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Introduction

Ceramic materials are expected to be insulators, certainlynot superconductors,

but that is just what Georg Bednorz and Alex Muller found whenthey studied

the conductivity of a Lanthanum-Barium-Copper oxide ceramic in 1986 [1]. Its

critical temperature of30K was the highest which had been measured to date,

but their discovery started a surge of activity which discovered superconducting

behavior as high as125K. Indeed, from that day since now, the field of high-

temperature superconductivity (HTSC) evolved very rapidly, due to the improve-

ment in the quality of the samples and in experimental techniques, providing a

great amount of results. The discovery of HTSC in cuprate compounds has been

one of the most fascinating issues in modern condensed matter theory for two

main reasons. The first one is merely applicative, namely thepossibility that new

technologies may take advantage of these materials, opening new possibilities for

superconducting devices with commercial applications. The second reason is the

theoretical interest in the microscopic mechanism behind superconductivity, since

there is a strong evidence that the pairing mechanism is completely different from

the standard one, described by the old theory proposed by Bardeen, Cooper, and

Schrieffer (BCS) [2]. In this respect, despite the great effort spent to understand

the remarkable physical properties of these ceramic materials, a consistent micro-

scopic theory is still lacking and this fascinating problemremains still unsolved.

The transition metal oxides represent prototype examples of materials in which

the strong electron-electron and strong electron-phonon interactions lead to phases

with a very poor electrical conductivity, or even an insulating behavior. For ex-

ample,Ti2O3 andVO2 are dimerized insulating materials,Ti4O7 andV4O7 are

charged ordered insulators,CrO2 is a ferromagnetic metal,MnO andNiO are

Mott insulators with antiferromagnetic order. In this context, the discovery of

HTSC gives rise to a renewed interest into this class of materials, opening a new
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era of unconventional superconductivity. Cuprates are layered materials with a

complex perovskite chemical structure: Copper-oxide planesCuO2 are alternated

with insulating blocks of rare and/or alkaline earth and Oxygen atoms. At the

stoichiometric composition, cuprates are insulators withantiferromagnetic order

of the spins localized on the Copper atoms. The richness of the phase diagram

of these materials depends upon the fact that the electron density can be varied

by substituting the rare earths with lower valence elementsor by adding Oxy-

gen atoms in the insulating blocks. It is widely accepted that the CuO2 layers

play a fundamental role in determining the physical properties of these materi-

als. Therefore, the two important ingredients that must be taken into account in

any microscopic theory are the strong-coupling character of the electron-electron

interaction, due to the narrow bands determined by thed orbitals of the Copper

atoms, and the low dimensionality induced by the presence oftheCuO2 layers.

Since the early days from the discovery of these materials, it became clear that

many of their properties are unusual and a proper understanding should have re-

quired new concepts. Certainly, the more striking behavioris found in the normal

(i.e., non-superconducting) regime, where many anomaliessuggest that the metal-

lic phase, above the critical temperatureTc, cannot be described by the celebrated

Landau theory of Fermi liquids [3], used to describe usual metals. Within this

picture, though the interaction between the electrons can be very strong and long

range (i.e., through the Coulomb potential), it is possibleto describe, at low en-

ergy, the whole system with weakly interacting quasi-particles, adiabatically con-

nected to the non-interacting system. The Landau theory breaks down when there

is a spontaneous symmetry breaking, e.g., if the gas of quasi-particles is unstable

against pairing or magnetism. This is the basis of the mechanism to the ordinary

low-temperature superconductivity: if the net interaction between quasi-particles

is attractive in some angular momentum channel, it drives the system towards the

superconducting state. Another interesting way to break the Landau theory, is

when the residual interactions among quasi-particles are sufficiently strong that

it is no longer possible to use a description of a weakly interacting gas. The

anomalies detected in cuprate materials are usually interpreted as the existence of

a non-Fermi liquid behavior. In particular, the linear behavior in temperature of

the electrical resistivity down toTc led many authors to suggest novel concepts

for describing the metallic phase, like for instance the marginal-Fermi liquid [4].
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The proximity between superconductivity and an insulatingstate has been con-

sidered fundamental by several authors; in this respect, spin fluctuations can be a

natural generalization of phonons for the onset of electronic pairing. Moreover,

the strong correlation can also induce huge density fluctuations, leading either to

charge instabilities, like phase separation or charge-density waves, or to supercon-

ductivity [5].

On the other side, the superconducting state seems to be moreconventional

and it is associated to pairing of electrons, inducing a gap at the Fermi level. The

difference with the conventional superconductors, where the gap opens isotrop-

ically along the Fermi surface, is that, for HTSC, the gap hasa strong angular

dependence, with adx2−y2 symmetry. However, the existence of apseudogapin

the single-particle excitation spectrum also in the metallic phase aboveTc clearly

marks a spectacular difference with standard BCS theory andcould indicate the

predominant role of phase fluctuations of the order parameter [6]. By contrast,

one of the great advantage of the low-temperature superconductors is that the crit-

ical temperature is mainly determined by the amplitude fluctuations of the order

parameter, and the mean-field approach of the BCS theory gives an excellent de-

scription also very close to the transition.

The theoretical approach is complicated by a large number ofeffects (like for

instance, strong electronic correlation, antiferromagnetism, electron-phonon cou-

pling, polaronic effects, and disorder) that cooperate in determining the physics

of these materials. A full understanding of all the experimental phenomenol-

ogy is practically impossible and, as a consequence, it is extremely important

to study simple theoretical models, that are able to reproduce the main features

of cuprate materials and especially superconductivity. Inthis respect, assuming

that the strong correlation is the dominant ingredient, theso-calledt−J model

in two spatial dimensions can represent a very good startingpoint. Mean-field

solutions are often misleading due to important quantum fluctuations, which are

far from being negligible, while perturbative calculations are inadequate, being

the relevant physics related to the strong-coupling regime. Therefore, in the last

years, correlated electrons have been deeply and successfully studied by numer-

ical approaches. These methods allow one to evaluate ground-state properties of

finite-size systems, without assuming a small electron-electron correlation. As an

example, Lanczos method, though in two dimensions is restricted to extremely
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small cluster sizes, allows to compute exact static and dynamical properties of

a model Hamiltonian. The restriction to fairly small clusters is due to the huge

dimension of the Hilbert space, that increases exponentially with the size of the

lattice. In order to overcome this problem, alternative approaches are necessary,

like for instance the ones based upon statistical approaches, i.e., Monte Carlo

techniques. In this thesis, we have used variational Monte Carlo methods, which

allow us to study ground-state properties of strongly correlated systems (in our

case, thet−J model), making also possible to afford calculations on large sizes

and extrapolate very accurate thermodynamic properties.

The art of the variational approach is based on the physical intuition and the

ability to find a trial wave function for the ground state. Then all the physical

properties, like the energy and the correlation functions,can be calculated by

stochastic methods, based upon Markov chains. Moreover, the stability of the

variational state can be checked by using more advanced Monte Carlo techniques,

that can iteratively project out the high-energy components from the trial wave

function, eventually filtering out the ground state.

In this thesis, we consider an improved variational wave function that contains

both the antiferromagnetic and the d-wave superconductingorder parameters, by

considering also a long-range spin-spin Jastrow factor in order to reproduce the

correct behavior of the spin fluctuations at small momenta. In this way, we ob-

tain the most accurate state available so far for describingthe t−J model at low

doping. Using this wave function, the quantum Monte Carlo simulations clarify

several problems raised in this introduction: among them, the role of the phase

separation in the physics of the HTSC and the relation between antiferromag-

netism and superconductivity. We mainly focus our attention on the physically

relevant regionJ/t ∼ 0.4 and find that, contrary to all previously reported but

much less accurate variational ansatz, this state is stableagainst phase separation

for small hole doping. Moreover, by performing projection Monte Carlo methods

based on the fixed-node approach, we obtain a clear evidence that thet−J model

does not phase separate forJ/t . 0.7 and the compressibility remains finite close

to the antiferromagnetic insulating state.

After that, we consider the effect of a next-nearest-neighbor hopping in the

antiferromagnetic and superconducting properties. We present a systematic study

of the phase diagram of thet−t′−J model by using the projection Monte Carlo
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technique, implemented within the fixed-node approximation. This enables us to

study the interplay between magnetism and pairing, comparing the Monte Carlo

results with the ones obtained by the simple variational approach. The pair-pair

correlations have been accurately calculated for the first time within Green’s func-

tion Monte Carlo by using the so-called forward walking technique, that allows

us to consider true expectation values over an approximate ground state. In the

case oft′ = 0, there is a large region with a coexistence of superconductivity and

antiferromagnetism, that survives up toδc ∼ 0.1 for J/t = 0.2 andδc ∼ 0.15 for

J/t = 0.4. The presence of a finitet′/t < 0 induces a strong suppression of both

magnetic (withδc . 0.03, for J/t = 0.2 andt′/t = −0.2) and pairing correla-

tions. In particular, the latter ones are depressed both in the low-doping regime

and aroundδ ∼ 0.25, where strong size effects are present.
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Overview

The thesis is organized as follows:

• In Chapter 1, we introduce the physics of the HTSC, starting with an histor-

ical overview of the problem and describing some experimental results that

characterize these materials. Subsequently, we introducethe t−J model,

which allows a microscopic description of the HTSC and we introduce the

Resonating Valence Bond (RVB) wave function.

