnetic
state can be written in terms of this valence-bond basis,dbying the weights
associated to the different configurations. In particufazpnfigurations charac-
terized by long bond-lengths have large weights, the systamshow magnetic
long-range order [19]. On the other hand, the RVB pictureadipularly useful
for describing non-magnetic states, the simplest picteiadogiven in terms of
a RVB state with short-range bonds. Such bonds can be eitmeodeneously
distributed over the lattice, with short-range singletgéet correlations (known
asspin-liquid, see Figure 1.3 (a)) or they can be arranged in some spetiaipa
which breaks some of the symmetries of the lattice (see EigB (b)). There
has been an large amount of theoretical effort in searclongao-dimensional
spin-1/2 models which exhibit a spin-liquid ground state. The madidation of
a possible existence of such states comes from frustrasteinsg, where the pres-
ence of competitive magnetic interactions or the latticengetry can contribute
to disorder the system. In this context, some indicationtb®existence of a two-
dimensional spin-liquid state of the RVB type where foun@,[21]. The next
step consists in moving from the spin system to the morestgatase of a finite
electron-repulsion, where charge fluctuations are not ¢et@ly suppressed. In
this direction, a description of an insulating state whittbves for charge fluctua-
tions and can be connected to the RVB spin-liquid state idexke
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1.2 Experimental examples

The Gedankenexperiment Section 1.1 explains in a very elementary way what
is the main ingredient which characterizes Mott insulattite presence of a suf-
ficiently narrow band for valence electrons. In the follogjinve show different
classes of materials where correlation plays a fundameol@l These systems
are generally characterized by partially-filled valencads with a consequent
failure of the band-theory approach in predicting theirganies. Indeed, most
of these materials are insulators with a large gap, whilerttiependent-electron
approach would predict a metallic behavior.

1.2.1 Transition-metal oxides

In transition-metal compounds [2], a transition-metahais surrounded by lig-
and atoms with a strong tendency towards negative valenge (&ygen). This
different electron affinity between nearest-neighboritane determines the for-
mation of strongly polarized bonds between the transiti@tal atom and the
ligands. In these materials, the valence electrons havedoprinant/ character,
that implies a very narrow overlap between the atomic statesearest-neighbor
atoms. More precisely, the overlap is often determined lojréct transfer of
d-orbitals through the ligang orbitals of the atom located between the transition-
metal atoms, contributing to create a narrow bandwidth. édweer, the cage cre-

dy2.y2
1
ey daz2s2
10
! : dyz
b 2
d X
tog
free atom tetragonal orthorhombic

cubic
(octahedron type)

Figure 1.4: Crystal-field splitting of@Borbitals for different symmetries. Numbers
over each orbital indicate the degeneracy, including spin.

ated by the ligand atoms induces a crystal field splittingheftbonding orbitals,



14 Mott insulators and the Hubbard model

which partially removes the degeneracy of thelectrons (see Figure 1.4). The
splitting of thed-orbitals, together with the different number of electramshe
valence band, causes distinct features for light transiélements compared to
the heavy ones. In the case of light transition-metal compgsuwvith a cubic
structure and octahedral coordination (see Figure 1.5ik&))"i, V, Cr, thet,,
orbitals are partially occupied, whereas, for the heavierand Vi, thet,, band

is fully occupied and low-energy excitations are relatedhe, band. Simple
geometric considerations can be drawn about the differemtiap between the
p orbitals of Oxygen and the differedtorbitals. In the case of heavy transition
atoms, the overlap between thgand thee, orbitals is much higher than in the
light atom case, where the ligapd orbitals form a weaker bond with thig, ones
(see Figure 1.5 (b)). This fact strongly influences the cotidg properties of the
different materials. Indeed, since thg orbitals point away from thép Oxygen

d,2.2 de2.2

€) (b)

Figure 1.5: (a) Typical cubic perovskyte structure of traos-metal compounds.
Transition-metal atoms are the small grey spheres, at thieicef Oxygen octa-
hedra (dark spheres). (b) Different arrangements @n tope, orbitals, at the
bottomt,, orbitals) andp orbitals in transition-metal oxides.

ones, in early transition compounds the hybridization v@ttygen is very weak,
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leading to an insulating character of purely Mott type. éasl, for late-metal tran-
sition oxides, the Fermi level lies on theg band, which strongly hybridizes with
the p band and induces a charge-transfer insulating behavioesdlgeometric
considerations allow one to understand qualitatively tizg@m of Figure 1.6.
Another remarkable property of transition-metal oxidethes different screening

distorted

Figure 1.6: Schematic map of the transition-metal compeumith perovskyte
structureA BO3 [22]. The transition metab changes from left to right, increasing
its atomic number. The positive iof"** have a larger size going from bottom to
top. Shaded areas denote the insulating compounds, urstegdens correspond
to metals. W is the bandwidth, which increases from top to bottom (whdlre a
the compounds are metallic). On the left, for light tramsitmetal compounds,
U denotes the on-site repulsion, which increases from bottwtop. A is the
charge-transfer energy, the smaller energy scale for ehexgitations of heavy-
transition metal compounds. Following the lines one stilds$A™ " with another
cation having different valence and/or size, and the systeanges its properties.

generated byls and4p electrons in the various compounds. Indeed, considering
the early transition-metal oxid€saO and7O, the anti-bondings band and the

3d bands are predicted to overlap strongly and cross the Ferenge. Therefore,
the screening is effective and determines the metalliclaehaf C'aO andT:O,
even in presence of a narrow bandwidth. On the other hanah, ¥fadhroughC'u
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the4s bands are split-off thad bands, far away from the Fermi energy. Thus, the
Coulomb interaction among electrons in this case becomssingortant and
these systems are indeed found tdVb&tt insulators

The most celebrated transition-metal oxide that displdyisttinsulating state
is Vanadium Sesquioxidé403). This material crystallizes in a corundum struc-
ture, in which thé/3* ions are arranged i — V' pairs along the axis and form
a honeycomb lattice in the) plane. EacH’ ion has3d? electronic configuration
and is surrounded by an octahedrornCoitoms. One electron péf resides in a
singlet bond among thE& — V' pairs; the remaining electron pe&ris accommo-
dated in the doublet, levels, and determines the electric and magnetic progertie
of this material. The pure stoichiometd¢O; is an antiferromagnetic insulator
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Figure 1.7: Generalized phase diagranmi/eD; as a function of doping witld'r
or T'i (which corresponds to vary the pressure) and as a functioengberature
[23].

below Tv..; ~ 160K at ambient pressure. The antiferromagnetic-paramagnetic
transition at the Néel temperature is at the same time a fimstallator transi-
tion, of first order character: the resistivity drops ablyf24, 25] afterTy... In
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order to observe a metal-insulator transition induced bydibadth control, it is
possible to apply pressure which, by compressing the datticdens the bands.
Indeed, one finds th&ty.., decreases with increasing pressure, and the antiferro-
magnetic phase is completely suppresseft at 24Kbar. The effect of applying

a positive pressure can be equally recast by substitutinge $6 atoms with7"
impurities, since thd": ions have a smaller size. On the other hand, it is possi-
ble to increase the interatomic distance by introducingunties that are bigger
than theV ions. This is realized by substitutirigy- atoms tol/. Considering the
(Vi_.Cr,)205 System, one recovers, above a certain temperature, a panetita
insulating state, which corresponds to the original de@inibf a Mott insulator.
The resulting phase diagram [23] is reported in Figure 1.7.

1.2.2 Doping a Mott insulator: High-T, superconductors

The interest in the physics of Mott insulators had a huge tr@ifter the discov-
ery of High-temperature superconductors (HTSC) [26]. édjall the HTSC are
characterized by a universal phase diagram of the form tspio Figure 1.8,
where the Mott insulating state (usually accompanied biyjeanbmagnetism) ap-
pears to be one of the phases involved. It turns out that sapéductivity emerges
when doping this Mott insulator.

300l  Nd, Ce CuO, La, Sr CuO,
)
o 200f “Normal”’
3 Metal
g <
E
§ 100t + %
. AF  |AE| Y

0 1 1
0.3 0.2 0.1 0.0 0.1 0.2 0.3
Dopant Concentration .x

Figure 1.8: Schematic phase diagram for hole doped (rigig)sand electron
doped (left side) High-temperature superconductors.

The main feature common to all the HTSC compounds is the pcesef
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CuO, layers sandwiched by block layers. In general, the cryegadiphic struc-
ture of these material is tetragonal, with one or méte), plane separated by
layers of other atomsHa, La, Y), with a strong tendency towards positive va-
lence. The most widely accepted picture assumes that suphrctivity is re-
lated to processes occurring in thgO, planes, while the other layers, called
charge reservoir, simply provide the carriers. Therefarest of the theoretical
approaches consider a two-dimensional interacting syatetne key issue to un-
derstand the main features of the HTSC compounds [3, 4].

One of the most celebrated examples of HTSC materialsi$€'uO,. The
lattice structure of this compound is that of a layered pskgte, with a body-
centered tetragonal structure. The atoms lie inside an elongated octahedra
constituted by Oxygen atoms and are in th# 8onfiguration, resulting in a net
spin1/2 and a hole, i.e., the system is half filled. The Fermi leved Irea band
constructed mainly from the,._,. orbital, while thep,, orbital of Oxygensis rela-
tively close. Therefore, since the orbital lies between the Mott gap, the insulat-
ing character of.a;CuO, is mainly of charge-transfer type. The most interesting
physics related to this compound of course emerges uponglojpor instance, by
substitutingl.a with Sr or Ba, extra holes are added into the.O planes, causing
a quick collapse of antiferromagnetic order. With incragghe dopant concentra-
tionz, Lay_, M,CuO, (with M = Sr or Ba) undergoes a transition from an anti-
ferromagnetic insulator to a paramagnetic metal, with &stgnducting phase at
low temperatures. The superconducting transition tentpex&as a maximum of
~ 40K aroundzx,, ~ 0.15, called the optimal doping. Above the superconduct-
ing transition temperature, the normal metallic phase shawsual properties in
the underdoped regian < x,,, which gradually become Fermi-liquid like when
moving towards the overdoped region.

1.2.3 Layered Organic materials

Very recently, there has been a lot of experimental and #tigat interest into the
novel physics of layered organic superconductors. Thegerials share many
physical properties with the HTSC, but typically with mu@duced critical tem-
perature and with a possible spin-liquid phase at very lonperatures. Indeed,
they are strongly correlated systems (hawpg orbitals partially occupied) with



1.2 Experimental examples 19

guasi two-dimensional lattice structures, like cupraggesconductors. However,
they differ from cuprates since their lattice is essentiiiangular, and thus the
effect of frustration may play an important role into theurpgsrconducting and
magnetic properties.

In general, these materials are referred t&¢-4&8T), X or k-(BEDT-TTF)L X,
where BEDT-TTF or ET denotes the bis(ethylenedithio)attiafulvalene X de-
notes an organic monovalent anion andefines the different arrangements of
the molecules on each lattice site. The general structucenstituted by con-
ducting ET layers, where couples of dimerized ET molecutesasranged into a
triangular lattice (see Figure 1.9). In each dimer, two degate highest-occupied

(a) {b)

Figure 1.9: Crystal structure of an ET layer fo(ET),Cuy(CN)3: couples of
ET molecules dimerize and can be regarded as a dimer uiniigstth a site of a
triangular lattice [27].

molecular orbitals (HOMO) belonging to each ET moleculesgi# into bonding
and anti-bonding HOMO'’s, forming two bands that are segarat energy. Since
one hole is introduced into the dimer by the i&n the upper band, which is the
anti-bonding HOMO band, is half filled. The replacement aban¥X, equivalent
to discrete pressure control, is quite effective to drive Muott transition in these
organic materials. Irk-(ET),Cus(C'N)3 there is no sign of antiferromagnetic
transition down to 32n K at ambient pressure, suggesting the possible existence
of a quantum spin-liquid state [27, 28] (see the phase dmagnaFigure 1.10).
However, most of these organic compounds are antiferrogtaggat low temper-
ature and are characterized by a Néel temperature much tbarethe mean-field
critical temperature. For example, lR(ET),Cu[N(C'N),|C1 the antiferromag-
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Figure 1.10: Phase diagram/efET),Cuy(C'N)3 [28].

netic transition occurs &ty = 27K at ambient pressure and the superconducting
transition around’, = 13K under pressure [29].

1.2.4 Ultracold atoms

The recent advances in the physics of cold atoms generatesasing interest
among the community of theoretical condensed matter pisysicince they al-
low the experimental realization of several lattice modetsoduced in the last
decades in order to understand the role of strong correlaticeal materials.
Among the most remarkable results obtained in the last ydaese is the exper-
imental work by Greineet al. [30] on bosonic systems, which first observed a
guantum phase transition from a superfluid to a Mott insulat@ gas of ultra-
cold atoms. Most of the experiments of this type considersaajdaser cooled
87Rb atoms at low enough temperatures, such that a Bose-Eirsteuensate

is formed. The atoms are first put into a magnetic trappingmual!, where the
Bose-Einstein condensate (with uplt®® atoms) is achieved. The condensate is
a superfluid and exhibits long-range phase coherence. Béktge-dimensional
lattice potential is created, by using three optical stagdvave lasers aligned or-
thogonal to each other. If the lattice potential is turnedsoroothly, the system
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remains in the superfluid phase as long as the atom-atonadtien are small
compared to the tunnel coupling, which allows the hoppinthefatoms among
the lattice sites. As the lattice potential depthis increased, the tunnel coupling
decreases and the system tends to localize. The reductitucbfations in the
atom number on each site leads to increased fluctuations iphthise, until phase
coherence is lost. In order to test experimentally the pesef phase coher-
ence, the optical lattice is suddenly turned off. The atonagefunctions are then
allowed to expand freely and interfere with each other. Therference pattern
is then measured and absorption images are taken alongyortaldirections. If
the system is superfluid, all atoms are delocalized overitieedattice with equal
relative phases, and a high-contrast interference paterxpected. Greiner and
coworkers found that the interference pattern changesedbrksee Figure 1.11)
by increasing the potential depth. Initially the strengtthigher-order interfer-

a b = L4
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Figure 1.11: Absorption images of multiple matter waverigence patterns for
different potential depthg;. Values ofl}, increase from (a) to (h) [30].

ence maxima increases when increadipgdue to the tighter localization of the
atomic wavefunction in each lattice site; then suddenlynanherent background
of atoms gains more and more strength, until the interfer@attern is not visible
any more. This is the most spectacular example of Mott ttimsipurely induced
by correlation, that has been experimentally obtained.

1.3 The Hubbard model

The Hubbard model is the simplest example of a microscopmildanian that
takes into account the electron interaction and its cortipetwith the kinetic
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energy. It was independently introduced by Hubbard [5],zZ&ilter [11] and
Kanamori [31] in 1963 in order to understand magnetism inditéoon metals.
Currently it is widely used in order to understand strongyrelated systems of
the kind described in the experimental Section 1.2.

1.3.1 Definitions and simple properties

The one-band Hubbard Hamiltonian is defined on a latticé eites and can be
written as:
H=—t Z (cl cjo + hoc)+ UZ”jT”jl , (1.1)
<i,j>,0 J

where< 4,5 > denotes nearest-neighboring sitesnd j, cja (ciy) creates (de-
stroys) an electron with spinon site; andn;, = c}acja is the occupation number
operator. The terrone-bandefers to the assumption that only one Wannier state
per site is considered. This approximation is valid whenFRkemi energy lies
within a single conduction band, implying an irrelevant doution of the other
bands. Since only one atomic level per atom is consideredh kadtice site can
appear in four different quantum states:

|0); empty site fiolon)

| 1), = }T|0) site j occupied by arf electron

| 1); = L|0) site j occupied by & electron

| 11); = cl,c!,|0) site j doubly occupieddoublon.

The first term in Eqg.(1.1) expresses the kinetic garwhich delocalizeshe
N electrons among the lattice. The hopping parametamtrols the bandwidth
of the system and depends on the overlap between neighlmbitgls:

= [ dr o) (V—2 " V) o5(r) | (1.2)

2m

whereg;(r) is a Wannier orbital centered on siteandV/,,, is the potential cre-
ated by the positive ions forming the lattice. In translaglby invariant systems,
t;; depends only upon the distance among the gite®d ; and in (1.1) we have
considered only a nearest-neighbor hoppin@he kinetic termXC can be diago-
nalized in a single-particle basis of Bloch states:

d
K= ZGKCJIE:UC]W € = —Qthos(k:j) , (1.3)
k,o j=1
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wherecz,g = ﬁ D eikjc;U and a simplel-dimensional cubic lattice has been
considered.
TheHubbard Ucomes from the Coulomb repulsion of two electrons sharing

the same orbital:
2

b
=14

This term is only an approximation of the true Coulomb int&icn, since it com-
pletely neglects the long-range components which are présesalistic systems.
Nevertheless, in spite of its simplicity, the Hubbard maddr from being trivial
and the exact solution is known only in the one-dimensioagkd6]. Its phase
diagram, depends on the electron density N/L and the ratid//t. Moreover,
different lattice geometries and the addition of longerg@hopping terms could
influence the resulting phase diagram.

The form of the Hubbard Hamiltonian given in Eq.(1.1) imnegdly suggests
that its phase space comes out from two competing tenderfimes one side the
hopping term tends to delocalize the electrons in the drgstd from the other
side the interaction term encourages electrons to occufeyelt sites, otherwise
the system must pay an energy cbsper each doubly occupied site. Whenever
the electron density iaway from half filling i.e., n # 1, the number of holes
or doubly occupied sites is always different from zero andrgé fluctuations
are possible without a further energy cost. In this casegtbend state of the
system is predicted to baetallicfor any value ofU /¢, unless for special charge-
density wave instabilities at incommensurate wavevectbes could happen for
small dopings and weak correlations [32]. Moreover, thesiiods occurrence of
superconductivityn the Hubbard model forn # 1 has been widely investigated
and there are now important evidences that supercondiycéimerges at finite
doping [33]. Instead, atalf filling (n = 1), there are no extra holes (or double
occupancies) and each site is (in average) singly occupieeltwo tendencies of
delocalizing and localizing the system are strictly degerien the value of/ /1,
according to the two limiting cases:

U= [ drydralosin) 0(r2) 2 (1.4)

e for U/t = 0 (band limif) the system is a non-interacting metal;

e fort/U = 0 (atomic limif) the system is an insulator with no charge fluctu-
ations.
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The presence of two different phases, for the two limitintuga of U/t, sug-
gests the existence of a phase transition which is purelytaltige increasing of
correlation: theMott metal-insulator transition

As anticipated in Section 1.1.1, the Mott transition is nfeeecompanied by
magnetic ordering. In the following, we discuss the possdacurrence of anti-
ferromagnetic order for the Hubbard model on the squaredatioth at weak and
strong coupling. For the latter case, we show the canoneastormation that al-
lows one to derive an effective spin Hamiltonian which ddss the low-energy
physics of the Hubbard model at strong coupling and acts erHilbert space
with no double occupancies. This is important in view of afiteg an insulating
state that still contains charge fluctuations and can beexiad to the ground
state of the corresponding spin model at strong coupling.

1.3.2 Larged limit: ¢t — J and Heisenberg model

Thet — J Hamiltonian was pioneered by Anderson [8] and rederived hgng
and Rice [34], starting from the two-band Hubbard model, ritheo to describe
the low-energy properties of théuO, planes of HTSC. If the system is at half
filling, the same problem reduces to an effective spin Hamién, theHeisenberg
Hamiltonian The general procedure for their derivation consists irkilog for

a Schrieffer-Wolff canonical transformation [35], whichosvs one to achieve a
separation between low-energy and high-energy subspadke Hubbard model
at largeU/t, these subspaces are characterized by a different numleubfe
occupanciesy,. The operator that mixes these different sectors of theettilb
space corresponds to the kinetic part (1.3), which can bettewas:

K=H+H +H

whereH," (H, ) increases (decreases) the number of doubly occupiedyitase
andH corresponds to the hopping processes which do not changeithieer of
double occupancies. The effective Hamiltonian is obtatheaugh the rotation:

2
Hoyp = ¢SHe S = H +i[S, H] + %[S, S, H]] + ... (1.5)
where the generatdt is chosen such thdf. ;; does not contain the operatdis”
andH, . In order to eliminate the terms which are first ordet,ithe generatof
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reads: :
S = — 5 (H = H), (16)
and we obtain the effectivie— J modelto ordert*/U:
H_; = —t Y [(1=ni_o)c,co(l—njo)+ hel+
<i,j>,0
nin; .
+J<ZZ;> (SZ S == ) + three sites term (1.7)

whereS; = %ZUU, cjanmlcw/ is the spin operator for site(r,,- being the Pauli
matrices) and/ = % is a magnetic coupling that favors an antiferromagnetic
alignment of spins. The first term of Eq. (1.7) describes lnmgpponstrained on
the space with no doubly occupied sites. The nature of théeemoimagnetic
couplingJ in the superexchange term is due to the possibility of a &ithopping

of antiparallel neighboring spins, which creates an inttiate doubly occupied
site with an energy gainr-t*/U. Finally, the canonical transformation generates
a three-sites term, which is proportional to the hole doind usually neglected
for simplicity. At half filling, the first term in Eq. (1.7) isero, because every site
is already occupied by one electron, and one obtains a jumaysodel:

Hyeis =J Y Si-8;, (1.8)
<i,j>

which is theantiferromagnetic Heisenberg mod#&lhis Hamiltonian describes the
low-energy properties of the Hubbard model at half filling¥ery largeU /t. The
corresponding ground state is smoothly connected to theatisg phase found
for largeU /t in the Hubbard model. In principle, in order to recover aistial in-
sulating state which still has charge fluctuations, onectpetform the canonical
transformation in the opposite direction, reintroduciniinée number of double
occupancies on top of the Heisenberg spin state. Pragtiealldiscussed above,
the canonical transformation cannot be performed exasitige the operatos
contains a very complicated many-body operator. Thergfame must find an-
other route in order to connect the two limits. The variagicapproach constitutes
a valid alternative tool to accomplish this task: insteadmblying the canonical
transformation, one must find an alternative ansatz thatvalbne to recover an
insulating state with a finite number of double occupancsse number de-
creases asymptotically to zero when the interaction stheisgncreased. From
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the above arguments, it turns out that a good variationtd,stdnich properly de-
scribes the Mott insulating state in the Hubbard model, mastain the correct
low-energy properties of the Heisenberg Hamiltonian, daydincreasing the in-
teraction, must connect smoothly to the ground state defmethe Heisenberg
spin model.

1.3.3 Instability towards antiferromagnetic ordering

The possibility of having an antiferromagnetically ordeiground state for the
Heisenberg Hamiltonian has been widely investigated inabkieyears. In one di-
mension, quantum fluctuations destroy the antiferromagoeder and the system
remains critical with power-law spin correlations [36]stead, in two dimensions,
accurate numerical results [37—39] indicate that, for asgjlattice, quantum fluc-
tuations are not able to destroy the antiferromagnetic-tamge order ai” = 0.

In the following, we show that also at weak coupling, for garar lattice ge-
ometries, the Hubbard model has a tendency towards aotifi@gnetic order [40].
Standard calculation done using Random-Phase Approxamgtves the follow-
ing expression for the spin susceptibility:

X°(Q)
X(Q) ~ 1= 0y0(Q)’ (1.9)

where the bare susceptibili§f(Q) is given by:
Z Je — fk+Q (1.10)

€k+Q — Ek

with f; being the Fermi occupation number anidthe energy levels associated
to the unperturbed ground state corresponding/te= 0. The magnetic insta-
bility occurs when the denominator in Eq.(1.9) vanishes, for Ux°(Q) = 1.
This condition is known as the Stoner criterion. Considgtime instability to-
wards a Néel phase for a two-dimensional system, the véttos components
@ = (m, 7). Given this vector, one can easily predict the behavior efgpin
susceptibility if theperfect nestingconditione; .o = ¢, holds. This is indeed
the case at the Fermi vectéy. for an hypercubic lattice at half filling, with a
consequent divergence gf(Q) in Eq.(1.10). Since®(Q) diverges, the Stoner
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criterion signals a tendency towards antiferromagnetieong for any non-zero
U.

Therefore, both at weak and strong coupling, the Hubbardatadthe hyper-
cubic lattice shows an instability towards antiferroméagme. The metal-insulator
transition occurs at an infinitesimally sméll as a transition between an uncor-
related metal and an antiferromagnetic insulator. Howewer possibility of a
metal-insulator transition of purely Mott-type is realistor frustrated systems,
where the different geometry (e.g., triangular latticejher addition of a further
hopping term for next-nearest neighbors break the perfestimg condition at
weak coupling and discourages a symmetry-breaking stateastg coupling.