• In Chapter 2, we will describe the numerical techniques usedfor obtaining

the results of our thesis. We start from the Lanczos method, that enable

us to obtain exact results for small cluster size and then we enter in the

topic of the quantum Monte Carlo technique. We describe the variational

Monte Carlo method, the optimization algorithm and we will introduce the

Green’s function Monte Carlo and fixed-node approximation,that improve

the variational results.

• In Chapter 3, we will introduce our new variational wave function which

generalizes the RVB state we show our results on the charge fluctuations

(phase separation problem) for the two-dimensionalt−J model. The main

results of this chapter has been published in Physical Review B [7].

• In Chapter 4, we will study the magnetic and superconductingproperties

of the two-dimensionalt−J and t−t′−J model, trying to understand the

role of the next-nearest-neighbor hopping term on the magnetic and super-

conducting phases. We will show a phase diagram of the magnetic and su-

perconducting correlations, which qualitatively reproduce the actual phase

diagram of HTSC and gives some indication on the origin of theelectronic

pairing. The main results of this chapter were submitted to Physical Review

B [8].



Chapter 1

General Properties of HighTc

Superconductor

1.1 Introduction

Twenty years ago, Bednorz and Muller [1] discovered high-temperature supercon-

ductivity (HTSC) in Sr-dopedLa2CuO4, a class of transition-metal oxides that

shows a wide range of phase transitions. Subsequently, HTSChas been found in

a large variety of cuprate compounds, also stimulating synthesis of new materials,

with unconventional electronic properties. Even if several physical details, such

as the critical temperatureTc, are not universal, there are properties which are

common to all these materials. In this respect, important examples are the crystal

structure, the presence of strong electron-electron interactions, and the closeness

to an insulating phase. Moreover, it turn out that the metallic phase cannot be

described in general by the usual Landau theory of the Fermi liquids, and shows

many anomalous properties, like a linear temperature behavior of the resistivity

down toTc [9].

The HighTc compounds have a layered structure made up of one or more

CuO2 planes per unit cell; the Copper atoms lie inside a cage of Oxygen atoms,

forming octahedra, see Fig. 1.1. These planes are separatedby blocks containing

for instance rare-earth elements or Oxygen atoms. The presence ofCuO2 layers

in all HTSC compounds led to the belief that a lot of the important physics is

contained in these two-dimensional structures. This is also supported by the fact
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that theCu−O in-plane bond is more than three times smaller than the distance

between planes, so that, at first approximation, the interlayer coupling can be ne-

glected. Therefore, it is usually assumed that all the important physics is governed

by processes occurring in theCuO2 planes, while the other blocks, called charge

reservoirs, are almost inert and simply provide charge carriers [10, 11].

One of the most celebrated examples of HTSC materials is found by doping

La2CuO4, i.e., by partially substituting La by Sr, leading toLa2−xSrxCuO4. For

x = 0, there is an odd number of electrons per unit cell and, therefore, from gen-

eral principles, a metallic behavior should be expected. Infact, band structure cal-

culations (based on the so-called Local-Density Approximation) predict that the

Fermi level lies within a band mainly constructed from thedx2−y2 orbital of Cop-

per atoms. On the contrary,La2CuO4 is a Mott insulator, with antiferromagnetic

order below the Neel temperatureTN ≈ 300K. This is one of the most spectac-

ular example in which the single-electron picture fails andthe electron-electron

correlation is important to determine the physical properties of the system. The

fact is that3d-orbital wave functions are confined more closely to the nucleus than

s or p states with comparable energy, implying a small overlap between neighbor-

ing atomic sites and a tiny bandwidth. On the other hand, the Coulomb repulsion

between electrons occupying the same orbital with oppositespins (the so-called

HubbardU) can be very large, even when including screening effects. These two

aspects determine a competition between itineracy and localization, that can lead

to an insulating behavior when a metal should be expected. The antiferromagnetic

properties also arise from the strong effective Coulomb interaction, that generates

a super-exchange coupling between Copper atoms [12].

The antiferromagnetic order of the undoped compound is suppressed by dop-

ing and eventually superconductivity, with a high-transition temperature, emerges.

The behavior ofTc with doping exhibits a characteristic dome-like shape. Forin-

stance,La2−xSrxCuO4 undergoes a transition from an antiferromagnetic insulator

to a paramagnetic metal atx ≈ 0.03 and the superconducting transition temper-

ature has a maximum of about40K aroundxm ∼ 0.15, called optimal doping.

Above the superconducting transition temperature, the metallic phase shows un-

usual properties in the underdoped regionx < xm, whereas it becomes more

Fermi-liquid-like when moving towards the overdoped region, i.e.,x > xm. It

should be mentioned that there are two ways to inject charge carriers: either re-
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(a) (b)

Figure 1.1: (a) Typical cubic perovskyte structure of transition-metal compounds.

Transition-metal atoms are the small grey spheres, at the center of Oxygen octa-

hedra (dark spheres). (b) Different arrangements ofd (on topeg orbitals, at the

bottomt2g orbitals) andp orbitals in transition-metal oxides.

moving electrons from theCuO2 planes (like for instance substituting La with Sr

in La2CuO4) or adding electrons to the planes (like or inserting further Oxygen

atoms inLa2CuO4 or substituting Nd with Ce inNd2CuO4 [13]). In Fig. 1.2, we

show the phase diagrams of two compounds, prototypes for thehole-doped and

electron-doped material. While electron and hole doped HTSC share many com-

mon features, they do exhibit significant differences, likefor instance the stability

of the antiferromagnetic phase upon doping.

There is enough evidence suggesting that superconductivity in cuprate mate-

rials is fundamentally different from the one described by the standard BCS the-

ory, valid for alkaline metals. For instance, in HTSC the isotope effect is absent

(or very small); this fact indicates that probably the actual mechanism leading to

Cooper pairs is different from the standard electron-phonon one. Moreover, in a

BCS superconductor the gap has s-wave symmetry, i.e., isotropic in the momen-

tum space, while there is now a wide consensus that in high-Tc superconductors
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pairing occurs with adx2−y2 symmetry [14–18]. These facts, together with the

proximity of a magnetic phase, induced many authors to search for alternative

mechanisms for superconductivity, not based on the electron-phonon coupling.

All the unusual observations stimulated an enormous amountof experiments,

as well as theoretical works on HTSC, which gave important insight into these

fascinating compounds. In addition, new sophisticated analytical and numerical

techniques have been developed and now they provide us with apartial under-

standing of correlation effects in electronic systems.

1.2 Experimental Results

The discovery of the HTSC stimulated the development of several experimental

techniques. Here, we expose some key experimental facts concerning these mate-

rials, without entering in the details that are available inliterature [17, 19, 20].

Figure 1.2: Schematic phase diagram for hole-doped (right side) and electron-

doped (left side) high-temperature superconductors.

In general, the attention is restricted to the hole-doped compounds, partly be-

cause they are better characterized and more extensively investigated, but also
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because, in the underdoped regime, the hole-doped HTSC showthe very inter-

estingpseudogap phase, in which the system does not have a superconducting

long-range order, but still presents a large and anisotropic gap in the excitation

spectrum [18, 21–23]. The onset temperature of the pseudogap decreases lin-

early with doping and disappears in the overdoped regime. The origin of the

pseudogap is one of the most controversial topics in the HTSCfield. More-

over, its relationship with other important features, suchas the presence of a

Nerst phase [24, 25], charge inhomogeneities [26], the neutron scattering reso-

nance [27], or disorder [28] is still unclear. In the following, we will briefly de-

scribe some results from angle resolved photo-emission spectroscopy (ARPES),

scanning tunneling microscopy (STM) and nuclear magnetic resonance (NMR):

these techniques have seen significant advances in recent years and provided us

with important insight into the nature of the low-energy excitations in the metallic

and superconducting samples.

By measuring the energy and momentum of photo-electrons, ARPES tech-

niques provide useful information about the single particle spectral functionA(k, ω),

that is related to the electron Green’s function byA(k, ω) = − 1
π
ImG(k, ω). As a

consequence, it is possible to obtain the Fermi surface and the gap of the system

under study. We will briefly summarize some key results from ARPES that any

theory of HTSC has to address. For an extensive discussion and a general review

about experimental details one can see, for instance, the papers by Damascelli and

collaborators [19] and by Campuzano and collaborators [29].

Fig. 1.3 shows a schematic picture of the Fermi surface of cuprates in the first

quadrant of the first Brillouin zone. It can be obtained by ARPES scans along

different anglesφ by looking at the minimum energy of the photo-electron along

a given direction in momentum space. A typical energy distribution curve, that is

given by the photo-emission intensity as a function of energy at fixed momentum,

is shown in Fig. 1.4. The figure shows the photo-emission intensity at the(π, 0)

point of a photo-electron in the superconducting and in the normal state. BelowTc,

we observe the characteristic peak-dip-hump structure, the peak being associated

with a coherent quasiparticle; on the other hand, aboveTc, coherence is lost and

the sharp peak disappears.

Immediately after the discovery of HTSC, it was unclear if the pairing sym-

metry were isotropic (i.e., s-wave) as in conventional phonon-mediated super-



12 General Properties of HighTc Superconductor

Figure 1.3: A schematic picture of the two-dimensional Fermi surface (thick black

line) of cuprates in the first quadrant of the first Brillouin zone. The lattice con-

stanta is set to unity andφ indicates the Fermi surface angle.

conductor, or anisotropic. But later experiments have consistently confirmed an

anisotropic gap with d-wave symmetry [14, 15]. The angular dependence of the

gap function can be clearly seen in ARPES measurements on HTSC, which ac-

curately determine the superconducting gap∆k along the Fermi surface of the

normal state. As shown in Fig. 1.5, the gap vanish forφ = 45◦ (nodal point) while

it is maximum atφ = 0◦, 90◦ (antinodal points). There are, however, other exper-

imental data that support s-wave (or even more complicated types of symmetries,

like d+s, d+is) [30]. Very recently, Muller and collaborators gave some indication

in favor of the existence of two gaps inLa1.83Sr0.17CuO4: a large gap with d-wave

symmetry and a smaller one with s-wave symmetry [31].

Unlike conventional superconductor, HTSC exhibits a strong deviation from

the BCS-ratio of2∆/kBTc ≈ 4.3 for the superconductor with a d-wave gap

function [where∆ is the gap atk = (π, 0)]. Moreover, in HTSC, this ratio is

strongly doping dependent and becomes quite large for underdoped samples. In-

deed, whereas the critical temperature decreases approaching the Mott insulator,

the magnitude of the superconducting gap increases. An additional information

that can be extracted from ARPES data is the doping dependence of the spectral
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Figure 1.4: Energy distribution curve at fixed momentumk = (π, 0) for an over-

dopedBi2Sr2CaCu2O8+δ sample in the normal state (NS) and superconducting

state (SC).

weight of the coherent quasiparticle peak, that strongly decreases with decreasing

doping and finally vanishes close to the Mott insulator [32, 33].

Probably, the most interesting feature seen in ARPES experiments is the shrink-

ing of the Fermi surface aboveTc in the underdoped regime, i.e., the opening at

T ∗ of a pseudogap in the normal phase. Indeed, by decreasing thetemperature,

more and more states around the antinodal region become gapped and the Fermi

surface becomes smaller and smaller with continuity. Instead of a closed Fermi

surface, the system exhibits Fermi arcs [22, 23] that finallycollapses to single

nodal Fermi points atT = Tc, see Fig. 1.6. Interestingly, the opening of the pseu-

dogap atT ∗ seems to be related to the magnitude of the superconducting gap∆.

For a detailed discussion on this and related ARPES observations, one can see for

instance reviews in the literature [19, 29]. This is a striking difference with the

conventional BCS superconductors. While, in the overdopedregime, the HTSC

materials behave as a reasonably conventional metal with a large Fermi surface,
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Figure 1.5: Momentum dependence of the spectral gap∆ along the Fermi sur-

face in the superconducting state of an overdopedBi2Sr2CaCu2O8+δ sample from

ARPES. The black line is a fit to the data. For a definition of theangleφ see

Fig. 1.3.

the underdoped regime is highly anomalous, having the disconnected Fermi arcs

described above. A fundamental question, is to understand if there is a phase

transition that could change the topology of the Fermi surface. It should be men-

tioned that, very recently, measurements of quantum oscillations in the electrical

resistance revealed the possibility that the Fermi arcs arejust portions of small

pockets around(π/2, π/2). The fact that ARPES only see a segment of these hole

pockets could be due to the fact that the other portion has a very low intensity, not

measurable at present [34].

A complementary experimental technique to ARPES is given bySTM, that is

a momentum integrated probe. Its ability to measure the local density of occu-

pied as well as unoccupied states with an high-energy resolution gives valuable

insight into the properties of HTSC. A key advantage of STM isthe possibility to

obtain spatial information: STM experiments allow for the investigation of local
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Figure 1.6: Schematic illustration of the temperature evolution of the Fermi sur-

face in underdoped cuprates as observed by ARPES. Thed − wave node below

Tc (left panel) becomes a gapless arc aboveTc (middle panel) which expands with

increasingT to form the full Fermi surface atT ∗ (right panel).

electronic structure around impurities [35–37] and aroundvortex cores [38–40] in

the superconducting state. Two interesting features recently reported by STM are

the possibility to have a checkerboard-like charge-density wave [41, 42] and the

existence of spatial variation in the superconducting gap [43]. The origin of these

observations is currently being debated intensely.

Several authors [44, 45] suggested that superconductivitycould be connected

with the tendency toward charge segregation of electrons and holes in theCuO2

layers. For instance, phase separation was observed in the Oxygen doped com-

poundsLa2CuO4+δ, by using Neutron Powder diffraction [46] and NMR [47].

The experimental data obtained with these two techniques showed that the system

is separated in an Oxygen rich and in an Oxygen poor regions. Instead, no ev-

idence of phase separation has been found in other hole-doped compounds, like

La2−xSrxCuO4.

Through Neutron scattering and NMR experiments it is possible to carefully

analyze the change of the magnetic properties of the HTSC materials upon dop-

ing. Measurements of the Neutron scattering cross section provide information

on the spin-spin structure factor. As a consequence of the antiferromagnetic long-

range order, the undoped compound shows a sharp peak in the spin-spin structure

factor at the wave vector,Q = (π, π). In the case ofLa2−xSrxCuO4, this peak

broadens and disappears atx > 0.05, where incommensurate spin fluctuations
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arise at(π, π ± 2ǫπ) and(π ± 2ǫπ, π) [48]. The dependence of the incommen-

surability ǫ with doping is linear for0.05 < δ < 0.12 and then saturates [48].

A striking feature is that the angular coefficient of the linear relation between the

incommensurability and the doping fraction is exactly2π. X-ray diffraction mea-

surements [49] has shown that similar incommensurate peaksalso occur in the

charge structure factor but close to theΓ = (0, 0) point, with an incommensura-

bility which is twice the spin structure one. This behavior has been explained by a

domain walls ordering of holes in theCuO2 layers. Half-filled hole stripes sepa-

rate antiferromagnetic region, which are correlated with aπ shift across a domain

wall. The modulation connected with the charge is then at small momenta, close

to theΓ point, while the spin-spin structure factor presents a spindensity wave at

incommensurate momenta close to the antiferromagnetic wave vector [50].

1.3 The Hubbard and thet−J models

Since the earliest days of the HTSC era, it was realized that any theoretical model

willing to describe superconductivity had necessarily to include strong electronic

correlation. In this regard, the Hubbard model is the simplest example of a micro-

scopic Hamiltonian that takes into account the electron interaction and its compe-

tition with the kinetic energy. It was independently introduced by Hubbard [51],

Gutzwiller [52] and Kanamori [53] in1963 in order to understand magnetism in

transition metals. In the recent past, the Hubbard model, together with its strong-

coupling limit, the so-calledt−J model, was widely considered in order to clarify

the possibility that superconductivity arises from strongelectronic correlation.

1.3.1 Definitions and simple properties

The one-band Hubbard Hamiltonian is defined on a lattice ofL sites and can be

written as:

H = −t
∑

〈i,j〉,σ
(c†iσcjσ + h.c.) + U

∑

j

nj↑nj↓ , (1.1)

where〈i, j〉 denotes nearest-neighboring sitesi andj, c†iσ (ciσ) creates (destroys)

an electron with spinσ on site i and njσ = c†jσcjσ is the occupation number

operator. The termone-bandrefers to the assumption that only one Wannier state
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per site is considered. This approximation is valid when theFermi energy lies

within a single conduction band, implying an irrelevant contribution of the other

bands. Since only one atomic level per atom is considered, each lattice site can

appear in four different quantum states:

|0〉j empty site,

| ↑〉j = c†j↑|0〉 sitej occupied by an↑ electron,

| ↓〉j = c†j↓|0〉 sitej occupied by a↓ electron,

| ↑↓〉j = c†j↑c
†
j↓|0〉 sitej doubly occupied.