1.4 Early Variational approaches for the Mott tran-
sition

Even though at half filling the Hubbard model on the squatetashows an in-
sulating phase with antiferromagnetic ordering for allténialues of/ /¢, several
studies have been made by imposing the restriction of a @gaetic solution, in
order to understand the nature and the possible occurrémice msulating state.
This is important since the perfect nesting condition carowercome with the
addition of a frustrating hopping term in the system, andsaiered insulating
phase might occur at finité/¢. This paramagnetic insulating phase cannot be de-
scribed with a single Slater determinant and with the alségléools coming from
the independent-electron picture. In this sense, it cuist a new state of matter,
whose properties could be very different from those of stathchsulators.

The variational approach offers a simple route to deschisegroblem, since
a good guess of the form of the wavefunction allows one tovddhie properties
of the corresponding phases in a straightforward way. Tlepkat is to find a
proper variational ansatz for an insulating state thatkse® symmetry but still
allows for charge fluctuations. For fermionic systems, tta wavefunction gen-
erally contains a determinantal part that ensures the cdoargisymmetry when
particles are interchanged. In absence of symmetry brgakiging the system
half filled, this determinant is metallic. Therefore, in erdo describe a metal-
insulator transition induced by the electron repulsiore orust find a proper way



28 Mott insulators and the Hubbard model

of inserting correlation among particles, since this isrthigsing ingredient of the
independent-electron scheme. The correlation term muablecto determine the
localization of the electrons, which otherwise are freedonduct. A widely ac-
cepted tool for describing a Mott insulating state is to edeisthe limit of strong
coupling, wheretotal projection i.e., the complete suppression of double occu-
pancies, is imposed on top of the Slater determinant. Atfiiaifg, this system
is a trivial and unrealistic insulator, where charges aragetely frozen. A valid
description of the Mott transition requires an insulatitgte where charge fluc-
tuations are gradually increased when reducing the repul$j until the system
becomes delocalized, hence metallic.

In the following we report the early variational attemptsidan this direction.

1.4.1 General form of correlated wavefunctions

The general form of a correlated wavefunction is given by:

[Wp{vi, Ai}) = P{vi})ID({A})) (1.11)

whereP{v;} is thecorrelation factor(or projector) and |D({A;})) is a mean-
field Slater determinant. The correlation facf®is commonly expressed as the
exponential of a two-body operator, whose explicit forml\w#é specified in the
following. It depends on a set of variational parametersictvive denote with
{v;}. At this level, it is important to stress that the projectoserts correlation
into the wavefunction, whose remaining part correspondiseéanean-field Slater
determinantD). Notice that the terrprojectoris often used in the context of spin
models, whereP totally projects out the configurations with a finite numbér o
double occupancies. In that ceBas denoted atull projector. On the other hand,
in many cases, the projector simply gives different weigbtdhe configurations
coming from the independent-electron picture. In thiselattase, which is of
interest in the description of the Hubbard model for anyédibit¢, P corresponds
to apartial projector.

The Slater determinant generally corresponds to the gretatd of a mean-
field Hamiltonian. In the simplest case, it is the uncoredaermi sea:

[FS) = 11 cieiilo), (1.12)

ep<ep
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which is the ground state of the free tight-binding Hamileanwith energy dis-
persione,:
HFS = Z EkCJ]LUC]w, (113)
ko
wheree, = —2t 25:1 cos(k;) andep is the Fermi energy. Nevertheless, also the

determinant can be parametrized, for example it can be thengdrstate of the
BCS Hamiltonian:

HBCS = Z GkCJ]LUC]w + Z Aij(C”le -+ C;r-lC;rT), (114)

k,o ,J

where{A,;;} depend on the distan¢e— j| and are chosen in order to minimize
the expectation value of the energy. The BCS ground statsiisget state that
corresponds, in the case of total projection, to the RVBestaicording to the
definition of Section 1.1.1. Another possible Slater deteamt comes from the
mean-field antiferromagnetic (AF) Hamiltonian:

Hap =3 e} oo + Bar 3 (=1)(ny — miy), (1.15)

k,o

with the variational antiferromagnetic paramet®f. In this case, the corre-
sponding Slater determinant breaks the translational sstmym

In the following, we describe the most widely used variatilomavefunctions
which have been studied in order to approach the correlatgdlinc phase and
the Mott insulating phase in the Hubbard model.

1.4.2 The Gutzwiller wavefunction

In the Hubbard Hamiltonian, the expectation value of therggeontains a re-
pulsive term for two electrons of opposite spins locatedrendame lattice site.
This energy loss cannot be avoided within an uncorrelatagfuaction, since in
a paramagnetic state the configurations of electrons wiplogie spin are inde-
pendent. The starting point for a good guess of a correlatagfunction is to
notice that the Hubbart affects the number of double occupancigs induc-
ing their reduction. Following this route, Gutzwiller [1&bnsidered a correlated
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wavefunction¥,), where configurations having a different number of double oc
cupancies:, have different weights:

|W,) = exp [—aniTnu |F'S), (1.16)

whereg is the Gutzwiller variational parameter, the operaigm,;, counts the
number of double occupancies on each sigad |F'S) is the Fermi sea (1.12).
The Gutzwiller wavefunction (GWF) fo§ = 0 corresponds to the simp|é'S),
and, therefore, it is exact fdf/¢ = 0. On the other hand, foy = oo, the wave-
function (1.16) contains no double occupancies, and qooregds to the atomic
limit obtained forU/t = occ. In this limit the Gutzwiller wavefunction is usually
written as:

Uyeoe) = [ [(1 = niyniy) |FS) (1.17)

and corresponds to tHelly-projected Gutzwiller wavefunctionAt half filling,
this wavefunction is insulating by definition, since no defluctuations can oc-
cur when the number of electrons equals the number of sitds

For finiteU /¢, the probability of finding configurations with largg decreases
with increasingg. Since the two end points given by the uncorrelated metal and
the atomic limit are properly described by this wavefunctemd the minimum
variational energy might occur fgr= oo even at finitd/ /¢, one expects to find a
metal-insulator transition between the above mentiomaddi

Despite its simplicity, the Gutzwiller wavefunction is filtult to handle an-
alytically, since the correlation term acts on the confijoraspace, while the
determinant is easily expressed in momentum space. Theat\al of the kinetic
energy leads to the calculation of a different Slater deitgant for any config-
uration of the electrons in the lattice, each being weightétl the Gutzwiller
correlation factorexp(—gn,). The Gutzwiller approximation(GA) consists in
neglecting the different weights introduced by the deteants, and counts the
terms that are associated to an equal number of double cociega, with the
only use of combinatorics. This approximation, which netdehe spatial correla-
tion of the spins given by the Slater determinants, might pea approximation
that cannot be controlled in a systematic way. Neverthglesise past it was used
to get insight into the property of the Hubbard model at h#ilh§j. Brinkman and
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Rice, in their famous paper [41], by using the Gutzwiller egimation, found
that the Hubbard model undergoes a metal-insulator tiansit a finiteU/¢.

They obtained:
1 U
n§* = I (1 — i) , (1.18)
with the minimum variational energy per site given by:
U 2
ESY = ¢ (1 — i) : (1.19)

whereg is the uncorrelated energy per site dnd= 8¢,. Therefore, folU = U.,,
the number of doubly occupied sites vanishes and the syséeonies insulat-
ing. The insulator is described by zero doubly-occupiegssite.,n; = 0, and,
therefore, charge fluctuations are totally suppressedlyingpzero-energy gain
(Ef“‘ = 0 in the insulator). However, subsequent numerical studoe®n the
Gutzwiller wavefunction, by using Quantum Monte Carlo éfref the approxi-
mations introduced in the GA approach) [12, 42] and exadiyéinareatments of
the GWF (in one dimension) [43], clarified that the Gutzwild®rrelation factor
is not sufficient to create an insulator in any finite dimensiat half filling, the
minimized GWF on the Hubbard model is always metallic, afrarh the atomic
limit that occurs only at/ /¢ = co andg = oo. For any finitel/, theg parameter is
finite, leading to a finite number of double occupancies, &edsystem turns out
to be metallic. This is due to the fact that, once a holon-ttupair is formed,
these objects are free to move without paying any furtherggneost, and, there-
fore, they can participate to the conduction events. Moegi§ipally, in the lattice
occupied in average by one electron per site, holes arenmgitharged objects,
while the doublons are negatively charged. When an eldetictis applied to the
system, they are consequently free to move in oppositetdires; and the system
shows a metallic behavior.

1.4.3 Short-range holon-doublon correlation term

The failure of the GWF in describing the insulating stateraitdil/ was attributed
to the lack of correlation among empty and doubly occupiéessn Eq.(1.16)
[12]. The next steps, in order to construct an insulatingat@nal wavefunction,
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were done by adding to the Gutzwiller factor a term which potes configura-
tions where holons and doublons are nearest neighbors:

|V, np >= exp [—aniTnu] exp [f Z hid,,

<l,m>

IF'S), (1.20)

whereh; = (1—ny;)(1—ny;) counts the number of holons on sit€,,, = 7,171,
counts the number of doublons on the neighboring siteand f is the holon-
doublon variational parameter. An analytic treatment & Wavefunction of
Eq.(1.20) for the Hubbard model, done using the analogoulefSA for this
wavefunction [44], shows that the holon-doublon factoowH one to recover the
correct large/ behavior of the energ¥y ~ —¢?/U. Nevertheless, this wave-
function is also metallic for any finité//¢. The metallic behavior of wavefunc-
tion (1.20) comes out when looking at the momentum distidmjtwhich has a
step-function component for any finité/¢, signaling that the system has Fermi-
liquid character [44]. Subsequent numerical studies amefit that the short-range
holon-doublon projector fails in describing an insulatsigte [13]. This can be
explained by considering that, once a holon-doublon pakhies a distance larger
than one lattice site (notice that this is possible unjfessco), then these two ob-
jects can move further apart, without paying any energy. cost

Another short-range correlation factor that contains ay¥t@dy operator has
been studied in [45], and has the form:

|V, mB) = €exp [—9 Z nﬁnu] exp [—gmBnmB] |FS), (1.21)

2

whereg,,  is the many-body variational parameter and the many-bodyabpr:

s =) [hz‘ [T —dis) +a: JJ0 - hz‘+5)]
6

7 é

(6 being the vector connecting nearest neighbors) countsutmer of isolated
holons and doublons. This operator is capable to reduce éghtvof the con-
figurations with isolated holons and doublons. Neverttgelegen this correlation
factor cannot give a good representation of the Mott insugegtate. An intuitive
picture is that it does not take into account situations imcvlone holon is sur-
rounded by several doublons (or viceversa), constitutgagraa charged negative
(positive) object, free to move under the action of an eiedield.
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1.5 DMFT approach to the Mott transition

Among the various approaches to the Mott transition, thedDyioal Mean Field
Theory (DMFT) is one of the most widely used in the last ye@fslhdeed, within

DMFT, it is possible to obtain a metal-insulator transitfmurely induced by cor-
relation, without any symmetry breaking. Moreover, vergemtly this scheme
has been addressed to study realistic systems [46], affanralternative tool for
post-Hartree Fock calculations.

The DMFT technique inherits the idea coming from standardn¥ield the-
ories, which approximate a lattice problem with many degrefefreedom by a
single-site effective problem. The underlying physicalads that the dynamics at
a given site can be thought of as the interaction of this site an external bath
constituted by all the other sites. All interactions witle tthegrees of freedom of
the bath are contained into an effective field, called thesé/éeld. Unlike the
classical case, in which the Weiss field is a number, the guactse requires a
time dependent function, that captures the ability of oeetebn to enter or leave
the atom on a certain time scale.

Considering the Hubbard Hamiltonian, a possible mappingheforiginal
Hubbard model into a single-site effective problem coroesls to the Ander-
son impurity model [47]. This model describes a single sidedded in a bath
of non-interacting fermions, that can hop from the bath t® $ite and vicev-
ersa. The original Hubbard term resides only on the singée and discourages
the hopping of the electrons from the bath, if another ebecis already present.
The parameters associated to Anderson impurity model ai@nedl in a self-
consistent way such that the Green'’s function of the effectnodel coincides
with the local Green’s function of the Hubbard model. WitBIMFT, the spatial
fluctuations are frozen, but local dynamical quantum fluotug are fully taken
into account. This reflects into the fact that the calculatell energy does not
have anyk dependence. This approximation scheme has been shown xatte e
in the limit of infinite dimension [7].

A qualitative picture of the Mott transition obtained withDMFT for the
Hubbard model is shown in Figure 1.12, where the density atkstis plotted
for different values of//t. The density of states of the strongly correlated metal
displays a three-peak structure, made by a quasiparticlé tlase to the Fermi
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Figure 1.12: Local spectral function for the half-filled Hhdvd model and differ-
ent values of the interactidii/ D, whereD is half the bandwidth [48].

energy, surrounded by a lower and an upper Hubbard band. udsggrticle peak
corresponds to the low-energy coherent excitations desttrvithin Fermi-liquid
theory. Its width is reduced when approaching the insulatoce part of the spec-
tral weight is transfered to the Hubbard bands. These satlescribe the atomic-
like transitions corresponding to the addition or the reat@¥ one electron on an
atomic site, which broaden into bands in the solid.7A& 0, the mean-field so-
lution that corresponds to the paramagnetic metal disapaea critical coupling
U.. At this point, the quasiparticle weight vanishes (i.eZ ~ 1 — U/U,), giv-
ing a scenario very similar to the Brinkman-Rice transiti@m the other hand, a
mean-field insulating solution is found for > U,;, with the Mott gapA opening
up atU,,. SinceU., > U,;, there is a region of coexistence of the two solutions
and, when the quasiparticle peak disappears, the’\ghas already a finite value.
The disappearance of the quasiparticle peak in correspord# a finite value of
the charge gap has been widely discussed within the DMFToagpr In order to
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understand whether this is an artifact of the techniquesrséimprovements have
been worked out, like the possibility to consider a clustesites embedded in the
bath instead of the single-site problem. Indeed, the aleseigpatial correlations
and the fact that DMFT does not take into account the rolegaldyy the dimen-
sionality constitute the main drawback of this techniquiee Tluster DMFT [49]
could give remarkable improvements in this direction.






Chapter 2

The Jastrow wavefunction and the
criteria for an insulating state

In the previous chapter, by considering the early variai@itempts for the de-
scription of a Mott insulating state, we have seen that atstamige correlation

term of the Gutzwiller type, even in presence of a holon-daibhort-range term,

always gives a metallic state, unless charge fluctuatioas@ampletely frozen.

However, in any realistic insulator, the presence of a gdpercharge excitations
does not forbid the possibility to have charge fluctuatiadDscourse, the charge
fluctuations of an insulator must be radically differennirthose of a metal, since
their behavior at small energies reflects the presence ddrgelyap. Therefore, a
proper wavefunction (WF) for the realistic description afiasulating state must
give the correct behavior for the charge fluctuations at loergy.

In a fermionic system, a well-established approach to desa correlated
state that does not break any symmetry is to take a metaditeiSleterminant and
change its amplitudes by means of a correlation factor. &fbeg, in order to ad-
just the form of the charge fluctuations, i.e., give the adrikott-insulating char-
acter, the correlation term plays the main role. A valid aadiion of a correlation
factor that can accomplish this task comes from the liteeadn liquid Helium. In
this context, several numerical results on the continuwrstasned by analytical
calculations, have shown that the Jastrow WF gives the cidioe-energy prop-
erties of the system [15, 16]. In particular, it turns outttthee Jastrow factor is
capable of giving the correct behavior of the static striectactor, the observable
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which gives direct insight into the density fluctuations.tide that liquid Helium
(*He) is a correlated bosonic system, which generally exhibitseBEinstein con-
densation and whose zero-temperature structure factmnmsnéted by the zero
point motion of gapless phonon modes. Therefore, the poysiolved in this
system appears quite far from that of a Mott insulator. Havethe capability
of the Jastrow factor to give the correct static structuctdiasuggests that, if we
are interested in the correct description of charge flucinaf the Jastrow term
constitutes the fundamental ingredient for a good vamaiansatz of an insulat-
ing state. Of course, for a proper variational descriptibimsulators, we expect
a form of the Jastrow remarkably different from the one of plgss system like
Helium.

In this chapter we review the analytical and numerical peeges that have
been made in the past, in order to understand the properictsh@ range of
applications of the Jastrow WF. This insight will be usetulihderstand the role
of the Jastrow factor in strongly correlated fermionic sys$ on a lattice and its
ability to describe the Mott insulating state.

Next, we introduce the criteria that will be used in the nucarcalculations
in order to test the insulating character of the optimizestrdav WF in the Hub-
bard model.

2.1 The Jastrow factor

The Jastrow factor, introduced for continuum systems [falles into account
correlation effects through a two-body term of the form:

1

P; = exp [5 Z v(rij)ninj] , (2.1)
7’7]

whereuv(r;;) = v(|r; —r;|) are variational parameters, which for isotropic systems

depend only on the relative distance among the particlesnansl the particle

density at positiom;. It is useful to consider also the Fourier-transformedrdast

factor:

1
Py =exp [5 Z vqnqnq] ) (2.2)
q
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wherev, = 37, v(r)e’” andn, = =3~ n,¢'" are the Fourier transformed Jas-
trow parameters and particle density, respectively. Thmeential form (2.1),
which can be written in terms of a pair-product state, guaesithe size consis-
tency of the WF. For bosons the form (2.1) already ensuresdirect symmetry.
Instead, for fermionic systems, the Jastrow factor is &pb a Slater determinant
|D), in order to recover the correct antisymmetric form:

(W) =Ps|D) .

The Jastrow WF has been widely studied on continuum systeitisthe em-
ployment of a large variety of analytic and numerical tegeis. In a series of
papers, Sutherland showed that the Jastrow WF correspottas &xact ground-
state of a family of one-dimensional Hamiltonians definedl@continuum. In
Ref. [50] Sutherland considers a system of particles defomed ring of circum-
ferencelL, interacting with a potential (z;;) = ¢ [sin (75)] 2, with g fixing
its strength. The corresponding ground-state wavefundsio

V(b =]
1>]

where\ depends on the potential strengtlas2A\(\ — 1) = g. The case\ = 1
corresponds to free fermions. The lattice version of then&ldand’s problem
was found for a spin system by Shastry and Haldane [51, 52}, camsidered
a spin 1/2 chain with a long-range/r? antiferromagnetic exchange. Following
previous results of Metzner and Vollhardt on the exact spoperties of the fully-
projected Gutzwiller WF, they find tha¥ ,_.. ), defined in Eq.(1.17), corresponds
to the exact ground state of this model.

However, the most interesting analytic and numerical testdncerning the
properties of the Jastrow WF come from its wide applicatiartdelium physics.
In this field, starting from the very early approach of McMill[15], who used a
parametrization of the Jastrow term coming from the sofubicthe corresponding
two-body problem, the form of the Jastrow factor has beersagiently fine-
tuned [16, 53-55] in order to reproduce accurately the ptimseof the*He liquid
state. It turned out that, even if the ground-state energyeisapproximated by
using a short-range correlation term, the addition of acstine in the parameters
v(r;;) at large distances is fundamental, in order to reproducectly the pair-
distribution function and structure factor of the liquidn& many results related

A
sin T = %)
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to the properties of the Jastrow WF for liquid Helium are viydesed in this
thesis, we will analyze them in detail in the following secis.

Furthermore, among the applications of the Jastrow WF, eesstul and re-
cent case corresponds to the fractional quantum Hall effedeed, the Laughlin
WEF [56], which describes a two-dimensional electron gagesiito a magnetic
field perpendicular to the layer, can be easily written im&of one and two-body
Jastrow factors:

Up({zi}) = exp [% Zln(zi - Zg)] exp [Z |Zl\2] , (2.3)

i#]

wherez; = z; + iy; indicates the dimensionless complex coordinate ofjttie
particle andv is the filling fraction ¢ must be an odd fraction in order to have
the correct antisymmetry). In this system, correlatior@f are very important
since, in that geometry, the magnetic field strongly reddicekinetic energy of
the electrons. The two-body Jastrow factor is able to cegtis physics and WF
(2.3) turns out to be extremely close to the exact groune $5a7.

Finally, in the last years the Jastrow WF has been also walghjied in quan-
tum chemistry calculations [58], where it allows one to ut# correlation effects
on top of the Hartree-Fock or Local Density approximatiorscAin this case, a
simple analytic form of the Jastrow parameters is geneusldd [59]:

&o'iaj Tij

— 2.4
T by (2.4)

v(ry;) =
wherea,,,;, bs,0; are spin-dependent parameters. At short distance, the wélu
ae,0, 1S fixed by imposing the cusp condition, which cancels thewdjence of the
potential energy ag;; — 0. Instead, the long-wavelength behavior of the Jastrow
parameters, in analogy with what is done for liquid Heliusmmpsually deduced
from Random-Phase Approximation (RPA).

On the other hand, considering the application of the Jast- on lattice
models, one does not find the same counterpart. The facti@akistrow factor
involves many variational parameters, whose number groivstiwe lattice size,
constitutes the main drawback for the application of this. Wt this reason, in
many calculations, the functional form of the Jastrow paatars is kept fixed and
the number of independent parameters is reduced. Thiseamal easy-to-handle
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WEF, which on the other hand is biased by the choice of the fonat form and
looses the variational flexibility of Eq.(2.1).

However, there are examples where a good guess for the daatfiorm of
the Jastrow parameters gives accurate results also fmelattodels. Indeed, a
long-range Jastrow WF with a logarithmic foray = In(r; — r;) turns out to
be the correct ansatz which induces Luttinger-liquid-tgpeelations in the one
dimensionat — J model [60].

Moreover, the use of the spin-Jastrow factor on the Heiggnimedel gave
strong indications that a WF of this type is very accurategioantum-spin sys-
tems [61]. The spin-Jastrow factor has the following form:

P = exp [—% > Ufjs;Sj] , (2.5)
7
wheresS? is thez-component of the spin associated to the particle orysitethis
case, the long-range form of;, deduced from analytic calculations, allows one to
reproduce the correct spin-correlation functions in quamspin models [62, 63].
Nevertheless, in the case of the Hubbard model at half fjlling role of the
density Jastrow factor has been generally considere@vaat for the description
of its physical properties and its use was believed to infteemly the accuracy
in energy. Therefore, most of the studies did not employttho§ and considered
the on-site Gutzwiller projection as the standard stamioigt [13, 64].

2.2 Gaussian approximation for the structure factor

In a pioneering paper [16] Reatto and Chester realized itnarder to correctly
reproduce the structure of liquid Helium, a long-range congnt of the Jastrow
factor is required. In order to understand the relation agrtbe Jastrow and the
structure factor, they derived an approximate formulajasve below.

They construct the approximate ground-state of an inteigbiosonic system
in terms of a short-range wavefunction, that we denote With, and a Jastrow
factor. The key point of their derivation resides in the Gaas approximation for
the probability density associated [t8°), which corresponds to write it in terms
of a cumulant expansion, and truncate to second order (spendpx A).
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The calculation of the structure factdé®(k) for | %), within the Gaussian
approximation, corresponds to the following quantity:

00 (U0 png[W0)  [[{dp Yl 2 CDrr-app 1
N(k) = (WO|wo) o f[{dpq}]ezq C(9)pgp—q o 20(k)’

where [[{dp,}]... is a functional integral defined for the set of continuouscfun
tions{p,}.* From the above relation, one finds the cumulaty) = 1/2N°(q).
Now consider the structure factd¥(q) for a correlated wavefunctiopl ;) =
P00 = e~ 2 Xqv(@rar-a| g0 constituted by a Jastrow term acting |drf):

N = P PATY)  [dpg e S O e
(WO P3|wo) n f[{dpq}]eZq 1/2N%(q)pap—q o= 2oqr V(@ )Pyt p—yy
(2.6)

a simple Gaussian integration allows one to get [16]:

_ N
14 2v(q)N(q)

N(q) (2.7)

This relation, which has a standard RPA form, gives the #irecfactor of an
interacting system described by ), from the form of the Jastrow and the struc-
ture factor of thel¥°). The Gaussian approximation fob°), which assumes
that its charge fluctuations are essentially Gaussian drtdeahigher-order mo-
ments can be neglected, is surely valid for an uncorrelatsi@sn, and, in case of
short-range correlations, still holds at large distances, at small;. Whenever
2v(q)N°(q) > 1, one obtains from Eq.(2.7) tha{(q) ~ ﬁ i.e., the small
behavior of the structure factor, which is generally assed to the low-energy
collective excitations, reflects the smalbehavior of the Jastrow factor. Notice
that this result can be easily extended to the case of a farmgystem, by con-
sidering|¥) as the uncorrelated Slater determinant. In the ca$gf= |F'S),
the bare structure factd¥®(q) ~ |q|, while for a BCS Slater determinant one has
N%q) ~ const. In the latter case the presence of a Jastrow factor is regess
in order to obtain the correct behavior &f¢). Moreover, the same relation can
be obtained for the spin, by substituting the spin Jastraarpaters*(q) and the
spin structure factor in Eq.(2.7).