The first term in Eq. (1.1) expresses the kinetic partK, whichdelocalizesthe

N electrons in the lattice. The hopping parametert controls the bandwidth of the

system and depends on the overlap between neighboring orbitals:

ti,j =

∫

dr φ∗
i (r)

(

∇2

2m
+ Vion

)

φj(r) , (1.2)

whereφj(r) is a Wannier orbital centered on sitej andVion is the potential cre-

ated by the positive ions forming the lattice. In translationally invariant systems,

tij depends only upon the distance among the sitesi andj and in Eq. (1.1) we

have considered only a nearest-neighbor hoppingt. The kinetic termK can be

diagonalized in a single-particle basis of Bloch states:

K =
∑

k,σ

ǫkc
†
kσckσ ǫk = −2t

d
∑

j=1

cos(kj) , (1.3)

wherec†k,σ = 1√
L

∑

j eikjc†jσ and a simpled-dimensional cubic lattice has been

considered.

The HubbardU comes from the Coulomb repulsion of two electrons sharing

the same orbital:

U =

∫

dr1 dr2 |φj(r1)|
2 e2

|r1 − r2|
|φj(r2)|

2 . (1.4)

Of course, this term is only an approximation of the true Coulomb interaction,

since it completely neglects the long-range components which are present in re-

alistic systems. Nevertheless, in spite of its simplicity,the Hubbard model is far

from being trivial and the exact solution is known only in theone-dimensional

case [54]. Its phase diagram, depends on the electron density n = N/L and the
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ratioU/t. Moreover, different lattice geometries and the addition of longer-range

hopping terms could influence the resulting phase diagram.

The form of the Hubbard Hamiltonian given in Eq. (1.1) immediately suggests

that its phase space comes out from two competing tendencies: from one side, the

hopping term tends to delocalize the electrons in the crystal and, from the other

side, the interaction term encourages electrons to occupy different sites, otherwise

the system must pay an energy costU per each doubly occupied site. Whenever

the electron density is away from half filling, i.e.,n 6= 1, the number of holes or

doubly occupied sites is different from zero and charge fluctuations are possible

without a further energy cost. In this case, the ground stateof the system is pre-

dicted to be metallic for any value ofU/t, unless for special charge-density wave

instabilities at particular wave vectors, that could happen for small dopings and

weak correlations [55]. Moreover, the possible occurrenceof superconductivity

in the Hubbard model forn 6= 1 has been widely investigated and there are now

important evidences that superconductivity emerges at finite doping [56]. Instead,

at half filling (i.e., forn = 1), there are no extra holes (or double occupancies)

and each site is (in average) singly occupied. The two tendencies of delocalizing

and localizing the system are strictly dependent on the value ofU/t, according to

the two limiting cases:

• for U/t = 0 (band limit) the system is a non-interacting metal;

• for t/U = 0 (atomic limit) the system is an insulator with no charge fluctu-

ations.

The presence of different phases, for the two limiting values ofU/t, suggests the

existence of a phase transition, which is purely driven by the correlation: theMott

metal-insulator transition. It should be stressed that the Mott transition is often

accompanied by a magnetic ordering of the insulating phase.For instance, the

ground state of the Hubbard model with nearest-neighbor hopping on the square

lattice is insulating for any interactionU/t: at weak coupling, because of the so-

called nesting property of the Fermi surface, that leads to adivergent susceptibility

as soon as the interactionU is turned on; at strong coupling, because an effective

super-exchange interaction is generated at the ordert2/U , giving rise to the anti-

ferromagnetic long-range order. These two limits are adiabatically connected, im-

plying that the ground state is always insulating with gapless spin excitations. In
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the following, we will show the canonical transformation that allows one to derive

an effective spin Hamiltonian, which describes the Hubbardmodel at strong cou-

pling (i.e.,U/t ≫ 1) and acts on the Hilbert space without double occupancies.

This define the so-calledt−J model that is very useful to study superconduct-

ing and magnetic properties of correlated systems, since itfocuses on low-energy

properties, without considering high-energy processes ofthe orderU/t. In par-

ticular, the pairing-pairing correlations could be very small and it would be very

difficult to detect the superconducting signal within the original Hubbard model,

containing huge charge fluctuations.

1.3.2 Large-U limit: t−J and Heisenberg model

The t−J Hamiltonian was pioneered by Anderson [57] and rederived byZhang

and Rice [58], starting from the three-band Hubbard model, in order to describe

the low-energy properties of theCuO2 planes of HTSC. The general procedure

for the derivation consists in looking for a Schrieffer-Wolff canonical transforma-

tion [59], which allows one to achieve a separation between low- and high-energy

subspaces. In the Hubbard model at largeU/t, these subspaces are characterized

by a different number of double occupanciesnd. The operator that mixes these

different sectors of the Hilbert space corresponds to the kinetic part (1.3), which

can be rewritten as:

K = H+
t + H−

t + H0
t , (1.5)

whereH+
t (H−

t ) increases (decreases) the number of doubly occupied sitesby one

andH0
t corresponds to the hopping processes which do not change thenumber of

double occupancies. The effective Hamiltonian is obtainedthrough the rotation:

Heff = eiSHe−iS = H + i[S, H ] +
i2

2
[S, [S, H ]] + . . . , (1.6)

where the generatorS is chosen such thatHeff does not contain the operatorsH+
t

andH−
t . In order to eliminate the terms which are first order int, the generatorS

reads:

S = −
i

U
(H+

t − H−
t ), (1.7)

and, to the ordert2/U , we obtain the effectivet−J model:

Ht−J = −t
∑

〈i,j〉,σ
[(1 − ni−σ)c†iσcjσ(1 − nj−σ) + h.c.] +
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+J
∑

〈i,j〉

(

Si · Sj −
ninj

4

)

+ three sites term, (1.8)

whereSi = 1
2

∑

σσ′ c
†
iστσσ′ciσ′ is the spin operator for sitei (τσσ′ being the Pauli

matrices) andJ = 4t2/U is a magnetic coupling that favors an antiferromagnetic

alignment of spins. The first term of Eq. (1.8) describes hopping constrained

on the space with no doubly occupied sites. The nature of the super-exchange

couplingJ is due to the possibility of a virtual hopping of antiparallel neighboring

spins, which creates an intermediate doubly occupied site with an energy gain

−t2/U , see Fig. 1.7.

Figure 1.7: In second order of perturbation theory int/U , if the spins of neighbor-

ing sites are antiparallel, they gain energy by a virtual process creating a double

occupation.

Finally, the canonical transformation generates a three-sites term, which is

proportional to the hole doping and usually neglected for simplicity. At half fill-

ing, the first term of Eq. (1.8) is zero, because every site is already occupied by

one electron, and one obtains the Heisenberg model:

HHeis = J
∑

〈i,j〉
Si · Sj, (1.9)

The ground state of this Hamiltonian is obviously insulating and in 1988, by using

Monte Carlo techniques, Reger and Young demonstrated that it has an antiferro-

magnetic long-range order with a magnetization reduced by60% with respect to

the classical value [60].
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1.4 Resonating Valence Bond theories

Anderson suggested that a good variational ground state of the Heisenberg model

of Eq. (1.9) could be represented as a resonating-valence bond (RVB) state, de-

scribed as a liquid of spin singlets. One important consequence was that, once

the system is doped, the holes inside the RVB liquid can move,possibly leading

to superconductivity. This idea has led to a consistent theoretical framework to

describe superconductivity in the proximity of a Mott transition. In this section,

we will discuss possible realizations of RVB superconductors and give an outlook

on the implementations of the RVB picture by BCS projected wave functions.

Figure 1.8: Schematic illustration of the RVB state. Sticksrepresent singlet bonds.

(a) and (b) represent two particular Valence Bond (VB). An RVB state is superpo-

sition of different VB:|RV B〉 =
∑

j aj |V Bj〉. (a) A true spin liquid is a superpo-

sition of VB of this kind. (b) A non-magnetic RVB state with broken translational

symmetry is a state where the dominant weightsaj associated to VB are of this

kind.