INotice thatp, is in general a complex function and its complex conjugae is
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2.3 Jastrow WF on the continuum: Gaskell approach

Given the Jastrow WF in Eq.(2.1), the minimization of thergges a function of
{v(r;;)} is a complicated problem, that depends on a large numbenafregers
and in general cannot be solved exactly. Considering a temaisystem on the
continuum, Gaskell [65] addressed this problem by using.RPA

Consider the following Hamiltonian, which describes aegsof N-interacting
particles:

12 , 1 12 , 1
H=-- Zvi +35 ; Virg)=—5- Z Vit zq: V(Q)p—qpg, (2.8)
1 17£] ?

whereV (r;;) is a generic pairwise interactioi,(q) is its Fourier transform and
Pq = % Zj e’

One simple possibility to optimize the variational WF is tinimize the ex-
pectation value of the energy:

U, |H|V ;)

_{
ET - <‘1/J“11J> ) (29)

where |V ;) = P;|FS) is the variational WF, constituted by the Jastrow factor
(2.1) and the Slater determinant corresponding to the ueleded Fermi sea. The
use of the Feenberg identity and the fact that the uncoecldeterminant is an
exact eigenstate of the kinetic operator, with eigenvalyeallow one to write the
kinetic energy as:

k2 (FS|P,V2P,|FS)
K = —5- : = 2.10
2m; (FS|P3|FS) (2.10)
- K +h_2 <FS|Zj¢iviU(rij)'ZliiviU(T‘ﬂHFS)
T 2m 4 (FS|PYFS) |

(2

Fourier transforming the(r;;) parameters and using the Gaussian approximation
for the density (RPA) one obtains:

K= Ko— 1= > v (g)N(q) | (2.11)

2m

whereN(q) = (V;|p_,pq|¥ ;) is the structure factor for the interacting system
andwv(q) are the Fourier transformed Jastrow parameters. The jeltenergy
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can be easily calculated in terms®{q) as:

V=SNG - 1V(g) - (212)

q

By making use of expression (2.7) for the structure fact@y) of the interact-
ing system, one obtains an expression for the kinetic anenpiat energy as a
function of the Jastrow parameter(s;) and the structure facta¥®(q) of the non-
interacting system. The minimization of the energy withpexg to thev(q) pa-
rameters gives:

1 1 4mV (q)
= N0<q>+\/ NP " e &19)

which relates the form of the Jastrow to the non-interaciingcture factorV°(q)
and to the potential’(¢). Unfortunately, this formula cannot be easily gener-
alized for a wavefunction that is not an eigenstate of thetkinoperator (e.qg.,
the BCS state). Moreover, the Feenberg identity, which rkaidy simplifies the
kinetic term, cannot be applied for the corresponding mwbtlefined on a lat-
tice. Finally, notice that this formula, in presence of arsinange interaction of
the Hubbard typé/(q) = U, sinceNg ~ |q| at smallg for free electrons, leads
to v(q) ~ 1/¢, and, therefore, following (2.7), t&/(q) ~ |q|. This result will
be compared with the form of the minimized Jastrow parameirrthe Hubbard
model in the following chapter, where it turns out that, foe insulating phase on
a lattice, the Gaskell approach does not give the correcbehfor v(q).

2.4 The generalized uncertainty principle

The generalized uncertainty principle, combined with theational approach,
allows one to evaluate the possible occurrence of longeranger, just by looking
at the form of the corresponding WF. This principle was oradlly introduced to
detect the possible occurrence of a Bose-Einstein contiemshosonic systems,
but it can be easily generalized for fermions and differgpées of order.

The fundamental restrictions on quantum fluctuations aneigdly provided
by the Heisenberg uncertainty principle, which holds fanméan operators. This
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principle has been generalized for non-hermitian opesatand B by Pitaevskii
and Stringari in [66]:

({Al AN{BY, BY) = [([AT, B]))” (2.14)

where(...) indicates the expectation value over a normalized $fgtand|[A, B] =
AB — BA,{A, B} = AB + BA. Pitaevskii and Stringari used the above relation
in order to evaluate the presence of condensate in a systererdcting bosons.
ConsideringA = ¢/ andB = n, = >, chck, I.e., the Fourier transformed
particle creation operator and density, respectively tigain:

ny 1
> — — = 2.15
"IN 2 @19

wheren, = (clc,) is the momentum distributiony (q) = (n_,n,) is the static
structure factor and, is the condensate fractiof,< n, < 1. Consider now the
normalization condition:

1 d—
2o [ d(g) m=iom

whereV is the volume and the dimensionality. The above inequality, together
with the normalization condition, ensures that, in one amd dimensions, no
condensate exists i¥ (q) ~ ¢*. Indeed ifN(q) ~ ¢* for ¢ — 0, then Eq. (2.15)
implies that at long wavelengths the momentum distributiverges asy, ~ q%
and the normalization condition is violated fér= 1,2. The only possibility is
that, in presence a¥(q) ~ ¢, there is no condensate, i.gy,= 0. In this way the
divergence of, in Eq.(2.15) is avoided and the normalization conditiordsol
Within the variational approach, Eqg.(2.14) can be used mhgoation with
the Reatto-Chester formula given in (2.7), which s¥tg) ~ qu) and shows
explicitly the relation between the form of the Jastrow da@nd the possibility
of having Bose-Einstein condensation. It turns out thath wiq) ~ q% no con-
densate exists both in one and two dimensions. Insteads ailegular Jastrow of
the formu(q) ~ ‘—;‘ guarantees the absence of a condensate only.iMareover,
by considering different operator$ and B and different forms of the Jastrow
factor and determinant, one can investigate the possilderance of ordering
also in the fermionic case. The results for BCS and antifeagnetic (AF) order
are shown in Table 2.1. For the BCS off-diagonal long-rangke, one uses the

IN
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Dimension v, N, |D) W)
1d 1/¢ |¢l BCS no-BCS
2d 1/¢ |¢l BCS BCS
1d 1/¢> ¢* BCS no-BCS
2d 1/¢> ¢* BCS no-BCS

Dimension v S, |D) |¥%)

1d /¢ |q| AF no-AF
2d 1/q |q| AF  AF
1d 1/¢> ¢* AF no-AF

2d 1/¢> ¢* AF no-AF

Table 2.1: Various types of order | ;) and|¥5*) according to the generalized
uncertainty principle (2.14) combined with the Reatto-&kerelation (2.7). The
first column indicates the dimensionality. In the secondigwliv, (v;) shows the
leading behavior for smalj-of the density (spin) Jastrow parameters. The third
column N, (S,) shows the smal- behavior of the corresponding charge (spin)
structure factor obtained with the Reatto-Chester ratfatithe last two columns
give the type of order associated to the uncorrelated SiiterminantD) used

to construct the variational WF and the resulting order @ Jastrow WHY ;)
(|5+)) respectively.

operatorsA = n, andB = Al = . eiq'jc}chW with ¢ being the vector cor-
responding either to zero or to a nearest-neighbor lattigelatement. For AF
order, one used = Sz andB = Qf = Zj(—l)je"q'jc%cjl. It turns out that the
dimensionality plays a fundamental role in determiningdbeurrence of ordered
phases fofV ;). In particular, a Jastrow of the form{q) ~ ﬁ is able to destroy
the long-range order only ihd, whilev(q) ~ qiz can kill the long-range order both
in 1d and2d. The two leading behaviors of the Jastrow factor that arsicened
reflect the two realistic possibilities for the structuretta, namelyN, ~ |q| or
N, ~ ¢*. These relations will be verified numerically in the next joteas.
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2.5 Criteria for detecting an insulating ground state

Within the band-theory approach, a straightforward wayistinguish between
metals and insulators is to look at the position of the Feewvel: either the Fermi
level crosses one (or more) band, i.e., the system is netatlit is located within
a band gap, and therefore the system is insulating. Thianeiexplains the insu-
lating/metallic behavior by only looking at the one-pagispectrum of the sys-
tem. In the variational approach, one can only handle tla¢ ground state and
not the full spectrum of the Hamiltonian. Therefore, anottr@erion to detect
the conducting properties of a system is needed. In a milegpaper Kohn [67]
discussed this problem, emphasizing that the qualitatiference in the conduct-
ing properties of a systemeflects a different organization of the electrons in the
ground state Indeed, for realistic Hamiltonians, apart from pathotagicases, it
is well accepted that the long-distance behavior of caieigunctions reflects
the presence or absence of a gap in the low-energy exciation

Following these ideas, in order to detect the insulating etaftic proper-
ties of the WF, we calculate of the expectation value of praperators on the
ground state. One possible route consists in usingfteem rule, that gives an
upper bound for the gap associated to the low-energy exxcitaby looking at the
smally behavior of the charge density structure factor. Anothesmlity comes
from the calculation of the Berry phase, which allows us taleate the degree of
localization of the ground state. Finally, for fermionicsggms, one can also eval-
uate the insulating or metallic character of a state by logldat the momentum
distribution and at the presence of Friedel oscillations.

In the following we describe these observables and thderéiht behavior for
both metallic and insulating states.

2.5.1 Thef-sumrule

In a series of seminal papers [68, 69], Feynman considelgwienergy excita-
tions of liquid Helium and derives an important relation amgdhe form of the
structure factor of the system and the presence of a gap. éteths following
ansatZor the excited-state WF:

[Wy) = nq| Vo), (2.16)
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wheren, is the Fourier-transformed particle density gng) is the normalized
ground-state WF. Notice that Eq. (2.16) describes colleakcitations at differ-
ent wavevectors, that correspond to phonons for liquid Helium and to plassnon
for a system of electrons.

Now consider the variational estimator for the excitatioprgy:

Aq) — (el = Eo)|¥s) _ (Foln_o[H, n] %)
<qjq|qjq> N(q) 7
whereN (q) is the static structure factor for the ground st&ltg) = (Vo|n_,n,| Vo).
The interaction term, which generally depends only on thmsiiyy commutes with

nq, While the kinetic term does not and gives:

<‘110|n—q[H7 an\I/O) ~ q27

from the two previous equations one recoversfireum rule:
q
Ag) ~ —— . (2.17)

Since the form of¥,) is only an approximation of the true excited state, Eq.(R.17
gives an upper bound for the excitation energy. Then, ibfed that, whenever
the structure factor is quadratic in A(q) is different from zero, i.e., the system

is gapped (or more precisely the gap has a non-zero uppedhoOm the other
hand, if N(q) ~ |¢| the system is surely metallic, since the upper bound for the
energy associated to the lowest excitations is zero. Irem®fis paper, Feynman
specifies that thg-sum rule gives a true upper bound for the gap when the only
low-energy excitations correspond to the collective mogigsn by the ansatz
(2.16). This assumption is known as giagle mode approximatioand has been
applied also for fermions in [70, 71].

Within the variational approach, the use of a long-ranggdadactor ensures
that thef-sum rule holds also variationally. Indeed, consider thedd@n which
holds at the variational minimum:

OET
v,

-0 Vg, (2.18)

where as usuab; = % and|V ;) is the Jastrow WF. Standard derivation

of Er with respect to the parameterg allows one to obtain thg¢-sum rule of
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Eq. (2.17), wheré\(q) now corresponds to theariational charge gap, namely to
the difference among the variational energy\wf) and the energy of the excited
staten, |V ;).

2.5.2 The Berry phase

This method, introduced in [72], is good for studying thedwacting properties of
one-dimensional periodic systems. It basically consist®i¢asuring the degree
of localizationof the WF. This is a non-trivial property since the use of peic
boundary conditions makes the evaluation of the locabratif a WF very hard to
formulate. Indeed, the expectation value of the positiograforz has no mean-
ing inside a set of periodic WFs and it is necessary to intteda new position
operator. In [72] it is shown that a well defined position @ter can be written in
the following form, which recalls the definition of the Bemggometrical phase:

L P
() = 5-Sm (Infw|e T Zim0m)9) ) (2.19)

™

where3m denotes the imaginary part anid) is a normalized periodic WF. With
this definition, the position operator is periodic, and tRpextation valugz) is
defined moduld.. In order to evaluate the degree of localization for a peciod
system, one must calculate the related quantity:

2 = (W] E Xi=1im | @), (2.20)

where as usual,; counts the number of electrons on site

In [72] it is shown that, in the thermodynamic limit, assumes the value:

I) z;, — 1if the system is localized, henaesulating

IT) z, — 0 if the system is delocalized, hengeetallic

An intuitive argument, which suggests the two limiting v@duof z;, comes
from the usual band theory picture, by considering an uetated WF|¥) un-
der the action of a magnetic field. In one dimension, the perisystem has a
ring geometry. Consider a magnetic flux through the cent¢hefring, and the
associated vector potentidl= 2{ The corresponding WF can be written as:

W) = €' F Xm0 | ) (2.21)
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i.e., the magnetic field shifts the occupiedectors off V'), givingka = k+ 27/ L.
The quantityz;, defined in Eq.(2.20) corresponds to the overlap betW&gh and
|W). If the system is metallic, there are other levels available in general the set
of occupied state§k 4 } of |V 4) will be different from that of the unperturbed).
Therefore, the two WFBD 4) and| V) will be different and generally orthogonal,
leading to a zero overlap, implying, — 0 in the thermodynamic limit. On the
other hand, in the insulator, the shiftirvectors gives again the same set for both
|W4) and|W), because there are no other levels available within theBfitgouin
zone, leading ta; — 1 in the thermodynamic limit.

2.5.3 The quasiparticle weight and the momentum distributdn

Consider a system ofV particles described by a ground-state W) and
ground-state energ¥/’. In the Lehmann representation the corresponding Green’s
function can be written as:

Gllyw) = < Znk) + Zun(k) ) (222

w—EY —ENt1 440 w—FE}) —EN-1—i

m

where the sum is over all the possilfl¥ + 1)-particle states with momentuin
and energyEN*! that are connected by @ne particle excitatiorto the ground
state|V)'), andZ£ (k) is given by:

Zon (k) = [(W5 = (B) e | Pg) |2, (2.23)

whereci = ¢l (¢ = ci,) creates (annihilates) an electron with momentum
and spino in the N particle initial statg w}').

For free fermionsZ= (k) = 6,u.m,, Since the excited stat&Y=!1(k)) exactly
corresponds te;"|V)') and eachk univocally defines the excitation (labeled with
mg). This reflects in a sudden drop from 1 to O in the momentunribigionn,,
around the Fermi momentuk).. When Landau-Fermi liquid theory holds, the
low-energy excitations are coherent arigd the quasiparticle weightrepresents
the amplitude associated to the quasiparticle excitatitmse to the Fermi surface,
with momentumk. Similarly, one finds that the quasiparticle weight of a Ferm
liquid corresponds to the step discontinuity of the momemtlistribution near
kr, which is reduced t&@, < 1 when interaction is turned on. Notice that the
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calculation of the overlap (2.23) requires the knowledgé¢hef N + 1 particle
eigenstate. In general, one introduces an ansatz for tloitsedxstate, that for
projected WFs of the forml'p) = P|D) reads:

(WNE (k) = Pep|D) = Pep P~ PID) = G| Vp), (2.24)

where, if the projectof® admits an inverse;;- can be interpreted as a dressed
guasiparticle with momenturi [73]. The behavior of the quasiparticle weight
strongly depends on the accuracy of the ansatz#iért!(k)), as we will see in
the following chapters.

If Z, = 0 there are no quasiparticles defined, and Landau-Fermulitig-
ory breaks down: the excitations cannot be represented &sipgarticles and the
Green'’s function contains only the incoherent part. In thgecof insulators, the
guasiparticle weigtt¥,, can be finite, but this does not imply a step discontinuity
in the momentum distribution, which turns out to be a smoaticfion ofk due
to the finite gap in (2.22). It is a debated issue if, for cated antiferromag-
netic insulators, the quasiparticle weight vanishes oraiamfinite as it happens
in standard band insulators [74—76]. The absence of a jurtigimomentum dis-
tribution is a necessary (but not suffici@htondition in order to have an insulator
that does not break any symmetry.

2.5.4 Friedel oscillations

The Friedel oscillations [77] are periodic modulationshe tensity profile that
arise as a direct consequence of the presence of a Fermesur@onsider for
simplicity free electrons in a one-dimensional chain ofglénl. For eachk the
WF associated to each electron can be written as a supegpositan incoming
and a reflected plane wave:

Uy (x) = %(e“‘m _ emikey — % sin ().
The corresponding charge density is:
_ o A fFr L sin(2ken)
(n(x)) _2zkjfk|qfk(x)\ ==/ dksin®(kz) =n — ———,  (2.25)

20One can also have a metal with no Fermi surface like in Lugtitiguids
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where f is the Fermi distribution function and is the density of the homoge-
neous electron gas. From the above derivation, it turnshaitthe presence of a
Fermi surface atr determines the oscillatory character of the charge. Inigéne
for eachd-dimensional weakly-interacting fermionic system, whisltharacter-
ized by a discontinuity in the momentum distributimparoundk -, one recovers
the same behavior, with the oscillations that decay dswith the distance.

Therefore, since the discontinuous characten,0fit k£ signals a metallic
phase, the presence of Friedel oscillations constitutéhanariterium in order to
distinguish a metallic from an insulating state. Noticet tive modulation of the
charge given by (2.25) corresponds to a singularit@kat in the corresponding
structure factor. Therefore, just by looking at the behaafdhe charge structure
factor at2ky, one has information about the metallic character of theespond-
ing state.



Chapter 3

The Variational Quantum Monte
Carlo method

Monte Carlo methods allow one to evaluate, by means of a astichsampling,
integrals over a multidimensional space. This is very udefuquantum many-
body problems, where in general the calculation of expecrtatalues cannot be
handled analytically, since the wavefunction of the systamnot be factorized
into one-patrticle states.

The core of all Monte Carlo methods is the Metropolis aldonit{ 78] which
generates a Markov chain, i.e., a random walk in configunatpace. The config-
urations sampled during the random walk are distributeey af certain number
of steps required to reach equilibrium, according to a gatationary probability
distribution.

The Variational Quantum Monte Carlo approach consistsendinect appli-
cation of the Metropolis algorithm to sample the probapiiistribution given by
the modulus squared of a given trial wavefunction.

Since the topic of Monte Carlo methods is covered by manypte#s we will
not describe its general principles in this Thesis. In tHe¥ang, we will focus
on the direct implementation of the Monte Carlo statistmathod in our quantum
variational problem, showing the tricks which allow us tdab an efficient algo-
rithm for the description of remarkably large systems. Mwoes, we will describe
in detail the Stochastic Reconfiguration algorithm whidiewas us to minimize
the variational energy in presence of a large number of patens
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3.1 The Metropolis algorithm for quantum problems

We have seen in Section 1.4 that the general form of a coecblaavefunction is
constituted by a correlation term acting, in the fermiorase, on a Slater deter-
minant, i.e.|¥) = P|D). In the following we show how the statistical evaluation
of integrals containing the square modulus of this waveionds efficiently im-
plemented.

The first step in the Variational Monte Carlo algorithm cetsiin choosing
the initial coordinateq z;}, for the V particles on the lattice, either randomly
(with the condition that¥ (z)|* # 0) or taking them from a previous Monte Carlo
simulation. Then a a new trial configuratign! }, is chosen by moving one of
the particles from its old position to another site. The Markhain is then con-
structed following the Metropolis algorithm, as shown el&or any move from
the n-th configuration of the Markov chaifw;},, to the new trial configuration
{«T},, the latter is accepted, i.€4;},,.1 = {z!}, with a probability equal to:

P=min[l,R] with R= ’M
where¥ ({z;},) is the wavefunction of the system associated to the configara
{z;}». Thisis done in practice by extracting a positive randombert < n < 1;
if R > nthen{z;},., = {z!},, otherwise the proposed move is rejected and
{z;}n+1 = {z;}n. The calculation of the rati® would require, for fermions, the
evaluation of two Slater determinants, which scaléVds The fact that the two
configurations are related among each other by the dispkaeof one particle,
allows us to perform a more efficient calculation, which femhions corresponds
to O(N?) operations. Also the ratio among the correlation terms egpelsformed
in an efficient way, taking into account that only one paetichanges its position.
For bosons, where only the correlation term is presentatlosvs us to obtain an
algorithm that scales a3(/V) instead ofO(N?). These procedures are explained
in Appendix B.

After a certain number of steps, known as thermalizatior tithe configura-
tions {z;}, generated at each stepin the Markov chain are independent from
the initial condition{z; }, and are distributed according to the probability:

S () [
B ST PR

2

: (3.1)
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Notice that this algorithm does not require to know the ndization of the wave-
function, since it always deals with its ratios over differeonfigurations. This
is a big advantage of Monte Carlo methods, since many timesdhmalization
constant is not known.

Finally, the expectation valug) of any operatoir’ reduces to average over
the values assumed [y along the Markov chain:

1 XM
F=— g F({zi}tn), (3.2)

whereF'({z;},) is the observablé calculated for the configuratidx; },,. Indeed
the central limit theorem ensures that:

where(F') is the true expectation value &f calculated from the probability,.
The statistical error related to the fact that we are sarg@ifinite set of configu-
rations can be deduced from the variance:

One can show that the statistical error scales as the sqoaref the inverse
length M of the Markov chain, namely:

whered?(F) = ((F? — (F)?)) andr is the autocorrelation time, i.e., the number
of steps of the Markov chain which separate two statisygatiependent config-
urations. Therefore, for large enough samplings, the gesgaantities calculated
with the Metropolis algorithm give reliable estimates oé tihue expectation val-
ues of the system. In order calculate expectation valuesmgmocorrelated sam-
plings, thebin techniquas usually employed. This corresponds to average first
amongM,;,, configurations, according to (3.2):

1 Mpin

Fhin _ T Z F({zi}n) (3.3)
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In this way the quantitieg™*™ are less correlated than the origina({z;},).
Then, the calculation of the expectation value follows:

Fbin (3.4)

where Ny;,, = M/M,;,. In this way we getr ~ 1, hencel’ = (F) and the
variance can be evaluated in the standard way as:

) =ty D U ) 35

3.2 The minimization algorithm

Consider the variational wavefunctiow,(«)), wherea = {«,} generally cor-
responds to the set of variational parameters for both theledion factor and
the Slater determinant introduced in Section 1.4. The dapiea value of the
variational energy can be written as:

By(ay - (@I Ur@) T (el Peule) L g

(Wr ()| Vr(a)) 2 (@[ Ur(a))?
wherekE is the ground-state energy and the completeness refation) (x| over
all possible configurations) has been inserted. The quantitye (z) is called
local energyand is given by:

(x| H[Wr(a))
(@[ ¥r(a))

Eq.(3.6) shows that the expectation value of the energyesponds the mean
value of the the local energy, (z) calculated among all possible configurations
|z), each weighted according to the square modulus of the naadalvavefunc-
tion. As shown in the previous section, this can be done sidally by means
of a sum over the Markov chain in configuration space:

er(z) = (3.7)

Er(a) = % Z er(z,).

n=1

For simplicity we indicate withz) the configuratior{z;} for N particles.
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Let us now explain how to vary the parameters- {«ay } in order to minimize
the variational energy, following the Stochastic Reconfijon algorithm intro-
duced in [17]. To this purpose consider the starting triatefianction| ¥ (a?)),
wherea® = {a!} is the set o initial variational parameters (wheke= 1, . .. p). 2
In linear approximation the new wavefunction, obtaine@maé small change of
the parameters, can be written as:

r() = [Wrat)) + 3 s 222D

k=1

p
1+ Z (SOékOk
k=1

Gak

[Tr(a®)), (3.8)

where the operator®,, are defined for any configuratigm) as the logarithmic
derivative of the wavefunction with respect to the paramsete 3:

_ 0lnVg(x)

Ok(x) D (3.9)
and¥g(x) = (z|¥r(a)). PuttingOy = 1, dap = 1 we can write:
p
[Ur(a')) = 60Ok Ur(a)). (3.10)

k=0

In generaldoy # 1, due to the normalization dff1(o’)), and one can redefine
day = g%’g for each variational parameter,. In order to find| V(o)) such
that it approaches the ground state, one possibility residprojection methods.
A standard procedure of projection methods correspondstéo @ut the exact
ground-state wavefunction by iteratively applying the Hémnian operator to the
trial ground state. Therefore, we can apply plogver methodo the starting wave-
function:
Tr(a®)) = (A — H)|[Wr(a)), (3.11)

where A > M IS a positive constant, which ensures convergence to the
ground stateF, being the ground-state energy afg,, the largest eigenvalue
of the Hamiltonian. The next step, in order to ensure that(«’)) has a lower

2In the following let us assume for simplicity thak(a®)) is normalized.
3For example ify, = vy, i.€., the Jastrow parameter associated to the distartbe operator

Oy, is defined a®y (z) = >, nj()n;1r(2)
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energy with respect tpUr(a®)), corresponds to equate Egs. (3.10) and (3.11) in
the subspace spanned by the vec{@ps| ¥+ (a))}.

Combining ther.h.s. of Egs. (3.10) and (3.11) and projedtiem on thé'-th
component we get:

In this way the quantitiesa,, correspond to the variations of the wavefunction
parameters that lower the variational energy. They can lmelleéed by solving
the linear system of equations of the type given in (3.12} dtsystem ofp + 1)
equations, which can be written as:

p
fro = daySy, (3.13)
k=0

where f,, are thegeneralized forces
fir = (Wr(a®)|Ow(A — H)[Wr(a?)) (3.14)
andS;. isthe(p + 1) x (p + 1) positive definite matrix given by:
Sk = (Ur(a”)|Op Ok Ur(a)). (3.15)

The system can be reduceditequations sincéq is related to the normalization
of the wavefunction. Indeed, considering Eq.(3.12)4o# 0, since we have put
Oy = 1in (3.10), the value of«, reduces to:

dog = A — Ep(a) Z(s@ksko (3.16)
Substituting (3.16) in (3.12) we obtain the reduced systéagaoations:

p
fk == Z 5ak’gkk’; (317)

k'=1
where:

fr = (Ur(”)|Op| U7 () (T (a®) [ H[T7(a®)) — (T7(a®)|Op H[Pr(a?))
(3.18)
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and
gkk, - Skk/ - SkOSk/O. (319)
Notice that the forceg), correspond tqf, = %ﬁf). Since at equilibrium one has

fr = 0, implying day, = 0, this corresponds to satisfy the Euler equations for the

variational minimum?#
(9ET(oz)

8ak
Moreover, from the definition (3.18), the fact that = 0 implies that the varia-
tional wavefunction fulfills the same property of an exagesgistate, namely:

=0.

(OcH) = (Or)(H), (3.20)

which suggests a good accuracy of the variational statevéithorespect to the
expectation values of the operat@rs.

Let us remark that the Stochastic Reconfiguration methodrig ¢lose to the
Steepest Descent method. The main difference, which allsws obtain a more
stable algorithm, is that the Stochastic Reconfiguratiothot takes also into
account the variation of the wavefunction. Indeed it isigtrtHorward to show,
by using the linear approximation (3.10), that Eq. (3.1 8dsivalent to the Euler
equation with the addition of a constraint related to themof the wavefunction,
namely:

0[Er(a®) — A ((¥r(a®)|¥r(a/)) — 1)]
dal
where) is a Lagrange multiplier that ensures that the norm of thevisaeefunc-
tions does not differ of a large quantity. The fact that wedaange the parameters
of a large amount, without changing notably the wavefumgtadlows us to reach
the minimum in a stable way, with fewer iterations.

Indeed, in the Stochastic reconfiguration algorithm, theatiansja,, are re-
lated not only to the forces, but also to the inverse covadamatrixS—!, namely,
by writing Eq. (3.17) in vectorial notations:

— 0, (3.21)

dao=S1f.

The diagonal elements of the reduced covariance matri®)3ive direct infor-
mation about the fluctuations of the parametes The fact that each component

4This is strictly valid in the case in which the Hamiltonianesanot depend on the variational
parameters, which is our case.
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of the force is multiplied by the inverse of the fluctuationl®ws us to move
mainly along the directions where the variance of the cpoading operato©;
is small, i.e., where the signal-noise ratio is small. Thsids undesired instabil-
ities due to the fluctuations of the stochastic system. Maredhe presence of
non-zero off-diagonal element; allows us to move each parameter by taking
into account all the other directions at the same time. Tberewe reach the
variational minimum being driven not only by the high-eneo@ntributions, but
also by the parameters which contribute at low energy.

The equations (3.17) are solved stochastically with thetgl@arlo algorithm.
In practice, we performM/sz Metropolis steps in order to calculate the expecta-
tion values of (3.18) and (3.19) and have small enough fltictoss Then the
linear system (3.17) is solved in order to find the variationg. Finally, once
the variationgd«, } are calculated, the variational parametgtig} are modified
according to:

o) = oy + X ooy,

whereX. is a number that can be tuned in order to control the chandeegidram-
eters. Generally one starts with a laigen order to reach the minimum in few
iterations, and consequenflyis decreased in order to reduce the fluctuations of
the converged parameter. The new wavefunctiof')) is then considered as the
starting staté¥ (a)) and the method is reiterated, until convergence is achieved
Indeed, the stochastic nature of the system (3.17) imptiasthe forcesf;,
are always determined with some statistical nejiseand by iterating the mini-
mization procedure several times, even when the varidtramamum is reached,
the parameters will fluctuate around their mean values. efbes, once conver-
gence is reached, one must average over a certain numberaifans in order
to find the optimal parameters that are close to the energymam. Indeed, in
the case of a quadratic energy landscape, the averagedgiararaorrespond to
the minimum energy. However, in many cases it is possiblate imon-harmonic
contributions, and the larger are the fluctuations, theslaigthe bias that is intro-
duced. Indeed, one can describe the evolution of the vamiatparameters during
the minimization iterations by means of a standard Langdymamics. The sta-
tistical fluctuations are similar to the thermal noise of tla@gevin equation:

O, = fro + Mk, (3.22)
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where the thermal noise is defined as:
<77k (t)nk/ (t/)> = 2Tnoi566(t - t/)gk,k/- (323)

By increasing the number of sampled configurati@is,. diminishes, since the
fluctuations are reduced, namély,;,. o M;é. Therefore, there is an optimal
value of Msr, which guarantees a fast convergence and avoids the pam@met
to be biased within the statistical accuracy of the samplikgreover, we find
that the optimall/sr also depends on the type of operatérsincluded in the
minimization, hence on the type of variational parameterse minimized. For
example, when considering the Hubbard model),if= Zj h;d;, namelyOy, is
the holon-doublon operator associated to the distahoee must sample enough
configurations in order to haw®);) # 0, which, for large distances, is strictly
dependent on the value of the interaction, since the nunilons and doublons
decreases with//¢. Therefore, by increasing/¢, one is forced to increasés .






Chapter 4

Mott transition in the
one-dimensional Hubbard model

In Chapter 1 we have seen that the Hubbard model on the hypetattice orders
antiferromagnetically for any finit&, thus masking the correlation-induced Mott
transition. In one dimension instead, since quantum fldicins are very strong,
no symmetry breaking occurs. Therefore, the one-dimeasidnbbard model,
whose exact solution is known by Bethe Ansatz [6], congig@tgood playground
where to check the accuracy of possible variational wavetfans describing an
insulating state that does not break any symmetry.

Although analytical techniques, especially bosonizafit8], give important
insights into the low-energy properties of one-dimensi@yatems, they do not
provide a simple representation of the ground-state wantion (WF). In par-
ticular, in the Hubbard model, the ground-state WF is vewplved within the
Bethe ansatz formalism and only in the strong-couplingtlitris possible to ob-
tain significant simplifications because of the explicitéaization of the WF into
a charge and a spin part [80]. Therefore, a good variatiomsdta that enables
one to obtain the physical properties of the system in agdttiarward way could
be very helpful.

In this chapter we show thatlang-range Jastrow factois able to describe
correctly the Mott insulating state. We compare the propedf the minimized
Jastrow WF with those found for the short-range Gutzwilledt anany-body cor-
relation factors described in Section 1.4, and show thattraadly to the latters,
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the Jastrow factor allows us to recover an insulating stétte tive correct charge
fluctuations, without breaking any symmetry. In the simple-@imensional Hub-
bard model at half filling, we find, in agreement with Betheand6], that a

metal-insulator transition occurs as soon as one turnsemthraction, and the
system is insulating for any non-zett't.

Moreover, in order to study the feasibility of the Jastrow YdFlescribe the
Mott transition, in the second part of this chapter we coaiside Hubbard model
with the addition of a next-nearest neighbor hopping terhe ¢tt— ¢ Hubbard
model. This model has a richer phase diagram, which indeedsla metal-
insulator transition at a finite value éf/t. We show that, with the long-range
Jastrow WF and a proper choice of the determinant, we aretalulearacterize
all the phases involved, namely the ordinary Mott insulatgh power-law spin
correlations at smaitl /¢, the spin-gapped metal above a criti¢dt and smallU,
and a dimerized Mott insulator at large repulsion. For théatdasulator transi-
tion, we find a criticallU /¢ in agreement with other approaches, signaling that the
Jastrow WF offers a valid and accurate tool for the variaiaescription of the
Mott transition.

Finally, a metal-insulator transition can be driven notydoy increasing cor-
relation, but also by varying the band filling. We considas tiiling-controlled
metal-insulator transition in the last part of this chaptenere we show that the
addition of holes in the half-filled Hubbard model at finitg't turns the Mott-
insulating state into a correlated metal. We show that tse#da WF can accu-
rately describe the metal-insulator transition inducedéyd filling and gives the
correct power-law behavior of the correlation functionthia metallic phase, with
the exponents predicted from Luttinger-liquid theory.
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4.1 Results for the one-dimensional Hubbard model
at half filling

Let us recall the one-dimensional Hubbard Hamiltoniamaghe same notations
of Section 1.3:

=—1 Z CloCit1,0 + h.c.) + UZ NNy - 4.1)

ZO'

Here we consider a chain df sites, with periodic boundary conditions and
electrons, withV = N; + N, beingN; (V)) the total number of spin up (down)
electrons andV; = N,. Since we are interested in the properties of the Hubbard
Hamiltonian at half filling, we takéV = L electrons. Moreover, in order to have
a closed shell in the uncorrelated Fermi sea determinahisheed to construct
the variational WF, we consider different lattices/of= 4n + 2 sites, withn a
positive integer.

In the following, we consider different variational WFs tesgribe the Mott
insulating phase for the Hubbard Hamiltonian defined ablwwerder to show the
advantage of our approach and check the validity of ourraifer distinguishing
a metallic from an insulating state, we begin with the eadyiational attempts
for the description of Mott insulators.

Following the same notations of Section 1.4, we comparé&ihiewiller wave-
function

|FS) (4.2)

“I’g> = eXp [—9 Z NG|

and theGutzwiller plus short-range holon-doublon wavefunction

Wy, 1p) = exp [ gznzﬂm] exp [f Z hudyy,

<l,m>

IFS) ,  (4.3)

with the properties of two wavefunctions that have a longgeacomponent in
the correlation term. The presence of a long-range coipeldctor constitutes
the main novelty of our approach. Our argument is that, ireotd bind holons
and doublons over all distances such that they cannot meedyfra long-range
correlation term is needed. To this purpose we consideGtitewiller plus long-
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range holon-doublon wavefunction

\‘I’g,nHD> = €Xp [—gznmnu] exp [Z fimhidp,
% lm

where f;,,, = fi_m are translationally invariant variational parametersoass
ated to all independent distances. This holon-doublon &dlows in principle to
correlate holons and doublons at all length scales. Finakyconsider théong-
range density Jastrow wavefunctiotroduced in Eq. (2.1), which for a fermionic
systems on a lattice has the form:

1
|\I/J> = exXp [5 Z Vi M1

ij

|F'S) | 4.4)

IFS) . (4.5)

In the following, we minimize the energy for the WFs of Eqs2(4.5) for differ-
entvalues ot/ /¢, and compare the conducting properties of the variatiomalrd
states corresponding to the different ansatz.

4.1.1 Conduction properties of the variational wavefunctons

In order to detect the conduction properties of the diffes@fs described above,
we consider the Berry phasg and the charge-density structure facfqy, fol-
lowing the criteria described in Section 2.5.2 and 2.5 4peetively.

Let us first consider the simple Gutzwiller WF, with and wighahe short-
range holon-doublon term. In both cases, the Berry phasshasin the ther-
modynamic limit, signaling that the system is delocalizeeince metallic. The
same insight comes from the behavior of the charge-densitgtare factorV,,
see Figure 4.1 and 4.2. By increasifigt, the charge fluctuations decrease as
expected, but the structure factor is always charactetbyeallinear behavior for
smallg, i.e., N, ~ |q|, as it happens for the non-interacting structure faﬁtgnof
free fermions. This shows that the short-range terms of(E@3.and (4.3) can-
not change the charge-density correlation functions atdoergy, and the struc-
ture factor keeps the same metallic behavior inherited tleerSlater determinant
|F'S). The effect of the Gutzwiller and short-range holon-doultierms is just
to renormalize the charge-fluctuations of free electrorsradll distances, giving
a correlated metallic state characteristic of Fermi liguith these WFs, the val-
ues of the optimized parameterand f remain finite for any finite value df /¢,
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Figure 4.1:_Gutzwiller WF Left panel: Berry phase calculated fgyt = 4 and
U/t = 10 as a function ofl/L. Lines are two parameters fits. Right panel:
corresponding charge density structure faciqrfor 82 sites. The dashed line
denotes the behavior d‘f’g, the charge structure factor for free fermions. Inset:
N,/q taken at the samg /1.
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Figure 4.2: Gutzwiller + short-range holon-doublon WKFhe same as in Fig-
ure 4.1 for the WF defined in Eq. (4.3).

even in the thermodynamic limit, implying that holons andiblons are always
present. Since the WFs of Eq. (4.2) and (4.3) lack the longeaorrelations that
could bind these charged objects, we naturally obtain alheettate for any value
of the Coulomb strength’/¢.
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Figure 4.3: Gutzwiller+ long-range holon-doublon WFhe same as in Figure 4.1
for the WF defined in Eq. (4.4).

Quite surprisingly, the addition of a long-range holon-bllom correlation fac-
tor does not change the qualitative behavior paind V,, signaling that also WF
(4.4) is metallic for allU /¢, as shown in Figure 4.3. Indeed, the simple argument
of correlating the empty and doubly-occupied sites ovediallances is not suf-
ficient to give an insulating state: at the variational minimthere is no sign of
this long-range correlation. This is clear from the behawitthe holon-doublon
parameters, which are positive at short distances (withoytsize dependence),
promoting configurations where holons and doublons aree¢meach other, and
they become negative for large distances (see Figure 4¥9n forU/t = 16
the long-range part drops abruptly to very small values (sset). Indeed, a
strong attraction among holons and doublons for all digtaweould determine
an accumulation of charges in one region of the lattice anshaequent kinetic-
energy loss. In order to avoid these energetically-untedvaronfigurations, at
the variational minimum the holon-doublon parametgrsemain small at large
distances. We will see in the following that a good wavefigrgtcapable of cor-
relating holons and doublons at all distances, must comtiama repulsive term
among holon-holon and doublon-doublon, which avoids tlegd accumulation
and guarantees the correct correlation among charges.

Indeed, considering the long-range Jastrow WF (4.5), iniféigt.5 we show
that it is characterized by, — 1 in the thermodynamic limit, signaling that
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4,10, 16. Inset: Long-range behavior of the holon-doublon variaigparameters
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Figure 4.5: Long-range Jastrow WFhe same as in Figure 4.1 for the WF defined

in Eq. (4.5).

structure factor isV, ~ ¢2, which, according to thg¢-sum rule, indicates a finite
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upper bound for the charge gap. Remarkably, the behavioi, strongly differs
from the structure factor of the non-interacting Fermi sespecially at small-
¢. Indeed, the inset of Figure 4.5 clearly shows thgfq vanishes at smatf,
contrarily to what happens for the other variational WFscdbed above. Both
criteria therefore indicate th#tie system is an insulatowhere charge fluctuations
are still possible but strongly suppressed at large disgnc
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Figure 4.6: Jastrow parameters for all independent distafar a chain’, = 122
sites.

The importance of the long-range component in the coraeldactor is clear
from Figure 4.6, where we show the behavior of the Jastroamaters as a func-
tion of the distance. It turns out that is a smooth function of the distance, and
the strength of the Jastrow parameters increases whermgiicgé//t. Notice that
the relative strength of the long-range part is very prormedneven for very large
r, a characteristic feature of strongly-correlated insukgtwhere particles are
correlated over all distances. Of course, the short-ranggonent contributes to
the main part of the variational energy, while the long-terms give only low-
energy corrections. However, the long-range Jastrow égiblmes more and more
relevant when approaching the strong-coupling regime dod/s us to recover
the correct charge-correlation functions for the insulato view of the previ-
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ous discussion concerning the Gutzwiller plus long-rar@erirdoublon WF, it is
useful to write the density-density operator in the Jasfamtor in terms of holon
and doublon operators:

(n; — 1)(n; — 1) = hih; + did; — hid; — d;h;, (4.6)

whereh; is the holon (H) creation operator adgis the corresponding creation
operator for doublons (D). It turns out that; < 0 (see Figure 4.6) implies H-H
(D-D) repulsion and H-D attraction. The latter embodieshimeling of H and D,
while the repulsion prevents accumulation of H-D pairs. tTihgust the desired
type of correlations missing in the previously analyzed Wkshoteworthy fact
is that also the Gutzwiller WF with a long-range holon-daubtorrelation factor
given in (4.4) misses one of the fundamental ingredientet¢over an insulating
state, i.e., the H-H and D-D repulsive term. The correct lastsng behavior is
recovered only when both the attractive and repulsive tearaspresent for all
possible distances.

4.1.2 Properties of the insulating Jastrow wavefunction

In order to characterize the properties of the Jastrow W%) (#vhich shows the
correct insulating behavior at half filling, in Figure 4.7 w@mpare its variational
energy with the one found for the Gutzwiller WF. It is well kmo that, for the
Heisenberg model, the fully projected Gutzwiller wavefiime |V,_ ) is very
accurate [81, 82]. Instead, considering the half-filled baro model, it turns
out that, in the limit of large//t, the Gutzwiller WF (4.2) gives a rather poor
variational description, missing completely the supehexge energy generated
by the virtual hopping processes. This happens becausechsaising//t, the
Gutzwiller parameteg increases, and the hopping processes, which create double
occupancies, become less probable, with a consequenitckeretrgy loss.

In Section 1.3.2 we have seen that the strong-coupling libhe Hubbard
Hamiltonian can be obtained by means of a canonical tramsfoone™. Fol-
lowing this procedure, the expectation value of the eneagyttie Heisenberg
Hamiltonian with respect to the fully-projected Gutzwilktate reads:

FHeis _ (Vg—co| Hpeis|V g=c0) _ <‘Ijg=00‘e_iSHHubeiS‘lpg=OO> - _4_t2
Hets = —
(W g=co| Wyg=co) (Wg=co| ¥y=co) U

4.7)
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Figure 4.7: Energy per site in units df*>/U for the simple Gutzwiller WF
(L = 18, empty squares, antl = 82, full squares) and for the WF with long-
range density-density Jastrow & 18, empty circles, and. = 82, full circles).
The arrow indicates the energy per site for the fully-prtgdc=ermi sea in the
Heisenberg model.

Accordingly, in order to have an accurate description oftiodbard model, the
natural extension df¥,_..) to finite U would bee*|¥,_ ). However, the canon-
ical transformation cannot be handled easily, since themgeorS of the trans-
formation is non-diagonal. This constitutes the technaifiiculty which does
not allow one to connect easily the (variational) stateshefileisenberg model
to the Hubbard model at finit€/¢t. The lack of accuracy of the Gutzwiller WF
indicates that the partial Gutzwiller projector does natespond to the canon-
ical transformation. Instead, by considering the accurdaye Jastrow WF for
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largeU /t, it turns out that the long-range Jastrow factor enables gerinect the
fully-projected insulator valid in the strong-couplingniit to an insulating state
at finite U/t. The variational energy ofl' ;) approaches the one calculated for
the fully-projected Gutzwiller statel,_..) for the one-dimensional Heisenberg
model. Therefore, since the Jastrow factor gives the costgrerexchange energy
for largeU/t, it gives approximately the same effect of the canonicaidfarma-
tion on the fully-projected Fermi sea.
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Figure 4.8:_Jastrow WFAverage number of doublons per sitg vs. U/t for
a chain of 42 and 82 sites. Inset: Energy accuracy as a funcfi®&//¢ for the
Jastrow WF for a chain of 82 sites. The accuracy is obtaine@lg%, with Ej
being the exact energy arid- the variational energy.

We find that the insulating state recovered with the Jastréwidlways char-
acterized by a finite number of double occupancies, givin@eemrealistic picture
of the Mott insulator, where charge fluctuations always oqsee Figure 4.8).
The variational picture of the Mott insulating state in tb&ése is clearly different
from the Brinkman-Rice scenario described in Section 1wtiere double occu-
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pancies are completely suppressed. Remarkably, the peeséa finite number
of holons and doublons implies a finite kinetic-energy ga@refor very largd’ /¢
and allows us to obtain the correct low-energy behaviorritesd above. Finally,
in the inset of Figure 4.8, we show the accuracy of the Jastkwby compar-
ing the variational energy with the exact ground-state ggnealculated with the
Bethe-ansatz solution. Notice that the Jastrow WF beconmee atcurate upon
increasing//t.

l; rrrTT

L=42 -
L=82

100

Figure 4.9: Jastrow WFStaggered spin correlation function fdyt = 18 plotted
in logarithmic scale for 42 and 82 sites.

Moreover, considering the lardé-limit, the Jastrow factor allows us to re-
cover the correct spin properties: as shown in Figure 4.9sthggered spin-
spin correlation function has the correct power-law betvagharacteristic of the
model. This is remarkable, since, without the long-rangerdw, the spin-spin
correlation function of F'S) decays much faster, namely—1)"S;S?) ~ |r|~2,
and the density Jastrow factor does not act directly on spuison charges. In-
deed, it should be noticed that also the fully projected Giller WF |V,_ ) has
the correct long-distance spin behavior [81, 82].

In order to have a better understanding of the propertiesuofVéF, let us
consider the Fourier-transformed Jastrow parametgrén Figure 4.10, it turns
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Figure 4.10: Fourier transformed Jastrow parameters ptigi by ¢ for 82 sites
(full symbols) andl22 sites (empty symbols), fdv /¢ = 4, 18.

out that the leading behavior of the Jastrow parameters all gns v, ~ 1/¢?,
with a coefficient fixing its strength that increases witft. Recalling the Reatto-
Chester relation (2.7), obtained for continuum systemaiwithe Gaussian ap-
proximation:
NO
N, = —21 —
14 20, N0’
we find that also in the insulating state the smabehavior ofy, is deeply related
to the form of the corresponding structure factdy ~ ¢*>. Since the Jastrow
term diverges at smadl asv, ~ q% we can safely assume tha, N, > 1 and
rewrite the above relation &, ~ i which impliesN, ~ ¢*. The fact that the
approximate relation of Reatto and Chester holds for anate i.e., a confined
phase where generally perturbation theory does not applyuite unexpected.
Indeed, we find that a more accurate empirical expressioan@ll momenta is
given by:
NO
N, ~ 2
T 1+ A(U) vgNY

(4.8)

where the Jastrow coefficienfU) > 2 strongly depends upon the electronic in-
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teraction. In the right inset of Figure 4.11, we repg(t/) for different values of
the ratioU/t according to Eq. (4.8). Although far — 0 we have thatV, ~ ¢,
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Figure 4.11: Charge structure factor fobr= 82 andU/t = 10 at half filling:
comparison between the variational result and the appr@texpression (GSA)
given by Eq. (4.8). The GSA results have been rescaled irr twdeve the same
value as the variational ones @t= 7. Left Inset: zoom ofN, aroundq = .
Right Inset: The value of from Eq. (4.8) at half filling for different ratio&'/t.

the coefficient of the quadratic term iN, is not simply related to the Jastrow
factor, like in the original Reatto-Chester approximatefola, but increases with
the interaction. The important point is that, for the insinig phase, Eq. (4.8) is
valid only at smally, since the presence of the singular Jastrow fagfor 1/4°
determines a notable change in the qualitative behavidreo$tatic structure fac-
tor at large momenta ~ 2k, = «. In fact, the cusp af ~ 2k, which is present
in Ng and is responsible of the well-known Friedel oscillatioma imetal, is com-
pletely removed by the singular Jastrow term: as shown inr€ig.11, the charge
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structure factorV, for the Jastrow WF shows a smooth behavior arognd .
Remarkably, this effect cannot be obtained within the Gauasapproximation.
This clearly indicates the non-perturbative — and highlp-tavial — effect im-
plied by the formation of a confined state between empty andlgcoccupied
sites in this correlated WF.

Finally, let us mention that the Gaskell RPA relation (2.@Bpection 2.3

1 1 4mV (q)
20 =N * \/ M) W

does not predict a Jastrow of the forry) ~ 1/¢* unless a long-range potential
Vi(g) ~ q% is considered. The behavior of the minimized Jastrow patersie
reported in Figure 4.10 shows that the Gaskell RPA relatmasdot hold in this
case, since a singular Jastroyw~ q% is stabilized with a short-range repulsion
U. This is due to the fact that our variational problem is defioa a lattice,
whereas the Gaskell relation has been obtained on the comtin In addition
to that, the discrepancy of our findings with respect to thek@&k predictions
could be addressed to the failure of RPA to approach an itisglatate starting
from a metallic determinant, stressing again that our tianal findings are non-
perturbative.