In spite of a Neel state with a broken SU(2) symmetry, an RVB state is de-

scribed by superposition of states in which two electrons ofthe lattice are paired

to form a singlet, see Fig.1.8. Indeed, especially for smallvalues of the spin,

quantum fluctuations reduce the classical value of the orderparameter, favoring

a disordered ground state. Liang, Doucot, and Anderson [61]showed that the



22 General Properties of HighTc Superconductor

RVB state regain some of the lost antiferromagnetic exchange energy by resonat-

ing among many different configurations, becoming, therefore, competitive with

the Neel ordered state. The resonating singlet state is verysimilar to benzene ring

with its fluctuatingC−C links between a single and a double bond: this analogy

motivated the term RVB. Such bonds can be either homogeneously distributed

over the lattice, giving rise to a true spin-liquid with no broken symmetries [see

Fig.1.8(a)] or they can be mostly arranged in some special pattern, which breaks

some of the symmetries of the lattice [see Fig.1.8 (b)].

Figure 1.9: Left panel: Antiferromagnetic Neel state with some holes. The motion

of a hole (bold circles) frustrates the antiferromagnetic order of the lattice. Right

panel: A configuration of singlet pairs with some holes is shown. In this case the

singlets can rearrange in order to avoid frustration.

Though an ordered state is realized in the undoped insulator[60], the antifer-

romagnetic order parameter melts with some percent of dopedholes. To under-

stand this, we can consider the example shown in Fig. 1.9. Moving holes naturally

causes frustration in the antiferromagnetic order, and eventually it is better to have

a paramagnetic background. The problem of a single hole moving in the back-

ground of a Neel state was studied extensively by several authors (see for exam-

ple [11]); In particular, analytical calculations showed that the coherent hole mo-

tion is strongly renormalized by the interaction with the spin excitations [62, 63].

On the other hand, since singlets can easily rearrange, the presence of holes in an

RVB background does not alter its nature and, therefore, in the presence of dop-



1.5 The RVB concept within the variational approach 23

ing, the RVB state can be competitive with the Neel one, see Fig. 1.9. Moreover,

the holes may condense and give rise to a superconducting state: hence, pairing

could be due to RVB and not to antiferromagnetism. One of the most remark-

able prediction of the RVB theory was the d-wave nature of thesuperconducting

state. Indeed, a d-wave superconducting state was found by RVB studies as early

as in 1988 [64–68], long before the pairing symmetry of HTSC was experimen-

tally established. These early calculations also correctly described the vanishing

of superconductivity above about30% doping. By implementing the RVB idea

by projected wave functions, one finds a natural explanationof the suppression of

the Drude weight and of the superfluid density in the underdoped regime, as well

as the particle hole asymmetry in the density of single particle states. Further suc-

cesses of the RVB theory are the prediction of a weakly dopingdependent nodal

Fermi velocity and a quasiparticle weight that is strongly doping dependent (de-

creasing with doping in agreement with ARPES experiments).These effects can

be understood by a decrease in the density of freely moving carriers at low doping,

which results in a dispersion mainly determined by virtual hopping process pro-

portional to the super-exchangeJ . In addition to the above key features of HTSC,

RVB theory has also been successfully applied to several other phenomena such

as charge density patterns [69–72], the interplay between superconductivity and

magnetism [73–78], impurity problems [79], and vortex cores [80].

In conclusion, analytical and numerical results provide significant support to

the RVB concept. Even if most RVB studies are restricted to zero temperature,

as in our work, from the ground state obtained in this way it ispossible to extract

important information on the finite temperature properties, allowing a description

of the finite temperature picture described above. However,extending the cal-

culations to finite temperature is certainly an important and open problem in the

theory of RVB superconductivity that should be addressed inthe near future.

1.5 The RVB concept within the variational approach

In general, the variational approach offers a simple route to deal with strongly-

correlated systems, since a good guess of the ground-state wave function allows

one to derive the properties of the corresponding phases in astraightforward way.

The variational approach starts from a guess on the functional form of the trial



24 General Properties of HighTc Superconductor

wave function|ΨT ({vi, ∆i})〉, which is supposed to be as close as possible to the

true ground state. The trial wave function depends on a set ofvariational param-

eters{vi, ∆i}, which are properly changed in order to minimize the expectation

value of the variational energyEV .

EV =
〈ΨT ({vi, ∆i})|H|ΨT ({vi, ∆i})〉

〈ΨT ({vi, ∆i})|ΨT ({vi, ∆i})〉
. (1.10)

The energyEV gives an upper bound of the ground-state energyE0, as a conse-

quence of the variational principle that we will describe insome details in the next

chapter.

A simple form for a correlated wave function can be given by:

|ΨP{vi, ∆i}〉 = P({vi})|D({∆i})〉, (1.11)

whereP{vi} is the correlation factor (orprojector) and |D({∆i})〉 is a mean-

field Slater determinant. Indeed, for fermionic systems, the wave function gener-

ally must contain a determinantal part that ensures the correct antisymmetry when

particles are interchanged. The correlation factorP is commonly expressed as the

exponential of a two-body operator, like density-density or spin-spin, whose ex-

plicit form will be specified in the following. At this level,it is important to stress

that the projector inserts correlation into the wave function, whose remaining part

corresponds to the mean-field Slater determinant|D〉. Notice that the term pro-

jector is often used in the context of spin models, whereP totally projects out

the configurations with a finite number of double occupancies. In that caseP is

denoted asfull projector.

The Slater determinant generally corresponds to the groundstate of a mean-

field Hamiltonian. In the simplest case, it is the uncorrelated Fermi sea:

|FS〉 =
∏

ǫk≤ǫF

c†k↑c
†
k↓|0〉, (1.12)

which is the ground state of the free tight-binding Hamiltonian with energy dis-

persionǫk:

HFS =
∑

kσ

ǫkc
†
kσckσ, (1.13)

whereǫk = −2t
∑d

j=1 cos(kj) andǫF is the Fermi energy. Nevertheless, also the

determinant can be parametrized, for example it can be the ground state of the
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BCS Hamiltonian:

HBCS =
∑

k,σ

ǫkc
†
kσckσ +

∑

i,j

∆ij(ci↑cj↓ + c†j↓c
†
i↑), (1.14)

where{∆ij} depend on the distance|i − j| and are chosen in order to minimize

the expectation value of the energy. The BCS ground state is asinglet state that

corresponds, in the case of total projection, to a particular RVB state with a given

amplitude for the singlets. Another possible Slater determinant comes from the

mean-field antiferromagnetic Hamiltonian:

HAF =
∑

k,σ

ǫkc
†
k,σck,σ + ∆AF

∑

i

(−1)ri(ni↑ − ni↓), (1.15)

with the variational antiferromagnetic parameter∆AF . In this case, the corre-

sponding Slater determinant breaks the translational and the spin SU(2) symme-

tries.

It should be stressed that, in general, the projector modifies only the ampli-

tudes of each configuration, while the parameters inside thedeterminant are also

responsible of the phases: the nodal structure of the trial wave function strongly

depends upon the choice of the determinant.

The t−J Hamiltonian is the best known model for studying RVB supercon-

ductivity, because it includes the super-exchange term explicitly, and this is the

term which is responsible for the formation of singlets. In the following we start

with the t−J Hamiltonian as an appropriate microscopic model for HTSC. The

wave function which is constructed by projecting out doublyoccupied sites and

fixing the number of particles from the ground state of the BCSHamiltonian (1.14)

provides an elegant and compact way to study the occurrence of superconductivity

in thet−J model:

|ΨRV B〉 = PGPN |BCS〉, (1.16)

wherePG andPN are the Gutzwiller projector (that forbids doubly occupiedsites)

and the projector that fixes the number of particles to be equal to the number of

sites, respectively;|BCS〉 is the ground state of the BCS Hamiltonian (1.14). The

form of this RVB wave function provides an unified description of the Mott in-

sulating phase and the doped superconductor. Moreover, it immediately suggests

the presence of singlet correlations in the undoped insulator and relates them to a

superconducting state away from half filling.
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In this thesis we will generalize the RVB wave function by considering a

mean-field Hamiltonian which possesses both BCS pairing andantiferromagnetic

order parameter. In particular, for obtaining the correct antiferromagnetic prop-

erties, we will consider the antiferromagnetic term in thex − y plane, together

with a projector considering spin-spin correlations alongthez axis. We anticipate

that the eigenstate of this mean field Hamiltonian is something more complicated

than the mean-field Slater determinant, since it is described by an algebraic ob-

ject calledPfaffian. Moreover, we will apply to this object, projectors that fix the

number of particles, forbid the double occupancy, and for enhancing the charge

and spin correlations we will apply the Jastrow factors thatwe will describe in the

following section. We will see in the next chapter how to calculate the variational

energy and other interesting observables of a state by usingvariational techniques.

Here, we will just say that the projected wave functions havethe advantage that

they can be studied both analytically, by considering the Gutzwiller approxima-

tion, and numerically, by using pure variational techniques and exact diagonaliza-

tion. Since these wave functions provide a simple way to study different kind of

correlations, they have been widely used in the literature.