4.2 Results for the one-dimensional — ¢’ Hubbard
model at half-filling

The one-dimensional— ¢ Hubbard model is described by the following Hamil-
tonian:

H=—t Z 637002‘4_170 + h.c.+t Z Cj;’UCH_Q’U +he +U Z niani, (4.9)

where, compared to the standard Hubbard Hamiltonian of E4d),(a next-to-

nearest neighbor hopping term with amplitudes added. This model is com-
monly visualized as a two-chain model with zigzag coupliag,shown in Fig-

ure 4.12. In the following, we will assumeandt’ positive, and we will consider
the properties of this Hamiltonian at half filling.
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Figure 4.12: Schematic representation ofthet’ Hubbard model.

For U = 0 the Hamiltonian (4.9) is characterized by the followingpdission
relation:
€ = —2t cosk + 2t' cos 2k (4.10)

which has different properties according to the valu€ 6f If ¢ < t/4 the band
minimum is atk = 0, and, similarly to the case witti = 0, at half filling there
are two Fermi pointstkr = +7/2 [see Figure 4.13 (a)]. If the interactidn

is turned on, the properties of the model are qualitativetylar to the standard
Hubbard model with’ = 0 [83]. On the other hand, if > ¢/4, the band minima

t/t<1/4 U4<th<l/2 ———

th=1/2 ——

Er th>1/2 ——

& &
= M
-Tt -T2 0 T2 T -7 -T2 0 T2 T
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Figure 4.13: Energy dispersion relation for the- ¢ non-interacting chain for
t' < t/4(a)andt’ > t/4 (b).

move towardg:,,,;,, = arccos (ﬁ) andk = 0 becomes a (relative) maximum [see
Figure 4.13 (b)]. At half filling, this relative maximum rea&s the Fermi level in
correspondence af = ¢/2. As a consequence, for > ¢/2 there are four Fermi
points,+kx; and+kp, such thater, — kry = 7/2, and the model at low energy
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behaves like a two-band model; the nesting property is lodt @hen interaction
is turned on, the corresponding phases show different piiepérom the standard
Hubbard model [83].

When the interaction is very strong, the- ¢/ Hubbard model at half filling
can be mapped into an effective spin Hamiltonian, known as'th- J, model

L L
Hyyy=J1) S+ Sici+J2 Y SiSito (4.11)

=1 =1
whereJ; = 4¢?/U and J, = 4(t')?/U. For J, = 0 one recovers the well known
Heisenberg model, which is characterized by gapless éxritaand power-law
decay of the spin correlations. Whépis turned on, it introduces a frustrating in-
teraction that, if larger than a critical value, opens a gpip. The critical value of
the frustrating term is rather well known by very accuratenetical calculations,
i.e., (Jo/J1). = 0.241167 [84]. Moreover, forJ, = J;/2, called the Majumdar-
Ghosh point, the ground state WF is exactly known [85] andsists of a product
of singlets among nearest neighboring sites (dimers). dimgrized state is dou-
bly degenerate, the two states being related among eachltllee translation
of one lattice spacing, and a finite energy gap exists betweeground state and
the first excited ones [86].

By varyingU/t, the properties of the— ¢" Hubbard model are influenced by
the different topology of the energy dispersion relatiowagk coupling and fol-
low those of the/; — J; at strong coupling. In particular, bosonization [83] and
density-matrix renormalization group calculations [83] @redict that the ground
state at half filling is an insulator with gapless spin exeias (labeledC'051,
whereCnSm indicates a state with gapless charge modes amdgapless spin
modes) fort’/t < 1/2, a spin-gapped metal’(1 S0) with strong superconduct-
ing fluctuations fort’ /¢ > 1/2 and smallU/t, and a fully gapped spontaneously
dimerized insulator@050) for ¢/t > 1/2 and largeU/t. Therefore, since the
phase diagram of the-¢" Hubbard model, fot’/t > 1/2, shows a metal-insulator
transition at a finitd/ /¢, it offers the possibility to test our variational ansate fo
the description of the Mott transition. The different spnoperties of the phases
involved, with a gapless and a gapped regime upon incre#singndU, can be
correctly described by modifying only the determinantait pd the variational
wavefunction. In particular, thé'150 metallic phase suggests a variational WF
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built out of a BCS Hamiltonian, namely:
|0) = P, Py |BCS) = P;Py exp (Z fachich ql> 10), (4.12)
q

where| BC'S) is the ground state of a BCS Hamiltonian with gap functignand
dispersion
€, = —2cos(q) + 21" cos(2q) — f, (4.13)

with 1 being the free electron chemical potential. In all the aoraal calculations
that follow, if not specified, the parametétsand;i of (4.13) are kept fixed, and,
in order to have the exact solution o/t = 0, correspond to those of the non-
interactingt — ¢’ Hamiltonian.! The pairing function in (4.12) is defined by
fo = A/ (eq + E,), with the BCS energy spectrufy, = /e2 + A2, and

A, = Aj cos(q) + Ay cos(2q) + Aj cos(3q), (4.14)

Ay, Ay, andAj being variational parameters. ObviouslyC'S) reduces to the
Fermi sea forA, = 0. Finally, Py projects onto the subspace with fixed number
of electronsNV = L (see Appendix B) an®; is the long-range Jastrow factor. In
order to have a closed shell in the uncorrelated determindrgnever’/t > 1/2

we consider chains offn sites, withn a positive integer.

4.2.1 Variational Mott transition for ¢/t = 0.75

We first consider the properties of our WF #ft = 0.75 and different values of
U/t. This value of’ /t is very close to the corresponding valueJef J; where the
spin-gap shows a maximum [89] and identifie€' &S0 metallic phase at weak-
coupling and the”'050 dimerized insulating phase at strong coupling. At half
filling the non-interacting system is characterized by fBarmi points+£,; and
+ky as shown in Figure 4.13 (b).

In Figure 4.14 we consider the charge-density structureofa¥, and the
Fourier-transformed Jastrow parameteygmultiplied by ¢*) for different val-
ues of the interactions. Both the Jastrow and the strucaateif show a different

lindeed we find that the optimization &fand;z allows us to obtain a better accuracy in energy,
but does not change the properties of the phases involved.
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Figure 4.14: Charge-density structure factgr and Jastrow parameterss mul-
tiplied by ¢* for ¢/t = 0.75 andU/t = 1,2,4,5,6,10. A chain of 120 sites is
considered. Notice the change of behavior betwégn= 4 andU/t = 5.

behavior for small and larg€/t. Indeed, forU/t < 4 and smallg, the leading
behavior of the Jastrow term ig ~ I}TI and the structure factor is linear, i.e.,
N, ~ |q|, with strongly marked Friedel oscillations 2tz and2kz,. On the
other hand, foi//t > 5, the leading behavior of the Jastrow factor turns into
Vg ~ qig and the structure factor is quadrati¢, ~ ¢2, at smallg, with the Friedel
oscillations completely washed out. The change in the beha¥ the Jastrow
and the structure factor aroutidf/t ~ 5 signals a metal-insulator transition at a
finite value of U/t. This transition is further confirmed by looking at the Berry
phase, as shown in Figure 4.15. It turns out thatlfgt < 4 the Berry phase
vanishes, i.e., the system is delocalized, hence metalhde for U/t > 5 the
Berry phase clearly changes its behavior, izg..— 1 (see inset), signaling that
the corresponding phase is localized.

Moreover, considering the spin sector, in Figure 4.16 wetphlspin-structure
factorS, = (5%,57), S; being the Fourier-transformedcomponent of the spin.
Also in this case, the smadl-leading behavior ofS, clearly changes around
U/t ~ 5, turning from a linear to a quadratic behavior by increaghmg inter-
action. Following the same arguments given for the chargdascaccording to
the analogous of thg-sum rule for the spin, the fact tha}, ~ ¢* at smallg for
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U Z 5 signals the presence of a gap also in the spin sector. We veolelct,
according to previous calculations [83, 87, 88], the preseausf a spin gap also
at small couplings. Instead, from our variational caldolag, it is very hard to
detect a spin gap fdr < 4, since the limited resolution in space does not al-
low us to clearly distinguish a linear from a quadratic bebiain .S,. Following
the insight coming from spin systems [90], we argue that &tealsior of the spin
modes is determined by the spectritipof the BCS mean-field Hamiltonian that
is used to construct the uncorrelated state. In particililét, is gapless, then the
spin excitations are also gapless and the spin-structarerfs, ~ |¢|, whereas, if
min(E,) > 0, the spin-excitation spectrum has a gap &pd- ¢*. In Figure 4.17
we plot the minimum value of the BCS energy spectrum for céifeé//t. In-
deed, the BCS gap is very small fo/t < 4, as it turns out from the optimized
BCS parameters (see inset). However[fgt = 4, which, according to the Berry
phase, is still in the metallic region, there is a clear enadeof a gap, signaling
that the system is in th€1.50 phase. Moreover, by increasing the lattice size, the
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Figure 4.16: Spin structure factot, for ¢/t = 0.75 and differentU /¢ for 120
sites.

value of the BCS gap weakly increases for snaglt, giving the indication of a
spin gap also for smaller interactions.

Let us remark at this point the important role of the Jastrenntwhen deal-
ing with a BCS uncorrelated wavefunction. Indeed, whengyeg 0, the density
structure factor of a simple BCS determinant behavesmgev const at smallg.
Instead, the density structure factor of the Jastrow Wie¥adlthe correct behavior
lim, .o IV, = 0, required for charge conservation (see Figure 4.14), ineagent
with the Reatto-Chester predictions. Moreover, by calimggthe pairing correla-
tion functions, we find that there is no superconducting {oargge order for any
U/t (not shown). Indeed, according to the generalized unceytgirinciple (see
Section 2.4), in one dimension a singular Jastogw ﬁ is sufficient to suppress
the off-diagonal long-range order present in the BCS deatent.

Finally, in Figure 4.18, focusing ofi/t = 4 andU/t = 10, where the be-
havior of the charge and spin-structure factor is more chear obtain a clear
picture of the charge and spin properties of the two phasedvied. Indeed, for
U/t = 4 the charge is gapless, i.8], ~ |¢| and the spin is gapped i.6, ~ ¢,
corresponding to the C1S0 spin-gapped metallic phase. ©wttrer hand, for
U/t = 10 we find that both the charge and spin-structure factors aaratic,
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Figure 4.17: Minimum value of the BCS energy spectrigpfor different lattice
sizes as a function df /¢. Inset: BCS gap parameters defined in Eq.(4.14) as a
function of U/t for 120 sites.

signaling that for this value df /¢t we are in the fully-gapped phase.

In order to further characterize the spin properties of theuliating phase
C0S50, we check if dimerization takes place. Dimerization can baracterized
by the long-distance asymptotic behavior of the followingutity [89]:

Di= lim [x(i—j—1)—=2x(i—j)+x(i—j+1)]  (4.15)

ji—jl—oo

wherex(i — j) = (S; - Sit1 S; - Sj41) gives the dimer-dimer correlation func-
tion. Considering spin rotationally-invariant WFs, on@ eg@proximate the above
relation by writingx (i — j) ~ 9(S757,, SiS7,,) whereS; is the spin operator
along z-axis at sité. Indeed, we find that fot/ /¢t > 5 the dimer-order parameter
becomes finite, signaling that spontaneous dimerizati@urgcwhen the insu-
lating state sets in (see Figure 4.19). Remarkably, evemgthour variational
WF does not break any lattice symmetry, spontaneous symwhegaking occurs

in the thermodynamic limit, due to the concomitant effecaddingular Jastrow
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Figure 4.18: Charge and spin-structure factor divided;bgr ¢'/t = 0.75 and
120 sites. Two different couplings are consider€dt = 4 (corresponding to the
phase’'150) andU/t = 10 (corresponding to the dimerized insulat®d.S0)

v, ~ 1/¢* and a gapped BCS spectrufr.

At this point, let us draw some considerations about the racguof our WF.
Indeed, we realized that, when looking at the behavior ofvir@ational energy
as a function ot /¢, the accuracy is not as good as in the- 0 case, but it gets
worse when increasing/t. Namely, fort’ # 0, the long-range Jastrow factor
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does not allow us to connect to the energy of the fully-prig@@BCS determinant
for the corresponding; — J, model (see Figure 4.20). In order to improve the
accuracy, we minimized also thehopping term and the chemical potentiain
the energy dispersion (4.13). This allows us to recover ®beariational energy,
which nevertheless is still far from the exact one, and careaxrh the variational
energy for the corresponding — .J, model, where a the fully-projected BCS
state is found to be very accurate. This is due to the contplicadal structure
of the finited/ case: it turns out that, in presence of a finite number of ®lon
and doublons, it is very difficult to find a variational WF tltatrrectly describes
the ground-state nodes in terms of a simple determinanteSire Jastrow factor
is able to correconly the amplitudes of the different configurations, but cannot
act on the signs of the WF, the two limits cannot be connectigd the only
charge-density correlation factor. A possible route, tprove the simple BCS
determinant at finit¢/ /¢, could be found in the addition of a backflow term [91].
However, even though for largé/t we are less accurate than in the case of
t" = 0, we show in Figure 4.21 that the Jastrow WF, with the BCS dsteant,
allows us to reproduce faithfully the phase diagram of tHefileed ¢—¢' Hubbard
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Figure 4.20: Energy in units aft*/U vs. 1/U for ¢'/t = 0.75 for a chain of 16
sites. The variational energy for the Jastrow WF with BC®udeinant (JIBCYH
[with parameters\;, A, andAs; in the gap function, see Eq.(4.14)] is compared
with the variational energy of the WF where additionallyoafsand the chemical
potential are optimized in the determinanjy(d '+BCS). The Lanczos energy
is put for comparison. The arrow indicates the variatiomedrgy for the corre-
spondingJ; — J, model, obtained by optimizing the fully-projected BCS 8tat
determinan®,_.,| BC'S).

model. In the region of /t < 0.5, we find no evidence of a phase transition, apart
from finite-size effects at smalll/¢. The best variational state hag ~ ¢, indi-
cating a charge gap arff) ~ ¢, i.e., gapless spin excitations, connects only
different sublattices (i.eQ, = 0), makingE, gapless. Fot'/t > 0.5, there is a
clear metal-insulator transition at finité/¢ between a spin-gapped metal, stable
for smallU/t and a dimerized insulator, stable at lafg&. In the metallic phase,
the variational WF hagv, ~ ¢, whereasF, is gapped (although,| is small),
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Figure 4.21: Variational phase diagram of thet:-¢' Hubbard model. The error
bars keep into account finite-size effects and dashed Imeeglades to the eye.

i.e., S, ~ ¢, corresponding to exponentially decaying spin-spin dati@ns. By
increasingU/t and entering into the insulating phase, there is a fast aseref
A,, with E, always fully gapped, and, ~ 1/¢*. In this phase therefore we find
N, ~ ¢* andS, ~ ¢?, with a finite dimerization in the thermodynamic limit.

4.3 Doping a one-dimensional Mott insulator: Lut-
tinger liquid

A characteristic feature of one-dimensional interactergfions is that, even if the
system is gapless, they exhibit peculiar non-Fermi liqumpprties. Indeed, due
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to phase-space limitations, particle-hole excitationsme-dimensional models
are exhausted by collective charge and spin modes, whictlyawamically inde-
pendent, realizing what is commonly referred tespagi-charge separatiowhen
these modes are gapless, they propagate as acoustic wak@s@unds), hence
can be identified by two parameters, the sound velacitgnd a dimensionless
stiffnessK;, : = p andi = ¢ for charge and spin modes, respectively.

Besides spin-charge separation, another manifestatidimeofion-Fermi lig-
uid behavior is the power-law decay with anomalous expanehall correlation
functions, when both spin and charge modes are gaplessstosgme of them,
when one of the two modes is gapped. Although these expoasntgenerically
non universal, they all can be expressed in terms of the atneveioneds, and
K,. Therefore, the finite set of parametefsu,, K, andk, is sufficient to char-
acterize completely the asymptotic low-energy behaviana-dimensional inter-
acting electron models, similarly to the finite number ofgmaeters which identify
the low-energy behavior of Landau-Fermi liquids in highenensions [92]. In-
deed, just in analogy with Fermi liquids, this kind of onen@insional universal
behavior was named “Luttinger liquid” by Haldane [93-95].

In the case of non interacting electroAS = K, = 1. Moreover, if spin
SU(2) symmetry is unbroken and the spin modes are gapléss= 1 as for
free fermions even in the presence of interaction and aéf)yparametrizes the
anomalous exponents. When both charge and spin sectora@essg, the asymp-
totic expressions of the charge and spin equal-time caiwelfunctions are, apart
from possible logarithmic corrections,

(n(x)n(0)) ~ (751'0)2 +A1COZ(§£}1$) +AQCOS:£;411§5£E)’ (4.16)
1 cos(2kpx)
<S('T) ’ S(O)> ~ (’/Tl‘)Q Kol (417)

wheren(z) andS(x) are the charge and spin density operators at positjidn-
is the Fermi momentund,, A,, and B are model-dependent constants. Analo-
gously the singlet (and triplet) pairing correlations behas

1
Kp_l-i-l’

(A (2)A0)) ~

(4.18)

T

whereA'(z) creates a singlet (or triplet) pair at positionFinally, the non-Fermi
liquid character of one-dimensional interacting mode®shup transparently in
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the momentum distribution function near the Fermi momentum
ny, — ny, ~ —sign(k — kg)|k — kp|’, (4.19)

wheref is again expressed in terms &f, through the relatiod = (K, + K;l —
2)/4. For any finite interactiork, # 1, hence the momentum distribution func-
tion has a power-law singularity at the Fermi level, in castrto the finite jump
characteristic of Fermi liquids.

In the following, we show that in the Hubbard model at finitat is possi-
ble to design a consistent WF, which can faithfully descthmee evolution from
the Luttinger-liquid behavior at finite hole doping to the timsulating phase at
half filling. Again the crucial ingredient turns out to be andety-density Jastrow
factor applied to a simple Fermi sea Slater determin&st. The important role
of the Jastrow factor for one-dimensional correlated nietsystems has been al-
ready discussed by Hellberg and Mele in the context of thedamensionat—.J
model [60]. In that case, it is possible to show analytic#itigt the momentum
distribution function of the variational WF has an algebsingularity at:z, with
an exponent related to the strength of the Jastrow factqr [@6his section, we
generalize this approach to a finite Coulomb repulgion

4.3.1 Properties of the quarter-filled Hubbard model

In order to demonstrate that the Jastrow WF is able to cafitereuttinger-liquid
metallic properties, we consider the quarter-filled caserigure 4.22, we show
the variational charge and spin structure factor for déffervalues of//t. For
small momenta, the linear slope 08f, is renormalized with respect to the non-
interacting value, leading t&/, ~ K,|q|/7. On the other hand, the smallbe-
havior of the spin structure factéy, is not affected by the interaction and we have
that S, ~ |¢|/47. Notice that, in the presence of a strong interaction, the tw
singularities alky and4k are clearly visible inV,, whereas irt,, only the sin-
gularity at2kr can be detected. From the smalinear part ofN,, it is possible
to extract the value ok, (see Table 4.1), which is in very good agreement with
the exact one [97].

Another characteristic feature of Luttinger liquids is trnishing of quasi-
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Figure 4.22: Left panel: charge structure factgy for the Hubbard model at

quarter filling for L = 124 and differentU/ /t. Right panel: the same for the spin
structure factorS,.

particle weight:
(U n_1]cro| )|
(UNUN)(IN_1|Tn_1)

where|¥ ) and|Vy_,) are the WFs withV and (N — 1) particles,c; , is the
annihilation operator of a particle of momentunand spino. Within our varia-
tional approach, théN — 1)-particle state is obtained by thé-particle one by
removing an electron from the Slater determinant, [&y_,) = P, ¢, |F'S).
The behavior of the quasiparticle weight allows us to shaat the relationships
among exponents of different correlation functions areexdly reproduced by
our variational WF. Indeed, we can compare the value of tip@eantd found
from a direct evaluation of the quasiparticle weight (4.20k = k£, given by
Z ~ 1/L’ (see Figure 4.23), with the one obtained with- (K, + K, ' —2)/4
by using the value of<, extracted from the linear slope df,. As reported in

7 = (4.20)
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Figure 4.23: Log-log plot of the quasiparticle weight atk = kr = 7/4 as
a function of L in the quarter-filled Hubbard model for different valuestioft.
Lines are power-law fits.

Table 4.1, we obtain an excellent agreement for the valuéseoiteraction’//¢
considered. Finally, we can also calculate the singletrgagorrelations

1 3 (Un|A Al Ty)

P =1 (Un|Ty)

; (4.21)

where

AZT = CI,TCZTH,l - C;r,lcjﬂm (4.22)
creates a singlet pair of electrons at nearest neighboosdér to calculate the ex-
ponentx related to the decay d?(r) ~ 1/r*, we consider the pairing correlation
at the maximum distanci(L/2) for different sizes, see Figure 4.24. In this case,
the signal is very small and a precise determination of thieakexponent is quite
difficult. Nonetheless, the results reported in Table 4elrather satisfactory and

not too far from the ones obtained with the exact relatioa K,jl + 1[97].
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Figure 4.24: Log-log plot of the pairing correlation furatiat the maximum dis-
tanceP(L/2) as a function of. in the quarter-filled Hubbard model for different
values ofU/t. Lines are power-law fits.

Table 4.1: Critical exponents for thel Hubbard model at quarter fillingk’, is
found from the lowg behavior ofN,, 6. = (K, + K, ' — 2)/4, andd is found by
fitting Z;, with Z,, ~ 1/L°. The last two columns refer to the critical exponent of
the pairing correlationsx is found from the pairing correlation at the maximum
distanceP(L/2) ~ 1/L* anda, = K, ' + 1. In the first column, we report the
exact value ofi,.

Ujt Kgrd K, 0 0. o Q.
4 0711 0.705(3) 0.031(5) 0031(3) 2.1(1) 2.42(6)
10 0.594 0.595(3) 0.078(5) 0.072(3) 2.4(1) 2.68(9)

18 0.551 0.550(3) 0.097(5) 0.092(3) 2.5(2) 2.82(9)
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4.3.2 From Luttinger liquid to Mott insulator

Let us consider how the insulating phase is reached by deogethe hole con-
centration. First of all, it should be mentioned that, nai those to the insu-
lating phase at half filling, the charge and spin structuotofahave small size
effects and, therefore, reliable calculations are possken without using too
large L. As an example, we report in Figure 4.25 (right panel), trs=a doping
d = 2/11, where we can see that there are no appreciable differem¢ésfrom

L = 221to L = 154. In the doped region, the system is always conductivig,

0.35 0.35
| 0 hole . | L=22 n
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0.3 ' 4 holes o 0.3 | L=110 .
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Figure 4.25: Left panel: charge structure factgrfor L = 82, U/t = 10, and
different hole dopings. Right pane\, for 6 = 2/11 and differentL.

having a linear behavior for small momenta, with a slope tiegtends upol//¢
andé. For sufficiently small hole doping, it turns out that theslam regime is lim-
ited to a small window aroungl = 0, whereas for larger momenta;,, acquires
a finite curvature, see Figure 4.25 (left panel). The twoedght regimes are sep-
arated by the singularity at= 4kr = 279, and, therefore, by decreasingthe
width of the linear regime shrinks, the slope being almosstant. Therefore, we
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arrive at the empirical result:
K,lq|

Ny~ O(4kp — q) + (c+ ¢*)O(q — 4kr), (4.23)

wherekr = (1—0)7/2, ©(x) indicates the Heaviside step function arid a con-
stant determined by imposing continuity®f atq = 4kx. This singular behavior,
with the kink atqg = 4k, is entirely due to correlation and it is compatible with
the exact result that’, remains finite, more precisely, — 1/2, for 6 — 0 [97].
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Figure 4.26: Jastrow factar, (multiplied by g) for different hole dopings, ob-
tained by a careful minimization of the energy téft = 10 and L = 82.

Let us now consider the behavior of the Jastrow parametees Wie doping
0 is varied. In Figure 4.26 we report the form of the Jastrovidiaat half filling
and for small concentration of holes considered in Figu2& 4Starting from the
insulating phase, upon doping, moves away fromy, ~ 1/4¢% and becomes
less singular, i.e.p, ~ 1/|q|. Clearly, at very small doping, the size effects
affect the smally part, and, in particular, for the smallest momentum we cae ha
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Figure 4.27: Log-log plot o7, as a function of_. for U/t = 10 and18 at half-
filling. Lines are power-law fits. Inset: the quantiyy, = —1/L Z#O v, (see
text) as a function of. at half-filling and for one hole. Lines are fit of the data.

some deviations from the expected~ 1/|q| behavior. The remarkable thing is
that for any non-vanishing hole dopiagand interactiori/ /¢, by optimizing the
variational WF, the Jastrow factor is singular, izg.~ 1/|g|. This fact is crucial
to recover the correct low-behavior of N,, whose linear slope is renormalized
by the interaction, leading to&/, ~ K,|q|/m. Therefore, the Jastrow factor has to
be intrinsically long range also at finite doping. Moreoverfimd that the smali
behavior ofy, follows the Reatto-Chester predictions (2.7), not onlylgavely
but also with the correct coefficient, signaling that the §&an approximation in
this case is exact at long wavelengths.

Notice that the correct minimization of the Jastrow factoparticularly im-
portant for an accurate descriptionaf, especially when approaching half filling.
Indeed, in this case, the Jastrow factor for one hole is denably different from
the insulating one for small's (see Figure 4.26), and one has to optimize both
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WFs with N and (N — 1) particles. This difference can be appreciated by con-
sideringX;, = —1/L 2#0 vg, Which diverges linearly with the system sizef

v, ~ 1/¢* and, instead, diverges only logarithmicallyif~ 1/|q|. In Figure 4.27
(inset), we repork;, as a function ofL. for the insulating state and for the one-
hole case: the difference between the two cases clearly mgnates the different
behavior ofv, for small momenta. By a careful minimization of both the Wis,

is possible to recover the result titat= 1/2 independently ot/ /¢ [98]. Indeed,
upon increasing//t, our variational WF gives a rather accurate descriptiomhef t
insulating phase, the size effects being strongly reducedtd the small corre-
lation length expected at lardé/t. In this limit, we obtain a reasonable good
agreement with the exact exponent for the quasiparticlghtésee Figure 4.27):

6 = 0.60 + 0.05 andf = 0.55 £+ 0.05 for U/t = 10 andU/t = 18, respectively.
On the other hand, it should be mentioned that a naive caicnlwith a singular
Jastrowy, ~ 1/q¢* for both WFs would lead to a wrong exponential behavior of
the quasiparticle weight.






Chapter 5

The Jastrow wavefunction in two
dimensions

In Chapter 4 we have shown that the long-range Jastrow wawtdumn (WF), opti-
mized for the one-dimensional Hubbard model, faithfullgchées both the Mott
insulating state and the Luttinger-liquid metallic staféhe two leading behav-
iors for the Jastrow parameters aye~ q% for the insulator and, ~ ‘—(11‘ for the
correlated metal. This form of the Jastrow factor gives threect charge-density
structure factor in the two cases, namaly ~ ¢? in the insulator anadV, ~ |q| in
the metal.

In this chapter we generalize our approach to the two-dimeascase. Fol-
lowing general arguments, we show that a wavefunction wittvabody long-
range Jastrow factar, ~ q% naturally arises from the condition imposed on the
behavior of the structure factor for an insulating stage, N, ~ ¢°. Indeed, in the
regime of large Coulomb interaction, the quantum problemblmmapped into a
classical problem at finite temperature, the classical @oblgas model, where
particles with positive and negative charges interact \&itGoulomb potential.
Within this mapping, the temperature of the classical m@detesponds to the
Jastrow strength in the quantum system. Therefore, we ean &bout the phys-
ical properties of the Jastrow WF from the known results of thassical model.
In particular, the Coulomb gas model in two dimensiong @hows a Kosterlitz-
Thouless transition by reducing the temperature, turnioghfa metallic phase
(plasma phase) at high temperature to an insulating confinaske at low temper-
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ature. This suggests that also in the quantum problem, idinmvensions, a similar
transition might occur, when the Jastrow strength is vatimlvever, the quantum
fermionic problem is characterized not only by the Jastragtdr, but also by the
presence of the uncorrelated determinant. We show thatctienaof a singular
Jastrow factow, ~ q% on the determinant induces anomalous properties, which
depend on the Jastrow strength and are deeply related tortesponding phase
in the classical Coulomb gas model. In particular, for sdaditrow strengths, we
find that the corresponding phase is a non-Fermi liquid mekedracterized by a
vanishing quasiparticle weight. On the other hand, fordargrrelations, we find
an insulating phase, characterized by a singular powebktvavior in the pho-
toemission spectrum, that can be continuously connecteletdully-projected
Gutzwiller state. This opens the possibility for an uncorienal metal-insulator
transition in two dimensions, where both the metallic areitfsulating phase are
characterized by a vanishing quasiparticle weight.

In order to see whether this scenario occurs in some micpiscoodel, we
optimize the Jastrow WF on the two-dimensional Hubbard rhddeparticular,
we consider the paramagnetic sector, where we show thaagtew WF allows
us to obtain a metal-insulator transition at a finif¢t and we characterize the
metallic and the insulating phase that are obtained. Simeertetallic phase is
described by, ~ ‘—2‘ and has a finite quasipatrticle peak, we find that the appealing
scenario for an unconventional metal-insulator transitioes not occur in this
case.

Finally, besides the paramagnetic solution, we comparedicaracy of dif-
ferent WFs which allow us to describe also the magnetic ptigseof the model.
This is done in view of the possibility to connect the infirifdimit to the finite{/
case. Indeed, in the corresponding two-dimensional Hbesgmmodel, the use of
fully-projected determinants can give very accurate vianal energies. In par-
ticular, on the square lattice, the antiferromagnetiedtat the lowest energy, but
the RVB state obtained by fully-projecting a BCS state i® atsmarkably accu-
rate [9, 10, 99]. At this point, since the presence of the {oagge charge-density
Jastrow factor ensures the correct insulating behavidependently on the choice
of the determinant, it is very interesting to evaluate theuaacy of these different
wavefunctions in the finité case.
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5.1 Mapping on the classical Coulomb gas model

In Chapter 4 we have applied tliesum rule in different cases and we have shown
that, in order to have an insulator, a necessary condititraisfor small momenta
N, ~ ¢*. In the following, we show that this argument has very geineva-
sequences on the form of the corresponding ground-statéWyf: that do not
depend on the particular microscopic model. To this purpteteus denote an
electronic configuration by the positiofs} of the particles. For all the opera-
tors I’ that depend only on such positions, e.g., the charge-gestsiicture factor
itself, the quantum average

(Wo| F[Wo)
F)=-—""-—- 5.1
= ) o
can be written in terms of thelassicaldistribution| ¥ (z)|* = % as:
(F) =) (2l Fla)|Wo(w) " (5.2)

xT

Since| ¥, (x)|* is a positive quantity, we can define an appropriate corredgace
between the wavefunctig®,) and an effective potentidl (z):

[Wo(2)|? = eV, (5.3)

Focusing on the charge properties, if the system is sulgesrhall charge fluctua-
tions (e.g., in the limit of strong Coulomb interaction), wen safely assume that
only the two-body term is relevant and all multi-particlégractions are negligi-
ble. This leads to the quadratic potential:

Via) = Y vgng(2)n_g(x). (5.4)
970
beingn, (=) the Fourier transform of the local density of the configunafiz).
In order to obtain the expected behavior of the charge-tessucture factor,
given in terms of the classical distribution By, = >°_n,(z)n_,(x)e V@ ~ ¢2,
the effective potential (5.4) must diverge as:

pelf — T
q Teffq2

+ less singular terms (5.5)
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Here, T¢// can be considered as the effective temperature of clagsictitles
interacting through a potential/¢*. Within this choice ofugff, N, ~ ¢* is gen-
erally valid. The form ofugff can be understood by consideringas a complex
continuous variable, so that the classical average_,) turns into a standard
Gaussian integral, yielding:

1 Teffq2
N, ~ = ) 5.6
q U;ff T ( )

If we now consider the Jastrow WR) ;) = P;|D) as a variational ansatz
for the true ground stat@,) of a fermionic system, it turns out immediately that
the potentiall’(x) of Eq.(5.3) now contains the contributions coming from both
the determinant and the Jastrow potential. Here, we areesttl in describing
Mott insulators that do not break any symmetry and, theegfthre uncorrelated
determinant represents a metallic state at half-filling. traightforward way to
modify the effective potential associated 10) is obtained by taking into account
an appropriate Jastrow factor:

1 .
P; =exp [—5 Z vqnqnq] with v, ~ 7;—5
q

(5.7)
£ fixing its strength. This form of the Jastrow allows us to oeurce the behavior
of the effective potential (5.5) necessary to describe aolator. In this picture
the metallic determinant will contribute only with less girtar terms (typically
O(1/q)) as reported in Eq.(5.5). Comparing Egs.(5.5) and (5.ritg out that
there is a correspondence between the inverse of the efféetnperature/7//
of the classical model and the Jastrow strengtf the quantum system.

Within this approach, the potenti&l(x) of Eq. (5.3-5.4) turns out to be the
one of the classical Coulomb gas model (CGM) [100], whichcdbss a two-
component system of positive and negative charges iniegaaith a potential
V(q) ~ 1/¢*. Considering the quantum system described by the JastrowetvF
us recall that it is possible to write the density-densitgmpor contained in the
Jastrow factor in terms of holons and doublons, namely:

(n; = 1)(n; — 1) = hih; + did; — hid; — d;h; (5.8)

whereh; = (1 — n;)(1 — n;) counts the holons on siteandd; = njn;,
counts the doublons. Therefore, the corresponding chaigjedts in the quantum
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system are the holons and the doublons created by chargedfiiocts.! The
interactionv, ~ qiz turns out to be attractive among holons and doublons, and
repulsive among holon-holon and doublon-doublon. In paldir, in the half-filled
case, there is an equal number of empty and doubly occuges] snplying the
charge neutrality of the CGM. The fugacityof the CGM, that sets the average
number of the charges, can be identified with the on-site @liez term in the
Jastrow potential, i.ez = exp(—g), whereg is the Gutzwiller parameter.

Finally, let us comment on the quadratic form of the potéri§at), that was
assumed to be valid in the limit of small charge fluctuatidnghe quantum sys-
tem, this assumption corresponds to the low-density regihfelons and dou-
blons, condition which is surely fulfilled in the limit of lge interactions, where
the Mott insulating phase is stabilized.

5.1.1 Unconventional metal-insulator transition in2d

The mapping among the quantum system and the classical @bujas model
described above, has several implications on the phaseacthiazed by the Jas-
trow WF, which depend on the dimensionality. In particulle two-dimensional
classical CGM shows a Kosterlitz-Thouless (KT) transitadra finite tempera-
ture M [100] (see Figure 5.1). This transition is transparent ftheclassical
dielectric function: . )

- =lim {1 - TTZIQQNJ , (5.9)
whereT*// is the temperature of the classical model. The charge sheifac-
tor is quadratic at small momenta, i.&V, ~ aq?, for all temperatures, but the
coefficienta changes discontinuously @&““". Above %M, the CGM is in
the plasma phasei.e., a metallic phase with infinite dielectric functiorerfect
screening, and exponential correlation functions. On therdhand, below ¢
the CGM is in theconfined phasewith a finite dielectric constant. In this phase
the charges are bound together forming dipoles, that, Isecatitheir residual
interaction, induce power-law correlations. At the traéinsi, the inverse of the
dielectric function has a finite jump, changing from zerotha plasma phase, to
a finite value, in the confined phase.

ILet us stress that the above arguments have not been obtamegarticular model, but are
valid for a generic one-band fermionic model at half-filling
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Figure 5.1: Phase diagram of the two-dimensional Clas§loalomb gas model
on a square lattice [101]. In the low-density limit, thera@ ST transition among a
confined phase (denoted as Insulating Gas) and a plasma (plaased Conduct-
ing Liquid).

In the following we show that, in analogy with the classic&b @, also in
the case of fermionic systems at zero temperature, a KTildsition is found
by varying the correlation strengtth However, the existence of the fermionic
determinant induces non-trivial properties for the twogg#sainvolved, that are not
presentin the classical problem. For example, the unaaeébpart of the WF may
contribute to the expression of the effective temperafiffé, as shown below.
Whenever the square of the WF describes the plasma phase aérfesponding
classical model, the Gaussian fluctuations are exact foll gfea@and the classical
temperature can be determined by imposifig= 0 in Eq. (5.9), namelyi*// =
27 lim, 0 N,/¢*. In the language of quantum states, the Gaussian appragimat
leads to the well-known Reatto-Chester relation:

0
Nq

N, = ——— 5.10
¢ 1+2qu(?’ ( )

where N/ is the charge structure factor of the uncorrelated detemnti). The
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previous form ofN, allows us to identify the effective temperature as:

1
Telf

=B+ 2 (5.11)
2T

whereq, = lim,_, ¢°/N} is the contribution to the effective temperature coming
from the uncorrelated determinant.
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Figure 5.2: Inverse of the dielectric functidn'e [see Eq. (5.9)] for the free-
electron determinant. Left panel;/e as a function of the effective temperature
1/ and for different sized. of the cluster. The critical temperature of the clas-
sical Coulomb gas moddI““* is marked with a dashed line for a comparison.
Right panel: size scaling df/e for various.

In order to show the general validity of our approach, we w®rshe case of
a free-electron determinant, obtained by occupying thestvenergy states in the
tight-binding model with dispersioh), = —2¢(cos k,+cos k,) and a gapless BCS
state with a superconducting order parameter= A(cos k, — cos k). In these
casesy, = 0 and, therefore, the effective temperature in Eq. (5.11¢temnined
only by the Jastrow coefficient, namely// = 1/43. In Figure 5.2, we report the
inverse of the dielectric function for the free-electrortedtminant and different
sizesL of the system at half filling, i.elN = L. In order to have closed-shell
states forf D), we used square lattices tilted b§° (i.e., with L = 2/2 andl, odd)
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Figure 5.3: The same as in Figure 5.2 for a gapless BCS sttie\wi = 1.1 and
dg2_,2 Symmetry.

and periodic boundary conditions. By increasihgthe curves show a steeper
and steeper shape in the vicinity of the critical tempegflit This result is
further confirmed by the size scaling bfe, which clearly supports the existence
of a finite jump in the thermodynamic limitt /e — 0 for T¢// > T,, whereas
1/e — const for T¢// < T,. Interestingly,T, depends slightly upon the choice
of the uncorrelated determinant (see for comparison Fi§uefor the gapless
BCS state) and is quite close to the CGM critical temperafiffé" = 1/4.
These results give an important and transparent insigattive strong-coupling
limit described by the fully-projected WF [8], that can benoected to our WF
by letting 3 — oo, i.e.,T¢// — 0. Indeed, in the confined phase 6t// < T,,
the classical KT scaling equations of the CGM flow to fixed poiwith zero
fugacity: this translates into the fact that the fully-mced state represents the
fixed-point of the correlated WFs describing the two-dimemnal Mott insulating
phase. Therefore, in the confined regime, the ground-stapepies are universal
and represented by the ones of the fully-projected WF. Is thspect, the total
projection is not an unrealistic assumption and can acelyret¢produce the low-
energy physical properties of a strongly-correlated sgst®©n the other hand,
for T¢// > T, the classical KT scaling equations flow to strong coupling are
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useful only close to the transition.
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Figure 5.4: Equal-time density structure facigy for the correlated Jastrow wave
function (with F'S) determinant) (full squares), compared to the same quantity
calculated within the Gaussian approximation [indicated>5A and given by
Eq. (5.10)], (full triangles) fors = 4/ (upper panel) and = 12/7 (lower panel,
notice the different scale of the GSA data).

Let us now characterize the two phases involved. In Figutevg show that
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in the plasma phase (i.e., fgt < (.) the Gaussian approximation, given by
Eqg. (5.10), is very accurate, not only for smgt (where it is exact) but also for
large momenta. In this case, the cusp singularityjrfor ) = (7, 7), related to
the Friedel oscillations inherited from the uncorrelatéat& determinant, is not
removed, even thougN, ~ ¢* at low momenta. Thus, fo8 < 3. (/7 > T.),
the Jastrow WF with), = 73/¢* describes a “Coulomb metal”, with, ~ ¢*
at smallg’s but with the sign of the Fermi surface at large momenta. @
previously in the low-density regime [102], this WF has lewergy properties
similar to one-dimensional Luttinger liquid conductordherve the absence of a
jump in the momentum distribution is replaced by a weakegdarity, yielding
to 2k and4kr power-law density correlations. It is important to emphaghat,
in the quantum case, the power-law correlations come fraatge momentum
singularity and are absent in the classical CGM [100]. lddee the quantum
state, the subleading corrections in the classical pateotiEq. (5.3) are very
important and can actually turn the CGM exponential coti@ba to power laws
in the plasma phase, antte-versan the confined phase. On the other hand, in
the confined phase the Gaussian approximation is not acehatt at small and
large momenta, see Figure 5.4. Indeed, at sgglthe coefficient of the quadratic
term is not simply given by the Gaussian approximation anokenimportantly,
the strong Jastrow factor washes out completely the singatof Ng, leading
to a smooth charge-structure factor, a genuine fingerpfianh ansulating phase.
In order to further characterize the two phases, we condidequasiparticle

weight

(Tn-ilerq | Tn)]?
(UN N (YN[ Un-1)’
where|Uy) and |V y_,) are the WF withV and (N — 1) particles,c;, is the
destruction operator of a particle of momenténand spino. In particular, the
wave function withV — 1 particles is constructed frop@ ) as:

7 = (5.12)

|\IIN,1> = PJCk,a‘D>- (513)

In previous works [102, 103], it was argued that the singd&strow factor can
induce non-Fermi liquid properties, and in particular aishimg 7, at the Fermi
surface. In Figure 5.5, we repott, for k = (7/2,7/2) and for different Jastrow
strengthss. We find that the quasiparticle weight vanishes with a poaer-
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Figure 5.5: Quasiparticle weight, atk = (7 /2, 7/2) for the gapless BCS state
with A/t = 1.1 andd,=_,» symmetry as a function aof and for different Jastrow
strengths3 (full circles). The case of the fully-projected wave functi(empty
circles) is also reported foh /¢ = 1.1 and0.5. Inset: The behavior of [the
exponent of the quasiparticle weight, see Eq. (5.14)] asetion of 5 for BCS
state (full circles) and the Fermi gas (FG) determinant figuares). The value of
the fully-projected states are also reported (arrows).

behavior:
Zy ~ LY (5.14)

both in the confined and in the plasma phase, with an expghérdt depends
upon and the type of the uncorrelated state. In the plasma pHaseies con-
tinuously with the Jastrow strengthand there is no appreciable dependence on
the uncorrelated determinant. On the other hand, in thersaohfphase, the expo-
nent is constant, i.ef, ~ 1/2 for the BCS state an@l ~ 3/4 for the free-electron
state, and equal to the value found for the fully projected ¥#shown in the in-
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set of Figure 5.5. It must be mentioned that, for the BCS stadees not depend
upon the value of the superconducting order paramt@ndicating the universal
properties of the confined phase.

Let us finally comment on the possible occurrence of the aboggario for a
microscopic Hamiltonian. In Section 5.2.1 we will test if @tal-insulator tran-
sition of this type occurs in the two-dimensional Hubbarddelpby considering
the paramagnetic solution. We find that this novel scenaresdhot occur in this
case. Onthe other hand, we can safely predict the occurcéiice novel KT-like
scenario in two-dimensional systems with long-range (litigaic) interaction. In
this case, the application of the Gaussian approximatiosrfall interaction and
our ansatz for the insulating phase imply the presence d@resition of the type
considered here. It is remarkable that the proposed pictuically depends on
the long-range nature of the Coulomb interaction, reagliott’s original idea.

5.1.2 Kaosterlitz-Thouless transition with AF and BCS

The novel scenario presented in the previous section sh@avfte Jastrow factor
Vg ~ q% determines anomalous properties in the resulting phasdis, i pres-
ence of a simple uncorrelated Slater determinant for freetieins and with a
BCS mean-field determinant. In these two cases, the unatecestarting point
is a metallic (superconducting) state. However, the Jastactor could be of
the formo, ~ q% also in presence of an insulating antiferromagnetic (ARRtesl
determinant, since it enables to obtain the correct dewsitsity correlations.
Moreover, the numerical evidence of an attractiveave pairing interaction even
for the half-filled Hubbard model on the square lattice [1D36], suggests that
a natural choice for the variational ground state of this ehoaight contain both
the BCS and the AF parameter. In this case, the Jastrow ffaqptgrqi2 IS neces-
sary, in order to restore the correct behavior of the chdegesity structure factor
lim, .o N, = 0, required to ensure charge conservatfon.
At this point, one could ask about the effect of the singukstdwuv, ~

qiz on this kind of insulating determinants, and charactetieeproperties of the

2Indeed, as discussed for the one-dimensional case, thenmeesf a BCS Slater determinant
induces the wrong behavid¥{ ~ const and a Jastrow factor is needed in order to set the correct
smallq behavior.
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corresponding phases when the Jastrow strength is varied.
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Figure 5.6: Validity of the Gaussian approximation for drént Slater deter-
minants and Jastrow strengths for a lattice of 242 sites. different Jastrow
strengths are considered, corresponds t&# = 4/7 and.J; to § = 1/7, with 3
fixing as usual the Jastrow strength= %. The determinant denoted witA F)

is obtained for a mean-field Hamiltonian with a staggeredembmagnetic term
[see (1.15)] with antiferromagnetic gapsr = 2.0, while |AF' + BC'S) corre-
sponds to the ground state of a mean-field Hamiltonian coingiboth AF and
BCS terms. In particulatAF' + BC'S(I)) denotes the determinant obtained with
Aup=20andAdy, ,=20and[AF + BCS(11)) corresponds tah 4y = 0.5
andA,, , = 1.1. Points are taken along the diagonal direction.

First, let us consider the validity of the Gaussian appration for different
Jastrow strengths in presence of an AF Slater determinattt.and without the
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BCS term. This is done by calculating the coefficigmtppearing in the following
expression, valid at smajt
Ny

Nyrwo ————, 5.15
q 1+,7qu3 ( )

Whenevery = 2, one recovers the Reatto-Chester relation, which holdsnwhe
the Gaussian approximation is valid. The validity of the &aan approximation
implies, as discussed in the previous section, that thesyptoperties have the
fingerprint of the CGM plasma phase, with additional coicets due to the pres-
ence of the Slater determinant; otherwisey it 2, the Gaussian approximation
is valid only qualitatively and the corresponding stateekated to the confined
phase of the CGM The value ofy is obtained from Eq.(5.15) by taking:

celGoR) e
In Figure 5.6 we plot the quantity on the r.h.s. of (5.16) fdfedent determinants
and different Jastrow strengtht focusing on very smalb, where the plasma
phase was previously found in the case of the) and|BC'S) states (see Sec-
tion 5.1.1). The corresponding valueptan be obtained by looking at the limit
of smallg.

In the case of an antiferromagnetic determinjai’), we findy > 2 even for
very small Jastrow strengths, namely the system is alwatfseiconfined phase
and the Gaussian approximation never holds. Indeed, ewemiththe value of
~v becomes smaller by decreasing the Jastrow strength (see/dheases with
v, = 4/¢* andv, = 1/¢* reported in Figure 5.6), we find thatis alwaysdiffer-
ent from 2. The fact that the AF wavefunction always corr@sjzao the confined
phase implies that it has the same universal propertieparmently froms (ac-
cording to the Kosterlitz-Thouless scaling equations)waexpect that this phase
does not differ substantially from the simple AF Slater daieant. Viceversa, in
presence of both BCS and AFAF+BCYS), the validity of the Gaussian approx-
imation can be recast for small enoughand we findy — 2 (see Figure 5.6).
Moreover, for largers, the value ofy increases, signaling that, contrarily to the

SIndeed let us recall that in one dimension, for the minimidadtrow WF on the Hubbard
model, we found tha depends on the value 6f as reported in Eq.(4.8) and> 2 at half-filling,
while v = 2 at finite doping.
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Figure 5.7: The same as in Figure 5.2 for a state Witf = 0.5 andAdILy2 =
1.1.

simple AF determinant, a Kosterlitz-Thouless transitiagimoccur in this case.
In particular, we find that the values Gfwhere the Gaussian approximation holds
depend on the ratio among the values of the BCS and the AF gapgly, the
larger isA 4/ Apcs, the smaller is the range of validity of the Gaussian approxi
mation, i.e.,3, — 0 by increasing the ratid\ 4 /A gcg.

Let us now investigate the possible occurrence of a KosteFhouless transi-
tion for this latter case in more detail. In Figure 5.7 we pla inverse dielectric
constant as a function of the inverse Jastrow strength farreelated WF that
contains both AF and BCS in the determinant. From the behafid /e for
the different sizes it turns out that there is a jump, sigtathat the Kosterlitz-
Thouless transition occurs also in this case. Notice thafctitical value of3
is much smaller than the classical case, contrarily to waapkns for the BCS
and FS states. Let us remark that, whenekgy # 0, we find that this jump
occursonly when the BCS pairing term is preseotherwise the system remains
in the same phase characterized by a finite dielectric congiaany 3, and no
transition occurs.

Finally, in order to further characterize the correlatedesbuilt with the long-
range Jastrow factor and finit& ,» and Agcs, we calculate the quasiparticle
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Figure 5.8: Quasiparticle weightt, as a function of the inverse square root of the
volumeL for a Jastrow WF with\ 4= = 0.5 andAde_y2 = 1.1, for two different
values of the Jastrow strength. Her@ = 8 corresponds to the confined phase
andr3 = 4 to the plasma phase. Lines are three parameters fits.

weight for two different Jastrow strengths on the two sidethe transition. We
find that the quasiparticle weight is finite for> (., whereas, by increasing the
size, the value o¥,, strongly decreases in the plasma region, suggesting the pos
sible occurrence of a vanishing quasiparticle weight ia taise (see Figure 5.8).