1.6 Long-range correlations: The Jastrow factor

In this section we briefly discuss how projected states can beextended to study a

wide variety of strongly correlated systems, by highly improving their accuracy.

Apart from HTSC, these wave functions have been used for the description of

Mott insulators [81], for the superconductivity in organiccompounds [82, 83] and

for the Luttinger liquid behavior in low-dimensional models [84, 85].

Historically, the Jastrow factor was introduced for continuum systems [86] in

order to take into account correlation effects through a two-body term of the form:

PJ = exp

[

1

2

∑

i,j

v(rij)ninj

]

, (1.17)

wherev(rij) = v(|ri − rj |) are variational parameters (which for homogeneous

and isotropic systems depend only on the relative distance among the particles),

andni is the particle density at positionri. It is useful to consider also the Fourier
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transformed Jastrow factor:

PJ = exp

[

1

2

∑

q

vqnqn−q

]

, (1.18)

wherevq =
∑

r v(r)eiqr and nq = 1√
L

∑

r nre
iqr are the Fourier transformed

Jastrow parameters and particle density, respectively. The exponential form (1.17)

guarantees the size consistency of the wave function. For fermionic systems, the

Jastrow factor is applied to a Slater determinant or to a Pfaffian |D〉, in order to

recover the correct antisymmetric form:

|ΨJ〉 = PJ |D〉 . (1.19)

The Jastrow wave function has been widely studied on continuum systems,

with the employment of a large variety of analytic and numerical techniques. For

instance, in a series of papers, Sutherland showed that the Jastrow wave function

corresponds to the exact ground state of a family of one-dimensional Hamiltonians

defined on the continuum [87]. The lattice version of the Sutherland’s problem

was found for a spin system by Shastry and Haldane [88, 89], who considered

a spin1/2 chain with a long-range1/r2 antiferromagnetic exchange. By using

previous results by Metzner and Vollhardt on the exact spin properties of the fully-

projected Gutzwiller state, they found the exact ground state of this model.

The most interesting analytic and numerical results concerning the properties

of the Jastrow wave function come from its wide applicationsin Helium physics.

In this field, starting from the very early approach of Mc Millan [90], who used a

parametrization of the Jastrow term coming from the solution of the correspond-

ing two-body problem, the form of the Jastrow factor has beensubsequently fine

tuned [91–94] in order to reproduce accurately the properties of the4He liquid

state. It turned out that, even if the ground-state energy iswell approximated by

using a short-range correlation term, the addition of a structure in the parame-

tersv(rij) at large distances is fundamental, in order to reproduce correctly the

pair-distribution function and structure factor of the liquid.

The fact that the Jastrow factor involves many variational parameters, whose

number grows with the lattice size, constitutes the main drawback for the applica-

tion of this wave function. For this reason, in many calculations, a functional form

of the Jastrow parameters is considered and fixed, hence reducing the number of
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independent parameters. This implies an easy-to-handle wave function, which on

the other hand could be biased by the choice of the functionalform, spoiling the

variational flexibility of Eq. (1.17). There are examples where a good guess for

the functional form of the Jastrow parameters gives accurate results also for lat-

tice models. Indeed, a long-range Jastrow wave function with a logarithmic form

vij = ln(ri − rj) turns out to be the correct ansatz which induces Luttinger-liquid

correlations in the one dimensionalt−J model [84]. In the one-dimensional Hub-

bard model an appropriate choice of the density-density Jastrow factor in momen-

tum space allows to distinguish between metallic and insulating behavior [81].

In the two-dimensionalt−J model, the Jastrow wave function is often used to

improve the variational energy of a projected superconducting state [95, 96].

Moreover, the use of the spin-Jastrow factor on the Heisenberg model gave

strong indications that a wave function of this type is very accurate for quantum-

spin systems [97]. The spin-Jastrow factor has the following form:

PSz
J = exp

[

1

2

∑

i,j

vz
ijS

z
i S

z
j

]

, (1.20)

whereSz
j is thez-component of the spin associated to the particle on sitej. In this

case, the spin-Jastrow factor is applied to a classical ordered state and the long-

range form ofvz
ij, deduced from analytic calculations, allows one to reproduce

the correct spin-correlation functions in the quantum spinmodel [98, 99]. An

appropriate spin-spin Jastrow factor can also create antiferromagnetic order in a

non magnetic wave function. This fact can give us the idea of the ability of the

Jastrow term to induce a new long-range order not present in the unprojected wave

function.

However, there are also several cases in which a functional form of the Jas-

trow factor is not known a priori: in these cases a full optimization of all the

independent parameters is needed. This is the strategy thatwill be used in this

thesis, where we will use a numerical technique that allows us to optimize several

variational parameters within the Monte Carlo approach (see next chapter). So

the incorporation of Jastrow factor provides an additionalpowerful way to extend

the class of projected wave function. Finally, we would liketo remark that the

spin-Jastrow factor is as often used as the density-densityor the holon-doublon

Jastrow terms. However, we will show in this thesis that the inclusion of the spin-
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spin Jastrow factor is also very important when consideringcharge fluctuations in

thet−J model.





Chapter 2

Numerical Methods

Monte Carlo methods allow one to evaluate, by means of a stochastic sampling,

integrals over a multidimensional space. This is very useful for quantum many-

body problems, where in general the calculation of expectation values cannot be

handled analytically, since the wave function of the systemcannot be factorized

into one-particle states.

The core of all Monte Carlo methods is the Metropolis algorithm [100] which

generates a Markov chain, i.e., a random walk in configuration space. The config-

urations sampled during the random walk are distributed, after a certain number

of steps required to reach equilibrium, according to a givenstationary probability

distribution.

The variational Quantum Monte Carlo approach consists in the direct appli-

cation of the Metropolis algorithm to sample the probability distribution given by

the modulus squared of a given trial wave function.

Since the topic of Monte Carlo methods is covered by many textbooks we will

not describe its general principles in this thesis. In the following, we will focus on

the direct implementation of the Monte Carlo statistical method in our quantum

variational problem. The general techniques used here are the variational quantum

Monte Carlo and the Green’s function Monte Carlo techniques. They allow us to

describe remarkably large systems with a numerical method.Moreover, we will

describe in some detail the stochastic reconfiguration algorithm which allows us

to minimize the variational energy in presence of a large number of parameters.

At the beginning we will also briefly describe the Lanczos method, which has
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been used in this thesis for making a comparison of the exact energies for small

system sizes(L ≤ 26), with the corresponding energy expectation values of our

new improved variational wave function.

2.1 Lanczos

From a general point of view, the ground state|Φ0〉 of an HamiltonianH can

be obtained by thepower methodfrom a trial wave function|ΨT 〉, provided that

〈ΨT |Φ0〉 6= 0 and that the ground state is unique, that we will assume in the

following (simple extensions are possible). Indeed, if we define the operatorG =

Λ − H, with Λ a suitable constant chosen to allow us the convergence to the

ground-state, we have that:

Gn|ΨT 〉 = (Λ − E0)
n

{

a0|Φ0〉 +
∑

i6=0

(

Λ − Ei

Λ − E0

)n

ai|Φi〉

}

, (2.1)

whereEi and |Φi〉 are the eigenvalues and eigenvectors ofH respectively, and

ai = 〈Φi|ΨT 〉. Therefore

lim
n→∞

Gn|ΨT 〉 ∼ |Φ0〉, (2.2)

that is, asn goes to infinity, the iteration converges to the ground-state of the

HamiltonianH, becauseΛ−Ei

Λ−E0
< 1 for large enoughΛ.

Starting from the power method, it is possible to define a muchmore efficient

iterative procedure for the determination of the lowest eigenstate of Hermitian

matrices, known as the Lanczos technique. Indeed, within the power method, the

ground-state is approximated by a single state, i.e.|Φ0〉 ∼ Gn|ΨT 〉, by contrast,

the basic idea of the Lanczos method, is to use all the information contained in the

powersGi|ΨT 〉, with i = 1, . . . , n to reconstruct the ground-state|Φ0〉, namely

|Φ0〉 ∼
∑

i=1,...,n

αiH
i|Ψ〉. (2.3)

However, the vectors generated by the power method are not orthogonal, whereas

within the Lanczos method a special orthogonal basis is constructed. This basis

is generated iteratively. The first step is to choose an arbitrary vector|Ψ1〉 of the

Hilbert space, the only requirement is that this vector has anon-zero overlap with
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the true ground-state. If there is noa priori information about the ground-state,

this requirement is satisfied by selecting random coefficients in the working basis,

so that there is only a vanishing probability to be orthogonal. If some information

about the ground-state is known, like its momentum, spin, orits properties un-

der rotation, then it is useful to initialize the starting vector using these properties,

choosing a vector that belongs to the particular subspace having the right quantum

numbers.