The above scenario, suggests the possible existence of@ating state, that
we denote as “plasma insulator”, which appears at smalétairons and is char-
acterized by a vanishing quasiparticle weight and finitefembmagnetic gap.
This strange insulator occurs only if the correspondingnHezd state contains
both AF and BCS parameters. It would be very interesting tdw# this state
can be stabilized in a microscopic model.
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5.2 Variational results for the Hubbard model in 2d

5.2.1 Paramagnetic Jastrow WF

In the previous section we have shown that, within the viamal approach, the
use of a long-range Jastrow factor admits the possible cawee of an uncon-
ventional metal-insulator transition in two dimension#hva metallic phase with
anomalous non-Fermi liquid properties. Here we verify weetthis scenario
occurs by considering the two-dimensional Hubbard modé&héparamagnetic
sector.
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Figure 5.9: Optimized Jastrow potentigl multiplied by |¢|?, for the Hubbard
model as a function df| [in the (1,1) direction] for different sizes of the cluster

and ratiod//t. The arrow indicates /7", the expected value difin, .o v,|q|*
at the classical transition point.
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Within this approach, that neglects magnetic phases, varohimetal-insulator
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transition forU, /t = 8.5+ 0.5. In the weak coupling regime, we find that the Jas-
trow strength isv, ~ 1/|q| (see Figure 5.9) and the WF describes a correlated
metal. As soon as we enter in the insulating phagéyecomes more singular
andlim, .o v, |q|* defines an effectivey which is larger than the critical value
for the KT transition. Therefore, no evidence for the “Caulometal” is found.
Indeed, we expect that the optimized Jastrow fagfpcontaining subleading cor-
rections with respect to Eq. (5.5), will define a criticalvery close to the value

of the classical CGM, i.e.3. = 1/T¢“M = 4. Although there are large size
effects around/,, we have a clear evidence thah, .o v,|q|* — 0 for U < U,
andlim, o v,lq|* Z 4x for U > U.. In order to further characterize the two
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Figure 5.10: Quasiparticle weight, atk = (7/2,7/2) of the optimizedpara-
magnetiovave function containing a Jastrow factor applied to therfrgas as a
function of the interactior//¢ in the Hubbard model, for three different sizes of
the system. Inset: the number of double occupanbies a function ot/ /1.
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phases, we calculate the quasiparticle weight for diffetéft. In the weak cou-
pling regime, forU < U,., we obtain a Fermi liquid with a finite quasiparticle
weight, whereas at strong couplings, i.e.,for> U., we have an insulating phase
with a vanishingZ,,, see Figure 5.10. In addition, the calculation of the double
occupancyD clearly indicates that the transition is continuous andnisalating
phase still possess finite charge fluctuations, see theahsejure 5.10.

Therefore, in light of the above results, the stabilizatadnthe “Coulomb
metal” seems to be very unlikely. This was expected sinceeatkveoupling the
Random-Phase Approximation holds, and, according to pusvRPA calcula-
tions, a metallic phase witlv, ~ ¢* and zero quasiparticle weight can be found
only for long-range potentials [102].

5.2.2 Comparison among different variational wavefunctios

Let us finally compare the accuracy of different WFs obtawvéh the long-range

density Jastrow factor and different uncorrelated stateshfe two-dimensional
Hubbard model. In particular, we consider the mean-fieldtgmts of the BCS

and antiferromagnetic Hamiltonians of Section 1.4.1. Mwueg, we also evaluate
the accuracy of a determinant with in-plane staggered nmegien, which is the

ground state of the mean-field Hamiltonian:

Hap, = Z ekc,lgck,a + Aur, Z(_l)”(CLCiL + h.c.) (5.17)
ko i

whereA 4, is a variational parameter. Furthermore, in order to dbsaorrectly
the spin properties of the system, we consider the effectlohg-range spin-
Jastrow factor along thedirectionJs, = exp [% > i vijij]. Let us emphasize
that, in the mean-field Hamiltonian (5.17), the magneticcoghrameter is in the
x — y plane and not along thedirection like in H 4 of (1.15). Only in this case
the presence of the spin Jastrow fact@r can introduce relevant fluctuations
over the mean-field order paramet®y -, , leading to an accurate description of
the spin properties [63, 107].

Figure 5.11 shows the variational energy of the differentsWds a function
of 1/U. We plot for a comparison the behavior of the energy of thamagnetic

4In order to minimize the size effects ¢f),, we calculate the momentum distributiep and
extract, by fitting around the known Fermi surface, the valie jump.
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Figure 5.11: Energy v/ U for different WFs for a lattice of 98 sited,, (Js.) de-
notes the charge-density (spin) Jastrow fagtbrs) is the uncorrelated Fermi sea
determinant|AF) is the determinant obtained from a mean-field antiferromag-
netic Hamiltonian (see Eq.(1.15))BC'S) is the ground state of a BCS Hamil-
tonian (see Eq.(1.14)) with a gap parameter havipg . symmetry. Finally,
|AF + BCS) corresponds to a mean-field Hamiltonian containing bothathe
tiferromagnetic gap\ 4 and the BCS gamdﬂ_yQ and|AF,) corresponds the
ground state of Hamiltonian (5.17). Arrows (marked withfeliént points ac-
cording to the caption) indicate the infinitévariational energy obtained for the
Heisenberg model by optimizing the corresponding fullgjpcted determinants.

variational state/,,| F'S) described in the previous section, which turns out to be
much higher than the other variational energies, sinceah¢hse the magnetic
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contributions are completely neglected. The WF with thedsienergy corre-
sponds to the determinant with in-plane magnetization dodgrange spin and
charge Jastrow factor. Quite surprisingly, the WFs comiogfthe BCS mean-
field solution, with and without antiferromagnetism, areléss close in energy at
finite U with respect to the infinitéf limit. However, when discussing these find-
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Figure 5.12: Energy accuracy for different WFs (see theicapmif Figure 5.11)
for U/t = 4 as a function of the lattice sizeAE = EHEsif;SET where Ey 5 is the
energy calculated with the Hubbard-Stratonovich algarith

ings, itis necessary to remark that, as we already obseovéidd one-dimensional
t—t" Hubbard model, also in two dimensions the Jastrow factos doegenerally
allow us to connect with a good accuracy to the infirditédmit. This happens be-
cause the Jastrow term can only change the amplitudes obtifigarations given
by the determinant, but is not capable to change the nodé&® M/F, which turn
out to be remarkably different for finit€ with respect to the infinité* limit. We
find that the possibility to connect the two limits deeply degs on the accu-
racy of the variational WF in the corresponding infinifemodel. For example,
by considering the wavefunction built with the fully-profed Slater determinant
|F'S), whose variational energy is very far from the ground-seatergy of the
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Heisenberg Hamiltonian, we find that at finltethe corresponding Jastrow wave-
function.J,,| F'S) fails to connect to the infinitéf limit. Instead, the wavefunction
with spin Jastrow factor and in-plane magnetization, whécthe most accurate
for the Heisenberg model, reaches the infirditéimit with a good accuracy.

Finally, in order to check the size dependence of the abosdtse in Fig-
ure 5.12 we show the accuracy of the three WFs that mostlyapprthe Heisen-
berg limit for U/t = 4 and different sizes. This is obtained by comparing the
variational energy with the one calculated through the Hut{Stratonovich al-
gorithm, which is exact within the statistical error. As exfed, the WF with the
in-plane magnetization and the charge and spin Jastrosrfalctis the best accu-
racy, which increases by increasing the lattice size. Thlsbior is found also
for the WF built with a long-range Jastrow factor and a meali-fdeterminant
containing both the AF and BCS parameters. On the other Hand]/t = 4
the simple BCS state with charge and spin Jastrow factorghwé the finitet/
version of the RVB state with a further magnetic contribnt@mming from the
spin correlation factor, looses accuracy by increasinddttiee size.

From the above results we expect that a WF containing bophaine AF and
BCS, with a long-range spin and Jastrow factor, could givear&ably accurate
results for the two-dimensional Hubbard model on the sqladtiee. In that case,
the uncorrelated part can be written in terms of a Pfaffiatead of a simple
determinant [107, 108].



Chapter 6

The Jastrow WF for bosonic
systems: comparison with exact
results

In this chapter we study the bosonic Hubbard model in one aodspatial di-
mensions, by using the variational approach and the nuailriexact Green’s
function quantum Monte Carlo technique(GFMC) [39, 109].tWfiespect to the
fermionic case, where the so-called sign problem prevenésto have access
to the exact ground-state properties on fairly large sizethe bosonic case the
ground-state wavefunction (WF) can be sampled by usingtquaMonte Carlo
techniques. Therefore, the non-frustrated bosonic maietsthe opportunity to
compare our variational ansatz with the exact ground state.

Following the ideas of the previous chapters on fermiongteays, we show
that, in order to obtain an accurate approximation of theigdostate, it is nec-
essary to include a long-range Jastrow factor. In this désesingular behav-
ior at small momenta may turn a non-interacting superfluid an insulator that
still possess density fluctuations. Moreover, thanks tantaeping between this
guantum state to the classical Coulomb gas model, shownapt€n5, important
insight into the insulating phase are possible. Finallpstdering additional long-
range repulsive interactions added to the Hamiltonian,apent the evidence for
different scenarios for the superfluid-insulator trawositi
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6.1 The Bose-Hubbard model

The Bose-Hubbard model is described by the following Hamikln:

t i U
1,5 v

where(. .. ) indicates nearest-neighbor sité}(bi) creates (destroys) a boson on
site, andn; = bjbi is the local density operator. In the following, we consider
particles on a lattice of, sites with periodic boundary conditions. At zero tem-
perature and integer densities= N/ L, this model shows a superfluid-insulator
transition when the rati&’ /¢ between the kinetic energy and the on-site interac-
tion is varied. Otherwise, for non-integer fillings, the gnal state is always a
superfluid. In a seminal paper [110], by using a field theoadtpproach, Fisher
and coworkers proposed that the transition ofdkdimensional clean system be-
longs to theX'Y universality class inl + 1. This scenario has been confirmed
mostly in one an two dimensions by using different numerieahniques, such
as quantum Monte Carlo and density-matrix renormalizagmup [111-115].
In particular, it has been verified that in one dimensioi) @t p = 1 there is a
Kosterlitz-Thouless transition and the estimation of thigoal value of the on-site
interaction ranges betweén/t ~ 1.8 andU./t ~ 2.3 [112, 114]. Instead, in two
dimensions (&), there is a second-order phase transitiobi gt ~ 8.5 [111].

Besides the numerically exact techniques, important mégions on the vari-
ous phases can be obtained by considering simplified vamaltMWFs. The sim-
plest example is given by the celebrated Gutzwiller stateere the on-site re-
pulsive term disfavors density fluctuations. In this casati@ry to the fermionic
case, it is possible to tackle exactly this wave functior6[11117] and to describe
the superfluid-insulator transition with reasonably aateivalues of’./t, i.e.,
Ue/t = d(y/nc + /n. + 1)?, for commensurate fillings = n.. The main draw-
back of this approach is that, similarly to what happens wgtmions, the transi-
tion is reached with a vanishing of the kinetic energy andrbalating state does
not possess density fluctuations, all the particles beioeefi on the lattice sites.
Of course, this gives a rather inaccurate description oirtbalator, whenever the
local interaction is finite.
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6.1.1 The bosonic variational WF and the GFMC approach

For bosonic systems, the variational Jastrow WF is defineapipyying a density
Jastrow factor to a state with all the bosons condensedhntp+ 0 state, namely:

W) = exp (% Z Ui,j”i”j) Do), (6.2)

)

where|®y) = (32, b1)¥(0) is the non-interacting boson ground state whttparti-
cles anay; ; are translationally invariant parameters that can be apéidito min-
imize the variational energy. On the other hand, as we showé&kction 1.4,
previous studies for fermionic systems stressed the irapoet of short-range
many-body terms [13], where the on-site Gutzwiller prajeds supplied by a
holon-doublon term acting for nearest-neighbor sites.mpde generalization of
this state for bosonic systems is given by

Wy B) = exp (9 Z n; + gus Z fi) Do), (6.3)

whereg and g,,5 are variational parameters and the many-body operator-is de
fined by

& =hi [ J(1 = diss) + & [ J(1 = hirs), (6.4)
§ 6

whereh; = 1 (d; = 1) if the site: is empty (doubly occupied) antlotherwise,
0 = =+, ty; therefore,&; counts the number of isolated holons and doublons.
Even though this projector has been originally introduaaddérmionic systems,
where the maximum occupancy at each site is given by tworelestit can be
used also for bosons, where in the limit of large interactlws number of sites
with an occupation larger than two is negligible.

Then, itis straightforward to combine the two previous &aonal wave func-
tions and consider

1
Wy ap) = exp (5 > vigning + gus Z&) Do), (6.5)

7

containing both the long-range Jastrow factor and a slamge many-body term.
As it will be shown in the next sections, in two dimensions finesence of the
latter term helps to increase the accuracy in the strongdowuregime. Instead,
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in one dimension, the many-body term does not improve theracg of the long-
range Jastrow state, and there is no appreciable diffetzetoeeen the WF (6.2)
and (6.5).

In the following, we will present the results obtained by siolering the vari-
ational WFs described above and, in order to verify theiueacy, we will com-
pare their properties with those found with the numericabpact GFMC. This
technique allows one to sample the distribution:

IT, o< (x| U9 (x| W), (6.6)

where|¥,) is the exact ground state afé“) is the so-called guiding function
that helps the convergence and may be chosen to be the biesiovenl state. In
particular, following the power method:

T oc lim G™MI°, (6.7)

wherell" is a starting distribution and
Gx’,x = ‘ij/ (A(sx’,x - ’HI/@)/lIlf, (6.8)

is the so-called Green’s function, defined with a large oneménite [118] posi-
tive constant\, ¢, , being the Kronecker symbol. The GFMC statistical method
is very efficient for non-frustrated bosonic systems, sindhis case all the matrix
elements of7 are non-negative and the ground state is node-less. Theréfo
can represent a transition probability in configuratiorcgpapart from a normal-
ization factor, = > , G,/ ... In this case, it follows immediately that the asymp-
totic distributionII is also positive and, therefore, we have a direct accesto th
ground-state energl, by sampling the local energy, (z) = (x|H|¥) /(x| T)
over the distributionl,. Finally, the static correlations, like the density struc-
ture factor, can be obtained by using the forward-walkimtpteque introduced in
Ref. [39]

6.1.2 Results for the ¥ Bose-Hubbard model

First, in Figure 6.1 we compare the variational accuracyhef\WFs (6.2), (6.3)
and (6.5) for different values df /¢. Remarkably, in one dimension and in pres-
ence of a long-range Jastrow, the many-body term pararedtbyg,, s is irrel-
evant and there is no an appreciable difference between #se(8/2) and (6.5)
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for all the on-site interactions considered. By contrdst, Gutzwiller state, even
when supplied by the many-body term, is much less accuratedogasing///t.
Therefore, in the following, we will consider the state witing-range Jastrow
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L
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Figure 6.1: Accuracy of different variational WFs as a fimiof U/t for 60 sites
and 60 bosonsAE = Eyv ¢ — Ey, whereEy ¢ is the variational energy and
Ey is the ground-state one, obtained by GFMC. The state of EZ) (§denoted
by “Jastrow”, the one of Eq. (6.3) by “Gutzwiller+MB”, anddtone of Eq. (6.5)
by “Jastrow+MB”.

given by Eq. (6.2), since the fact of dealing with the mangibterm makes the
algorithm much slower than the case with the Jastrow fadtoreaand does not
improve the quality of the variational state.

In Figure 6.2, we report the minimized Jastrow parametensultiplied by ¢*
for differentU /¢: There is a clear difference in the smalbehavior forU /t < 2.4,
wherev, ~ «/|q| and forU/t 2 2.5, wherev, ~ (3/¢*. At the variational level,
the change of the singular behavior of the Jastrow parasifetdl /¢ ~ 2.4 marks
the superfluid-insulator transition. Indeed, as discugselde previous chapters,
v, ~ a/|q| implies a gapless systems, wheregs- 3/¢* indicates a finite gap in
the excitation spectrum and, therefore, an insulatingasdtar. These variational
findings will be confirmed by the comparison with the exactilessn the follow-
ing. Let us now concentrate on the insulating phase. As dssaliin Chapter 5,
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Figure 6.2: Variational results for the Jastrow parametegsspacey, multiplied
by ¢?, for differentU /t, for 60 sites (full symbols) and00 sites (empty symbols).
Inset: The extrapolated value 6f= lim, ., v, x ¢* as a function ot//t.

the Jastrow WF (6.2) can be mapped onto the partition funaifcan effective
classical Coulomb gas model (CGM) anidplays the role of the inverse classi-
cal temperaturgg = 7 /T.;. In 1d the CGM is in the confined phase for any
finite temperature, with exponential correlations [119hisToutcome is consis-
tent with the fact of having, in the quantum model, a finite gafhe excitation
spectrum. Remarkably, in thel tase, close to the superfluid-insulator transition,
the value ofg obtained from the optimized Jastrow potential is very sr(sdke
inset of Figure 6.2) and approaches zero when» U, from above, thus giving
a strong indication in favor of a continuous transition begw the superfluid and
the insulating phase.

Let us now analyze the transition by considering the dersditycture factor
N,. In the smallg regime, we can generally write that

Ny = mlgl + 724, (6.9)

wherey; and~, depend upon the Jastrow parameters. Sifce a/|q| in the
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Figure 6.3: Density structure factd¥, divided byq calculated with variational

Monte Carlo (left panel) and GFMC (right panel) for diffetén/t and L = 60.
From top to bottoni//t = 1.6, 1.8, 2, 2.2, 2.4, 2.5, 3, and4.

superfluid and, ~ (3/4* in the insulator, from the Reatto-Chester relation [16]
it follows that~; # 0 in the superfluid, whereag = 0 in the insulating phase,
wherev, « 1/43. In analogy with spin systems, we have that= v.y, with v,
andy being the sound velocity and the compressibility, respelti The fact of
havingy; = 0 in the Mott insulating regime indicates that this state compress-
ible. The Reatto-Chester predictions are confirmed in E@&u8, where moreover
we obtain thaty; has a jump from a finite value to zero across the transition.
This outcome is consistent with the fact that the comprdggiblso has a finite
jump in the ¥ quantum phase transition [120]. Moreover, just abbyven the
insulating regimeyy, is very large (infinite wher — 0) for both the variational
and the GFMC calculations, indicating the peculiar chamaof the X transi-
tion. According to the different smail-behavior of the density structure factor,
the superfluid-insulator transition can be locatedatt ~ 2.4 for the variational
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calculation, whereas the GFMC givEs/t ~ 2.2.
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——T >
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Figure 6.4: Variational results for the momentum distribdah,, in 1d for L = 60,
100, and 150 and different values of//t. Inset: Size scaling of the condensate
fractionn/ L.

At the variational level, the superfluid-insulator trarsitcan be also easily
detected by considering the momentum distribution:
(|0 bk W)

n, = BT (6.10)
whereb] is the creation operator of a boson of momentumit turns out that
the momentum distribution has a radically different bebaielow and above the
transition: in the superfluid phase, it has a cuspg at 0, although there is no
condensate fraction, i.eny/L — 0 for L — oo, while in the insulating phase
it is a smooth function, see Figure 6.4. These facts nayunaplies a power-
law/exponential decay of the density matrix in the fornmagtér phase.

Finally, we consider the superfluid stiffness. In analogy to what has been
done by Pollock and Ceperley at finite temperature [121F thuantity can be
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Figure 6.5: Superfluid stiffness calculated by GFMC as ationcof U/t for
different sizes [ = 30, 60, 80, 150). Lower inset: Size scaling db, for different
U/t (From top to bottonUU/t = 1, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 3). Upper inset:
D, x L as a function ofU/t for the same sizes. The point where the different
curves cross marks the transition point.

also calculated directly at zero temperature by using thRIGR&and the winding
numbers: W)
. T

Dy = TIEEO TI (6.11)
whereW (r) = >, [ri(7) — r;(0)], r;(7) being the position of the-th particle
at diffusion timer, andd is the dimension of the system. It should be stressed
that, exactly at zero temperature, can only give information about the presence
of a gap in the excitation spectrum, and, therefore, it caoraninate between
conducting and insulating phases. In analogy with the Dielight, D, # 0 for
a metal and), = 0 for an insulator. In Figure 6.5, we shal, for different sizes
of the system as a function of the ratig’t. The superfluid stiffness is finite and

large in the weak-coupling regime, whereas it vanishe#/far= 2.2. In analogy
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with spin systems (hard-core bosons) and from generahgratguments valid for
1d boson models, we expect a finite jump at the transition [1&BR]ch however
it is very difficult to detect by using numerical methods.

6.1.3 Results for the 2 Bose-Hubbard model

Let us now turn to the 2 case of the Hubbard model of Eq. (6.1) and consider
square clusters witlh, = [? sites and agaidV = L bosons. The accuracy of
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Figure 6.6: Accuracy of different variational WFs as a fumatof U/¢ for the
10 x 10 cluster andl00 bosons. The symbols are the same as in Figure 6.1.

the three WFs (6.2), (6.3) and (6.5) are reported in FiguBe @.he situation
is different from the previousdlcase: the Gutzwiller state with the many-body
term, which in 1 is not accurate for larg&/¢, in 2d becomes competitive with
the Jastrow WF fof//t > 14. Moreover, the presence of the many-body term
strongly improves the accuracy of the Jastrow state as so0ita> 8. Then, in
the following, we will consider the state of Eq. (6.5) for bdhe variational and
the GFMC calculations.

Similarly to the 1 case, we show in Figure 6.7 the behavior of the optimized
v, as a function of the interaction strengtl):~ «/|q| for U/t < 10.5, while v, ~
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Figure 6.7: Variational results for the Jastrow parametgraultiplied by ¢* as a
function ofg, (or ¢,) for differentU/t and L = 400 (circles),676 (squares), and
900 (triangles). Upper inset: The extrapolated valugiof lim, .o v, X ¢* as a
function of U/t. Lower inset: The many-body variational parametgyz as a
function of U /t.

B/q* for U/t = 10.5, corresponding to the superfluid and the insulating phase,
respectively. Therefore, at the variational level, theestipid-insulator transition
islocated at/../t ~ 10.5; this value is close, but slightly better, to the one obtdine
by using the simple Gutzwiller state, for whi€h /¢t ~ 11.33 [111]. It should be
noticed that, in contrast with thelTase, here in the strong-coupling regime there
are subleading corrections to thé;* behavior of the Jastrow parameters. These
corrections can in principle turn the power-law correlasidypical of the classical
CGM to exponential ones, more suitable for gapped insidatdnfortunately, for

the sizes available with our variational approach, it ispussible to distinguish a
true exponential decay from a power-law behavior with adargponent.

The fingerprint of the transition is also given by the momentlistribution.
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Figure 6.8: Size scaling of the condensate fractiphl. (L = 100,256, 400, and
676) for two different values ot//¢.

For this quantity, a striking difference is observed below above.. In the for-
mer case, a cusp-like behavior with a finite condensatadmads found, whereas
in the latter case a smooth behavior is detected, with a hengs, /L. Notice the
vanishing condensate fraction in the thermodynamic linfiemw, ~ 1/¢* (see
Figure 6.8). Indeed, sinc¥, ~ ¢, the fact thah,/L — 0 in the insulator imme-
diately follows from the generalized uncertainty prineiglerived by Pitaevskii
and Stringari [66].