The Lanczos procedure consists in generating a set of orthogonal vectors as

follow: we normalize|Ψ1〉 and define a new vector by applying the Hamiltonian

H to the initial state, and we subtract the projection over|Ψ1〉

β2|Ψ2〉 = H|Ψ1〉 − α1|Ψ1〉, (2.4)

the coefficientsα1 andβ2 are such that〈Ψ2|Ψ2〉 = 1 and〈Ψ1|Ψ2〉 = 0, that is:

α1 = 〈Ψ1|H|Ψ1〉 (2.5)

β2 = 〈Ψ2|H|Ψ1〉. (2.6)

Then we can construct a new state, orthogonal to the previousones as

β3|Ψ3〉 = H|Ψ2〉 − α2|Ψ2〉 − β2|Ψ1〉, (2.7)

with

α2 = 〈Ψ2|H|Ψ2〉 (2.8)

β3 = 〈Ψ3|H|Ψ2〉. (2.9)

In general the procedure can be generalized by defining an orthogonal basis recur-

sively as

βn+1|Ψn+1〉 = H|Ψn〉 − αn|Ψn〉 − βn|Ψn−1〉, (2.10)

for n = 1, 2, 3, . . . , being|Ψ0〉 = 0, β1 = 0 and

αn = 〈Ψn|H|Ψn〉 (2.11)

βn+1 = 〈Ψn+1|H|Ψn〉. (2.12)

It is worth noting that, by construction, the vector|Ψn〉 is orthogonal to all the

previous ones, although we subtract only the projections ofthe last two. In this
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basis the Hamiltonian has a simple tridiagonal form

H =

















α1 β2 0 0 . . .

β2 α2 β3 0 . . .

0 β3 α3 β4 . . .

0 0 β4 α4 . . .

. . . . . . . . . . . . . . .

















,

and once in this form, the matrix can be easily diagonalized by using standard

library subroutines. In principle, in order to obtain the exact ground-state of the

Hamiltonian, it is necessary to perform a number of iterations equal to the dimen-

sion of the Hilbert space. In practice, the greatest advantage of this method is that

a very accurate approximation of the ground-state is obtained after a very small

number of iterations, typically of the order of 100, depending on the model.

The main limitation of this technique is the exponential growing of the Hilbert

space. Indeed, although the ground-state can be written with a great accuracy in

terms of few|Ψn〉 as

|Φ0〉 ≃
∼100
∑

n=1

cn|Ψn〉, (2.13)

it is necessary to express the general vector of the Lanczos basis|Ψn〉 in a suit-

able basis to which the Hamiltonian is applied. For example,for thet− J model,

each site can be singly occupied by a spin up or down, or empty.In this way the

Hilbert space needed for describe all possible configuration became enormous yet

for small lattice sizes requiring an huge computer memory. In practice this prob-

lem can be alleviated by using the symmetries of the Hamiltonian. For example,

in the case of periodic boundary condition (the ones that we use in our work),

there is translational invariance and the total momentum ofthe system is a con-

served quantity. Moreover, in a square lattices also discrete rotations ofπ/2 and

reflections with respect to a particular axis are defined and can give rise to good

quantum numbers.

In principle the Lanczos procedure, as described in Eqs. (2.10), (2.11) and

(2.12), can give information about both the ground-state energy and the ground-

state vector. In practice, during the Lanczos matrix construction, only three vec-

tors are stored, i.e.|Ψn+1〉, |Ψn〉 and |Ψn−1〉 (by using an improved algorithm,

it is possible to store only two vectors), because each element |Ψn〉 of the basis
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is represented by a large set of coefficients, when it is expanded in the basis se-

lected to carry out the problem. Therefore, it is not convenient to store all the|Ψn〉

vectors individually, since this procedure would demand a memory requirement

equal to the size of the Hilbert space times the number of Lanczos steps. A possi-

ble solution of the problem is to run the Lanczos twice: in thefirst run we find the

coefficientcn of Eq. (2.13), in the second run the vectors|Ψn〉 are systematically

reconstructed one by one, multiplied by their coefficient and stored in|Φ0〉.

Within Lanczos and Variational Monte Carlo method, it is useful to consider

not only theN × N cluster, but also other tilted square lattices, which have axes

forming non-zero angles with lattice axes. In general it is possible to construct

square cluster withL = l2 + m2, beingl andm positive integers. Only cluster

with l = 0 (or m = 0) or l = m have all the symmetries of the infinite lattice,

while clusters withl 6= m can have rotations but not reflections with respect to a

given axis. In our work we used tilded cluster withl = m as we will show.

2.2 Variational Monte Carlo

One of the most useful properties of quantum mechanics is that the expectation

value of an HamiltonianH over any trial wave function|Ψ〉 gives an upper bound

to the ground-state energyE0

E =
〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
≥ E0. (2.14)

This can be easily seen by inserting the complete set of the eigenfunction|Φi〉 of

H with energyEi

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
=
∑

i

Ei
|〈Φi|Ψ〉|2

〈Ψ|Ψ〉
= E0 +

∑

i

(Ei − E0)
|〈Φi|Ψ〉|2

〈Ψ|Ψ〉
≥ E0. (2.15)

In this way, if we have a set of different wave functions, we can choose the best

approximation of the ground-state by looking for the lowestexpectation value of

the energy.

In general, due to the rapid growth of the Hilbert space with the lattice size,

the variational expectation values (2.14) can be calculated exactly only for very

small clusters unless the wave function is particularly simple like e.g. a Slater
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determinant. On larger sizes only a Monte Carlo approach to evaluate Eq. (2.14)

is possible for correlated wave functions. In order to show how statistical methods

can be used to calculate this kind of expectation values, it is useful to introduce

complete sets of states|x〉 1 in Eq. (2.14)

〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
=

∑

x,x′ Ψ(x′)Hx′,xΨ(x)
∑

x Ψ2(x)
, (2.16)

whereΨ(x) = 〈x|Ψ〉, Hx′,x = 〈x′|H|x〉, and for the sake of simplicity, we have

restricted to real wave functions. Defining thelocal energyEx as

Ex =
〈x|H|Ψ〉

〈x|Ψ〉
=
∑

x′

Ψ(x′)

Ψ(x)
Hx′,x, (2.17)

Eq. (2.16) can be written as

E =
〈Ψ|H|Ψ〉

〈Ψ|Ψ〉
=

∑

x ExΨ
2(x)

∑

x Ψ2(x)
. (2.18)

The local energyEx depends crucially on the choice of the wave function|Ψ〉,

in particular, if |Ψ〉 is an eigenstate ofH with eigenvalueE, it comes out from

Eq. (2.17) thatEx = E, and the Monte Carlo method is free from statistical

fluctuations.

The evaluation of Eq. (2.18) can be done by generating a sample X of N

configurationsxi according to the probability distribution

P (x) =
Ψ2(x)

∑

x′ Ψ2(x′)
(2.19)

and then averaging the values of the local energy over these configurations

E ≃
1

N

∑

x∈X

Ex. (2.20)

In practice, the simplest method to generate a set of configurations according

to the probability distributionP (x) is the Metropolis algorithm [100]: given a

1For example, for thespin− 1

2
Heisenberg model, in which each site can have an up or a down

spin, it is convenient to work in the Ising basis, whereSz is defined at every site, i.e. a generic

element is given by|x〉 = | ↑, ↓, ↑, ↑, ↓, ↑, · · · 〉.

For thet − J model, each site can be singly occupied, by a spin up or down, or empty, and the

generic elements reads|x〉 = | ↑, ↓, 0, ↑, ↑, ↓, 0, 0, ↑, · · ·〉.
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configurationx, a new configurationx′ is accepted if a random numberξ, between

0 and 1, satisfies the condition

ξ <
P (x′)

P (x)
=

[

Ψ(x′)

Ψ(x)

]2

, (2.21)

otherwise the new configuration is kept equal to the old one,x′ = x. We will

explain in some more details the Metropolis algorithm in thefollowing subsection.

Here we wish to note that, by using the variational Monte Carlo, it is possible

to calculate any kind of expectation value, over a given wavefunction in a similar

way as what was done for the energy:

〈O〉 =
〈Ψ|O|Ψ〉

〈Ψ|Ψ〉
=

∑

x OxΨ
2(x)

∑

x Ψ2(x)
, (2.22)

where

Ox =
〈x|O|Ψ〉

〈x|Ψ〉
=
∑

x′

Ψ(x′)

Ψ(x)
Ox′,x. (2.23)

An important point is that the only rigorous result is the upper bound to the

ground-state energy, and there are no criteria about the accuracy of other prop-

erties of the ground-state, such as〈O〉.