At this point, it is instructive to consider the classicalppang from the quan-
tum WF withv, ~ (/4 to the classical CGM. We recall that in/2the CGM
shows a Kosterlitz-Thouless transition from a plasma phstedle at high tem-
peratures and a confined phase, stable at low temperatuteslamet/ limit
corresponds to the confined phase, with> (.. By decreasing the rati®’/¢,
the coefficientd diminishes, and eventually we enter into the superfluid @has
parametrized by, ~ a/|q|, where the mapping onto the CGM is no longer valid.
Within this framework, a natural question arises: is it plolesto stabilize an “in-
termediate” phase, fa¥ > U,, which hasv, ~ 3/¢* and3 < 3., the quantum
equivalent of the plasma phase? This scenario would impdystwccessive phase
transitions by increasing//t: the first one from the superfluid to the quantum
plasma phase and the second one from this “intermediateseptoathe Mott in-
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sulating state. In analogy with thel case, in order to answer this question, we
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Figure 6.9: Left panel: Density structure factyy divided byg calculated by the
variational Monte Carlo for different/ /¢t and L = 20 x 20. From top to bottom
U/t = 10, 10.2, 10.4, 11, and12. Right panel: The same for the GFMC on the
L =16 x 16 cluster. From top to bottorti/t = 8, 8.2, 8.4, 8.6, and8.8.

have to look closely to the optimized Jastrow parametessngan mind that the
classical value for the transition temperature betweedhéned and the plasma
phase i3, = 47 and that, since the optimized is not in general exactly equal to
the CGM potential, a small change in the classical critiealperature is still pos-
sible, i.e.,T. # T = 1/4. From the smally behavior ofv, (see Figure 6.7),
we find that the value of at the superfluid-insulator transition s~ 13.5 and,
therefore, very close tG.. Reasonably, this fact completely rules out the possibil-
ity that, when optimized for the Hubbard model of Eq. (6.t§ astrow WF (6.5)
can describe a stable plasma phase close to the superfiuildior. So, our vari-
ational Jastrow state correctly describes a direct triansiietween a superfluid
and a Mott insulator. Of course, the Kosterlitz-Thoulessrahter of the classical
transition is expected to be spoiled in the quantum modeteson one side the
superfluid phase is parametrized by a less singular interagt ~ «/|q|.
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In analogy with what we did for théd case, the superfluid-insulator transition
can be also analyzed by considering the smdikehavior of the structure factor
N,. In Figure 6.9, we show the results for the variational arel@+-MC calcu-
lations as a function of//¢. In both cases, we find a different smalbehavior
for large and small couplings. In the variational calcda$, forU/t < 10.3 the
structure factor goes liké&/, ~ 71|q| while for U/t > 10.3 we getN, ~ 94>
The critical value of the on-site interaction is rather eliféfint within GFMC, for
which we obtainl./t ~ 8.5, in close agreement with the value found in the lit-
erature [117]. More specifically, coming from the weak-doupregion,v; goes
smoothly to zero, in contrast with the results of thiemodel, where we observed
an abrupt jump. Moreover, since at the transition~ 13.5, the quadratic term
v In the insulating state close ta. is finite, and not diverging like ind. These
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Figure 6.10: GFMC results for the sound veloaityobtained through a finite size
scaling of the ground-state energy, Eq. (6.12).

results, based upon the variational WF, are confirmed by #dGcalculations,
see Figure 6.9. Since; = v.x, the vanishing linear coefficient a¥, can be
ascribed either to. or to x. In order to clarify which one of these quantities goes
to zero at the transition, we can extract the sound velagifyom the finite-size
scaling of the exact ground-state energy by

CoUc

EO(L> = EO(OO) - 13/2°

(6.12)
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where E,(L) is the ground-state energy for a cluster wiitsites, Ey(co) is the
extrapolated value in the thermodynamic limit, agds a given model-dependent
constant. Our results of Figure 6.10 clearly indicate thatays finite across the
superfluid-insulator transition, thus implying a vanighicompressibility when
approaching the Mott insulator.

0.6
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Figure 6.11: Superfluid stiffness as a functionloft for different sizes. Inset:
Size scaling ofD, for the sampled values d@f /¢, namely, from top to bottom,
U/t =6,6.5,7,7.5,8,8.2,8.4,8.6,8.8,09.

Finally, we calculate the stiffned3, with GFMC: Also for this quantity we
have a different behavior with respect to thechse, where a finite jump is rather
clear at the superfluid-insulator transition. Indeed, is ttase evaluation of the
stiffness for different sizes confirms the absence of thepjum2d, see Figure 6.11.
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6.2 Bosons with long-range interaction in 2

In the previous paragraphs, we have shown that, in the Hdbhadel, the super-
fluid regime can be described by a long-range Jastrow WF itk «/q. By
increasing the on-site interaction, our variational apptodescribes a continuous
transition to a Mott insulating phase that correspondséatinfined phase of the
classical CGM, parametrized by a more singular Jastrowngiater, ~ 3/¢*.
Remarkably, this approach correctly reproduces the behavithe exact results
both in 1d and 2I. However, in 2 the classical CGM possess another phase,
the plasma one, which cannot be stabilized on the microsapgpantum Hub-
bard model. Indeed, we have seen that, whenever the Jastrameters present
the singular behavior, ~ 3/¢% theng > j. and the ground state is found to
be in the confined phase. In the following, we generalize thbldard model of
Eqg. (6.1) to have long-range interactions, like Eq. (6.118)prder to understand
under which circumstances it is possible to stabilize thisrqum plasma phase.
The cases with long-range interactions have been conslidasstly in the contin-
uum, where a transition between a charged bosonic fluid andyaéicrystal is
found by varying the density [123-126]. In particular, iepence of the logarith-
mic interaction, the 2Bose liquid has no condensate, due to the predominance of
long-wavelength plasmon excitations [123].

Let us now consider a generalization of the Bose-Hubbardefiagresence
of a long-range interaction:

Hrr = —% Z bjbj + h.c. + % Z Q(r;, rj)nin;, (6.13)
(4,3) &3

where()(r;, ;) is a long-range potential that only depends upon the relatis-
tance|r; — r;| between two particles anid represents its strength. In particular,
we will consider two possibilities for the long-range pdieh The first one is
given by taking the Coulomb interaction between (chargesdphs moving in a
2d lattice embedded in a three-dimensional environment. dctpre, this can be
done by taking the Poisson equation in three dimensions amédagbing the par-
ticles onto the Z layer, i.e., by integrating the component of the momentum
This leads to the potential in thespace:

™

Qdas qy) = : 6.14
() V/(cosq, + cosq, — 3)2 — 1 (6.14)
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Notice that the smalf- behavior is given by2(q) ~ 1/|q|, as expected for the
Coulomb potential, which behaves likdr) ~ 1/r at long distance. The second
possibility is instead given by directly considering thdusion of the Poisson

equation in Z:
1

6.15
2 — (cosq, + cosqy)’ (6.15)

¢z, qy) =

which for small momenta behaves lik&q) ~ 1/4°, leading to a logarithmic
interaction in real space, i.€)(r) ~ log(r). In both cases, a uniform background
is considered, in order to cancel the divergent 0 component of the potential.
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Figure 6.12: Variational results for the Jastrow paransatemultiplied by |q|/>
for the potential of Eq. (6.14) with differerit/t and L = 400 (circles), 676
(squares), and00 (triangles). Inset: The many-body variational parametes
as a function ot/ /1.

Let us start by considering the realistic case of the Coulpatential, i.e.,
Q(r) ~ 1/r that in 21 leads to Eq. (6.14). Then we vary its strengtio drive
the system across a superfluid-insulator transition. Thallspbehavior of the
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Figure 6.13: Variational results for the density structizretor N (¢) divided by

|q|*/? for the potential of Eq. (6.14) with different/t and L = 400 (circles),676
(squares), and00 (triangles).

optimized Jastrow parameters is shown in Figure 6.12:1Her< 8, we obtain
thatv, ~ 1/|q>?, whereas, for larger values of the interactions, we tura int
v, ~ (/4% In this case, the singular behavior of the weak-couplirgore leads
to N, ~ |q|*/, whereas, for large couplings, the well known insulatingaxeor
N, ~ ¢* is recovered (see Figure 6.13). These results are confirm&FMC
(not shown), though the criticd /¢ is slightly decreased, i.€\;./t ~ 7. It should
be stressed that the same behavior of the superfluid phasedéadound in con-
tinuum models at high densities both analytically [127] anchnerically [126].
Unfortunately, also in this case, the plasma phase wjth- ’;—5 andjg < f.
cannot be stabilized by varying the Coulomb strength, anektain a standard
superfluid-insulator transition.

Then, we turn to the more singular interaction given by EqL%§H leading
to Q(r) ~ log(r). In this case the potential ipspace is given by2(q) ~ 1/4¢*
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Figure 6.14: The same as in Figure 6.12, for the potentiagpf{& 15).

and, in continuum models, by using the Gaussian approxamaitiis possible to
obtain: [123]
vy ~ Q(q). (6.16)

Then, with a logarithmic interaction, we expect that alsahia weak-coupling
regimev, ~ 1/¢*. Indeed, as shown in Figure 6.14, this is the case and the be-
havior of the Jastrow potential for small/t is compatible with the predictions
of Eqg. (6.16). Therefore, with such a singular potential, veee that3 < .
for V/t < 16 and it is possible to stabilize the quantum equivalent ofpflasma
phase. Moreover, with this kind of long-range potential,observe a direct tran-
sition between this plasma state and the Mott insulatotestablarge interactions.
Also the structure factor behaves IiRg ~ ¢* for all the coupling strengthy/,
see Figure 6.15. Again, similarly to the previous cases wiitisite and Coulomb
interactions, in the insulating regime we observe impdsableading corrections
of v, ~ 1/¢* (see Figure 6.14) that may restore the correct exponerefa\ior
of the correlation functions.
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Figure 6.15: The same as in Figure 6.13, for the potentiagp{&15).



Conclusions and perspectives

In this thesis we have shown, by using a robust variationaiagch, that the long-
range spatial density correlations are crucial for desugilthe Mott transition at
zero temperature.

This understanding has been achieved by considering arbonge Jastrow
correlation factor applied on top of an uncorrelated wanefion. We have found
that the long-range Jastrow factor is able to turn a met@liperconducting) un-
correlated state into an insulating one. Indeed, withis #theme, for the first
time we are able to recover an insulating state that doesraaktany lattice sym-
metry, but still allows for charge fluctuations, correspioigdto Mott’s original
idea where the localization of charges is purely driven bgrgj correlation.

We have carefully tested the accuracy of our variationai&ria the half-filled
one-dimensional Hubbard model, where a comparison withtersults is possi-
ble. We have found that the Jastrow wavefunction does aotitaiessential ingre-
dients to capture the physical properties of one-dimerdidott insulators [128].
Furthermore, we have shown that this kind of wavefunctionattmly connects to
the fully-projected Gutzwiller wavefunction, which debas very accurately the
limit of infinite repulsion. With respect to the latter, tr@g-range Jastrow wave-
function offers a more realistic description of insulatevbere charge fluctuations
are still allowed.

In addition, we have established the capability of the dastravefunction to
describe the correlation-induced metal-insulator ttaosin the one-dimensional
t —t' Hubbard model. In this case, with a proper choice of the uetated wave-
function, corresponding to a BCS state, it is possible tbikta a metallic state
that has a gap in the spin excitations, and an insulator itha&razes in the ther-
modynamic limit, with finite charge and spin gaps. By consitgthe properties
of our wavefunction for the different phases, we have gdizexat strong cou-
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pling the weak-coupling relations known from the previopplacations of the

Jastrow wavefunction in liquid Helium. In this way, we olntad a deep under-
standing on the relation among the long-range behavioreodéstrow factor and
the low-energy properties of the corresponding correlayestiem [128, 129].

Then, we have applied our variational findings to two dimensi Here, we
have realized that the quantum problem can be mapped, torgsenough cor-
relations, onto a classical Coulomb gas. This mapping isqudarly transparent
and useful when applied to the variational Jastrow wavefancin fact, the well
known behavior of the classical Coulomb gas suggests thguirig possibility
of an unconventional transition from an anomalous meta&,ahalogous of the
Coulomb gas plasma phase, into a Mott insulator, correspgrid the confined
phase of the Coulomb gas [130]. We have found that the priepest both these
phases are deeply connected to those of the underlyingadassodel, although
they maintain fingerprints of the quantum state encodedantitorrelated deter-
minant. In particular, we have shown that both the unconeeat metal and the
insulator display anomalous properties, like the vaniglgnasiparticle weight, a
typical manifestations of the “Mottness” of many strongtyrrelated materials.
In order to check whether this anomalous metallic phase merge in realistic
models, we have optimized the Jastrow wavefunction in tinegodar example of
a two-dimensional Hubbard model. By considering the patarefic sector, we
have shown that also in two dimensions the long-range Jagucior is able by its
own to describe the Mott transition without recurring to ayynmetry breaking,
providing us with an insulating state of purely “Mott typelh this specific ex-
ample, we found no evidence of the above mentioned anomaietallic phase,
the metallic region being always characterized by a finitastparticle weight,
that vanishes only upon approaching the insulating statg@big coupling. This
suggests that the stabilization of the anomalous metal ®a@yine the presence
of a long-range interaction. Moreover, we have compareddoeracy of differ-
ent variational wavefunctions for the two-dimensional Hatd model and how
they connect to the fully-projected determinants. We havmd that the density
Jastrow factor is able to approach the insulating statepei@ently of the choice
of the determinant. However, the possibility to accuratagnect to the infinite-
U limit in two dimensions depends crucially upon the choicéhef uncorrelated
state and its nodal structure.
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Finally, we have applied our variational wavefunction fosbnic models. We
have found that our approach beautifully agrees with thetemamerical solu-
tion on finite-size systems and with the generally acceptedretical predic-
tions [131].

The above results strongly indicate that the long-rangeetadions induced
by the Jastrow factor are the essential ingredient in oadescribe the physical
properties of Mott insulators and their parent compounds.

The future implications of this work can range among the whsdries of
phenomena where strong-correlation effects dominate etefrdine the physical
properties of the system. Remarkably, by considering tleeabthe long-range
Jastrow factor on different uncorrelated states, we hazentéy found an anoma-
lous phase, characterized by the concomitant presencetlothm antiferromag-
netic order parameter and a BCS pairing term. This phasehwddrresponds to
an antiferromagnetic insulator with paired electrons amdrashing quasiparticle
weight, turns out to be very promising in explaining thel stdbated photoemis-
sion spectra in High-temperature superconductors at zgping. The possible
stabilization of this anomalous insulator in a microscopadel constitutes a very
interesting future application of our variational appreac

Moreover, a remarkable improvement of our variational viawetion could
reside in the insertion of a backflow term into the determialgpart, in order to
have access, in the regime of finite interaction, to the loergy physics that is
observed in the corresponding two-dimensional spin models

Another interesting development of our approach might etswist in the in-
clusion of both in-plane antiferromagnetism and BCS pginrthe wavefunction.
This state requires an uncorrelated wave-function whickrigen in terms of a
pfaffian instead of a usual determinant. The main advantaggdibe the possi-
bility to handle a spin-Jastrow factor, that could allowasréat correctly the spin
fluctuations, giving very accurate properties for the Hutdbaodel.






Appendix A

Cumulant expansion and Gaussian
approximation

Given a probability density(z), its Fourier transforny(¢), called characteristic
function, is given by:

fla) =ty = [ " do dp(a). (A1)

The cumulant expansion ¢f(¢q) can be obtained by taking the Taylor series ex-
pansion ofin[f(q)]:

In[f(q)] = (Z “j?”cn) , (A2)

n=1

where(, corresponds to the-th cumulant:
Cr=(z) Cy=(a?) —(x)?

Now consider a wavefunctio®) describing a system of bosons on a latticé.of
sites, and a set df continuous variable§p; }. Let us define the functiop({p,})

as.
(P TT; 0(p; — my)|W°)
p({p;}) = O[T (A.3)

where as usuat; = c;cj is the operator that counts the number of particles on
site j. The functionp({p,}) defined above, satisfies the two conditions required
for a probability density:

JUdeyiotio) =15 i) 20
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Consider the Fourier transforif{{Q, }) of p({p,}), in the variableq Q), }

) 0]ai225 Qinj |\O
fH{Q;}) = /[{dpj}] e’ 25 9P p({p;}) = - ‘<11;0\\po> La (A.4)

The cumulant expansion &i[f({@,})] truncated to second order is:

JHQ ]~ Z Qj(n;) Z Q;Qy ({nynjr) — (ny){ny)) , (A.5)

which corresponds to:

f{Q;}) =~ exp [ ZQ] n;) ZXJJ Q;Qy | (A.6)

where we have defineg;;; = (n;n;;) — (n;){n;). The fact that the cumu-
lant expansion off ({@,}) is truncated to second order, is based on the assump-
tion that the Gaussian fluctuations of the charge give theimmmh contribution.
This approximation, calleaussian approximatigns surely valid for weakly-
interacting systems at large distances.

Now let us inverse Fourier transform Eg. (A.6) in order toregs the proba-
bility p({p;}) in Gaussian approximation:

p({p;}) = /[{an exp [_Z Z Q;(p ZXJ] Q;Qy (A.7)

By performing the Gaussian integral in the variab{es); }, apart from normal-
ization constants, we get:

p({p;}) = exp [—% ZX}ﬁ(ﬂj — (n;))(pj — (w})] (A.8)

Now, since we are interested in the probability associatéiuet Fourier-transformed
particle-density, = % >, €M p; we put:

== Zeuﬂ’v—’“ Gt (A.9)

Substituting (A.9) in (A.8) we find, neglecting the normalimn constants:

p({pq}) = exp [—% > xg 1pqpq] (A.10)
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which is the Gaussian approximation of the probabitityp,}) in the variables
{p,}. This approximate formula is used to derive the Reatto-&nepproximate
formula given in EQ.(2.7).






Appendix B

Technical details for an efficient
QMC algorithm

B.1 Ratio among the Slater determinants

The fermionic uncorrelated wavefunctid@(x) = (x| D) describingV fermions
located on a lattice of. sites at positiongr) can be written as a determinant of a
N x N matrix*:

UO(x) = det(D).

In the following we assume that the first index Df; refers to the position of
the particle and the second index indicates the occupieithbrb Consider now
another configuratiofx’), which differs from|x) only by the displacement of one
particle, from thée:-th site to the-th site.
If we want to calculate the ratio among the two wavefunctiahss corre-
sponds to:
Uo(z')  det(D)
UO(z)  det(D)’
Consider now thd., x L matrix M associated to thé orbitals and the possible
L positions of the particles. The matricésand D’ are constructed from/ by
taking N rows corresponding to the positions occupied by the elestemd/ NV

(B.1)

ILet us consider for simplicity spinless fermions, the galization to the spinfull case will be
discussed in the following

2For example, for free fermiong),;; = <20k fi)

VL
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columns corresponding to the occupied orbitals. Conslaefdllowing identity:
D;; = Dij 4 0i(Dy; — Dyj),

where we remark that corresponds to the old position left by the displaced elec-
tron. The above identity means that the new matrixs constructed from the old
matrix D by replacing the:-th row. Thek-th row of D; ; is taken from thel, x L
matrix M, by taking the-th row, associated to the new position:

Di; = Dij + 0s(My; — Dyj) = Dyj + 5¢kv§lk)
where we have defined the vecidl”’ = (Mj; — Dy;), having the apex indices
(Ik) fixed from the initial and final position of the displaced é¢tea. The above
equation can be written as:

Dy =Dij+ > DDk v\ =" Dy (8,0 + Dyko™) (B.2)

whereD ™! is the inverse o). By defining:

Kopj = Omj + D i0™ (B.3)

mk"Yj
we can write Eq. (B.2) in the compact form:
D'=D-K (B.4)

Therefore the ratio among the determinants (B.1) corre$pmthe calculation of
the determinant oi’. Since the matrix<, defined in (B.3), has elements in which
the dependence on the indexes is factorized, one can show tha

det(K) =1+ v™D !l =1+ (M, — D) Dyt (B.5)
q q
Therefore: det(D)
¢ -1
TouD) ~ det(K) = ; My, Dt = Wy, (B.6)

The calculation of the ratio among the two determinantseceduo calculate the
matrix element?,,,, i.e. the dot product among tle¢h row of the matrix)/ and
the k-th column of the inverse matri®—!. By storing and updating the matrix
W;;, we can calculate the ratio (B.6) for any Monte Carlo moveityp$y looking
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at the corresponding matrix elemént,;. This corresponds t®(1) operations
instead of theD(N?) required for the brute-force calculation of a determinant.
The largest computational effort is spent, each time the tel@arlo move is
accepted, for updating the matfiX. This, as we show in the next paragraph, can
be done withO(N?) operations.

B.2 Updating of the matrix W;;

Once the move is accepted, the matfxis substituted byD’ and one should
calculate again its inverse, in order to apply (B.6) and firig for another Monte
Carlo move. In the following we show how the inversé~! can be obtained
from D~! in a more efficient way, reducing t0(/N?) operations. Consider again
Eq.(B.2), inserting the definition ot’:

Z Dina(bmj + Dykt™) = 37 Dig K.

m

The inverse is given by:

Dt = Z KD,k (B.7)
The inverse ! corresponds to:
KV = 6im + g™ D 0 (B.8)
with 3: X .
g(lk) Z qu Wlk. (B.9)

Therefore, substituting (B.8) in (B.7), we flnd.

ik “m

D;;l _ Z(@m +g(lk)D lv(lk))D 1 D; —i—g(”“)Di_kl ZU#)D;}' (B.10)

m

The updated matrix/j; can be easily obtained:
= S MaD = S MDY MDD B4
q q q

3Substituting (B.8) and (B.2) in the condition for having anersez D’ 1D’h = ;5 ONE
finds the value of'*) given in (B.9).
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and, substituting the definitiavﬁk) = M,;,, — Di.,, we find:

Wix(Wi; — 1)

W' =W,
A R T

. (B.12)

In conclusion, we makeé& (N?) operations for constructing the matri¥;;
from scratch. This is done at the beginning of the Monte Cartoand after a
certain number of samplings, in order to avoid the bias chiced by truncation
errors. The great advantage is that, for any trial propassiead of calculating
the Metropolis ratioR each time, which would requir®(N?3) operations, we
only need to look at the corresponding matrix elemé&pt, implying an irrelevant
computational time, if the move is not accepted. Moreowchdime the move is
accepted, we make on{y(/N?) operations (instead @?(/N?)) to updatelV;;.

In this way, we can simulate a fermionic system without dggliat each
Metropolis step, with the bottle-neck of thig(N3) operations required for the
calculation of the Slater determinants.

B.3 Spinfull case and BCS Slater determinant

The generalization of the approach described in the previ&actions to the spin-
full case is straightforward. Instead of consideriNgx N matrices, one must
take2 N x 2N matrices, since one must indicate not only the particletposand
orbital, but also its spin. In the case in which particleséhavlefined spin (e.g. in
the Fermi sea and in the antiferromagnetic Slater detemtshathese are block
diagonal matrices, the first (las¥) rows and columns indicating the positions and
orbitals occupied by the spin-up (down) electrons (or vicea). The same hap-
pens for thel, x L matrix M;; defined above, which in the spinfull case becomes
a2L x 2L matrix.

On the other hand, considering the BCS Hamiltonian (seelBdL)), the cor-
responding BCS wavefunction is given by:

‘lDBCS> = H(uk + UkCJ]rCTCT_kl)‘(» (813)
k

where|0) is the vacuum, andy, v, satisfy the condition:

|ugl® + |uk* = 1
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The wavefunction defined in (B.13) is a mixed state of varipaidicle numbers,
therefore it is not convenient for our Monte Carlo approaehich works with a
fixed particle number. In order to overcome this difficultyginalogy with what is
done in Ref. [132], we introduce a simple particle-hole sfarmation for down
spins, namely:

diy = ey dip = (=1)'c], (B.14)

which correspond to the Fourier transformed operators:
iy = cxy diygr=cly, (B.15)

with @ being thed-dimensional vector with components = (7, x,..). In this
representation the new vacuyf) is defined aso) = [, dLQ\@). In this way
we can rewrite the BCS wavefunction as:

Wpes) = | [(wd], o, + ved};|0) (B.16)
k

where the bands now correspond to mixed states of up and goasand the total
number of particles is now well defined. Notice that, sinaBICS quasiparticle
have not a defined spin, i.e. each orbital is formed by diffeontributions
coming from both the spin-up and spin-down components, blove discussed
2N x 2N matrices will not be in the block diagonal form as it happemsthe
simple Fermi sea case. The same holds for the wavefunctimesponding to the
ground state of a mean-field Hamiltonian with in-plane maigagon.

B.4 Ratio among the Jastrow factors

Let us now consider how to efficiently calculate the ratio amthe Jastrow fac-
tors associated to two different configurations:

/ exXp [l Zz ; vl-jn;n’} 1
Ry= ZJ(I) = i L exp | 3 va(n;n; —nin;)| (B.17)
J(-T) exXp |:% Zij vl-jnin]} ij

where the two configuratioris) and|z’) differ by the displacement of one elec-
tron from thek-th site to thd-th site. This corresponds to:

n; =n; + 0y — Oik (B.18)
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Substituting (B.18) in (B.17) and considering the tranetsl invariance of the
Jastrow parameters (i.e;; = vji) we find:

R = exp

T
Zvilni - Uiknz‘] exp [Uu - Um] = Tl lk (B.19)
k

i

where in the last equality we have defined:

T; = exp [Z vijnj] and Vi; = exp [v;; — vyy] (B.20)
J
This allows us to perforn®(L) operations instead @d(L?). The matrix\” does
not depend on the configuration and is calculated only ontleeabeginning of
the simulation. The vectofE are calculated once the configuratiaf is defined,
and then updated as we show in the following.
Given the configuratiofn:’) described above where one electron has been dis-
placed from thé:-th position to theé-th position with respect tfx), the new vector
T! is given by:

T! = exp[z vinj| = exp[z vij(n; + 05 — 0;)] = T explvg — vi]  (B.21)
j j
which, once we have stored the exponentiais|v;;|, allows us to make three
operation instead af.
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