2.2.1 The Metropolis algorithm for quantum problems

We have seen in Section 1.5 that the general form of a correlated wave function is

constituted by a correlation term acting, in the fermionic case, on a Slater deter-

minant, i.e.,|Ψ〉 = P|D〉. In the following, we show how the statistical evaluation

of integrals containing the square modulus of this wave function is efficiently im-

plemented.

The first step in the variational Monte Carlo algorithm consists in choosing

the initial coordinates{xi}0 for the N particles on the lattice, either randomly

(with the condition that|Ψ(x)|2 6= 0) or taking them from a previous Monte Carlo

simulation. Then a new trial configuration{xT
i }0 is chosen by moving one of

the particles from its old position to another site. The Markov chain is then con-

structed following the Metropolis algorithm, as shown below. For any move from

the n-th configuration of the Markov chain{xi}n to the new trial configuration
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{xT
i }n, the latter is accepted, i.e.,{xi}n+1 = {xT

i }n with a probability equal to:

P = min [1,R] with R =

∣

∣

∣

∣

Ψ({xT
i }n)

Ψ({xi}n)

∣

∣

∣

∣

2

, (2.24)

whereΨ({xi}n) is the wave function of the system associated to the configuration

{xi}n. This is done in practice by extracting a positive random number0 < η ≤ 1;

if R ≥ η then{xi}n+1 = {xT
i }n, otherwise the proposed move is rejected and

{xi}n+1 = {xi}n. The calculation of the ratioR would require, for fermions, the

evaluation of two Slater determinants, which scale asN3. The fact that the two

configurations are related among each other by the displacement of one particle,

allows us to perform a more efficient calculation, which for fermions corresponds

to O(N) operations. Also the ratio among the correlation terms (Jastrow factors)

can be performed in an efficient way, taking into account thatonly one particle

changes its position.

After a certain number of steps, known as thermalization time, the configura-

tions {xi}n generated at each stepn in the Markov chain are independent from

the initial condition{xi}0 and are distributed according to the probability:

p{xi} =
|Ψ({xi})|2

∑

{xi} |Ψ({xi})|2
.

Notice that this algorithm does not require to know the normalization of the wave

function, since it always deals with its ratios over different configurations. This

is a big advantage of Monte Carlo methods, since in general the normalization

constant is not known or it is difficult to compute.

Finally, the expectation value〈O〉 of any operatorO reduces to average over

the values assumed byO along theM steps of the Markov chain:

Ō =
1

M

M
∑

n=1

O({xi}n), (2.25)

whereO({xi}n) is the observableO calculated for the configuration{xi}n. In-

deed the central limit theorem ensures that:

lim
M→∞

Ō = 〈O〉,
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where〈O〉 is the true expectation value ofO calculated from the probabilitypx.

The statistical error related to the fact that we are sampling a finite set of configu-

rations can be deduced from the variance:

σ2(Ō) = (Ō − 〈O〉)2.

One can show that the statistical error scales as the square root of the inverse

lengthM of the Markov chain, namely:

σ2(Ō) ≃
τ

M
σ2(O),

whereσ2(O) = 〈(O2 − 〈O〉2)〉 andτ is the autocorrelation time, i.e., the number

of steps of the Markov chain which separate two statistically independent config-

urations. Therefore, for large enough samplings, the average quantities calculated

with the Metropolis algorithm give reliable estimates of the true expectation val-

ues of the system. In order to calculate expectation values among uncorrelated

samplings, thebin techniqueis usually employed. This corresponds to average

first amongMbin configurations, according to (2.25):

Ōbin =
1

Mbin

Mbin
∑

n=1

O({xi}n) (2.26)

In this way the quantities̄Obin are less correlated than the originalO({xi}n).

Then, the calculation of the expectation value follows:

Ō =
1

Nbin

Nbin
∑

n=1

Ōbin
n , (2.27)

whereNbin = M/Mbin. In this way we getτ ≃ 1, henceŌ = 〈O〉 and the

variance can be evaluated in the standard way as:

σ2(O) =
1

(Nbin − 1)

Nbin
∑

n=1

(Ōbin
n − 〈O〉)2 (2.28)

2.3 The minimization algorithm

Consider the variational wave function|ΨT (α)〉, whereα = {αk} generally cor-

responds to the set of variational parameters for both the correlation factor and
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the Slater determinant/Pfaffian introduced in Section 1.5.The expectation value

of the variational energy can be written as:

ET (α) =
〈ΨT (α)|H|ΨT (α)〉

〈ΨT (α)|ΨT (α)〉
=

∑

x |〈x|ΨT (α)〉|2eL(x)
∑

x |〈x|ΨT (α)〉|2
≥ E0, (2.29)

whereE0 is the ground-state energy and the completeness relation
∑

x |x〉〈x| over

all possible configurations|x〉 has been inserted.2 The quantityeL(x) is called

local energyand is given by:

eL(x) =
〈x|H|ΨT (α)〉

〈x|ΨT (α)〉
. (2.30)

Eq.(2.29) shows that the expectation value of the energy corresponds to the mean

value of the the local energyeL(x) calculated among all possible configurations

|x〉, each weighted according to the square modulus of the normalized wave func-

tion. As shown in the previous section, this can be done stochastically by means

of a sum over the Markov chain in configuration space:

ET (α) =
1

M

M
∑

n=1

eL(xn).

Let us now explain how to vary the parametersα = {αk} in order to min-

imize the variational energy, following the stochastic reconfiguration algorithm

introduced in [101]. To this purpose consider the starting trial wave function

|ΨT (α0)〉, whereα0 = {α0
k} is the set ofp initial variational parameters (where

k = 1, . . . p). 3 In linear approximation the new wave function, obtained after a

small change of the parameters, can be written as:

|ΨT (α′)〉 ≃ |ΨT (α0)〉 +

p
∑

k=1

δαk
∂|ΨT (α0)〉

∂αk

=

=

[

1 +

p
∑

k=1

δαkOk

]

|ΨT (α0)〉, (2.31)

where the operatorsOk are defined for any configuration|x〉 as the logarithmic

2For simplicity we indicate with|x〉 the configuration{xi} for N particles.
3In the following let us assume for simplicity that|ΨT (α0)〉 is normalized.
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derivative of the wave function with respect to the parameters αk
4:

Ok(x) =
∂ ln Ψα

T (x)

∂αk
(2.32)

andΨα
T (x) = 〈x|ΨT (α)〉. PuttingO0 = 1, δα0 = 1 we can write:

|ΨT (α′)〉 =

p
∑

k=0

δαkOk|ΨT (α0)〉. (2.33)

In generalδα0 6= 1, due to the normalization of|ΨT (α′)〉, and one can redefine

δα̃k = δαk

δα0
for each variational parameterαk. In order to find|ΨT (α′)〉 such

that it approaches the ground state, one possibility resides in projection methods.

A standard procedure of projection methods corresponds to filter out the exact

ground-state wave function by iteratively applying the Hamiltonian operator to

the trial ground state. Therefore, we can apply thepower methodto the starting

wave function:

|Ψ̄T (α0)〉 = (Λ − H)|ΨT (α0)〉, (2.34)

whereΛ is a positive constant, which ensures convergence to the ground state.

The next step, in order to ensure that|ΨT (α′)〉 has a lower energy with respect to

|ΨT (α0)〉, corresponds to equate Eqs. (2.33) and (2.34) in the subspace spanned

by the vectors{Ok|ΨT (α0)〉}.

Combining the r.h.s. of Eqs. (2.33) and (2.34) and projecting them on thek′-th

component we get:

〈ΨT (α0)|Ok′(Λ − H)|ΨT (α0)〉 =

p
∑

k=0

δαk〈ΨT (α0)|Ok′Ok|ΨT (α0)〉. (2.35)

In this way the quantitiesδαk correspond to the variations of the wave function

parameters that lower the variational energy forΛ large enough that the linear

approximation is correct. They can be calculated by solvingthe linear system of

equations of the type given in (2.35). It is a system of(p + 1) equations, which

can be written as:

fk′ =

p
∑

k=0

δαkSkk′, (2.36)

4For example ifαk = vk, i.e., the Jastrow parameter associated to the distancek, the operator

Ok is defined asOk(x) =
∑

j nj(x)nj+k(x)
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wherefk are thegeneralized forces:

fk′ = 〈ΨT (α0)|Ok′(Λ − H)|ΨT (α0)〉 (2.37)

andSkk′ is the(p + 1) × (p + 1) positive definite matrix given by:

Skk′ = 〈ΨT (α0)|Ok′Ok|ΨT (α0)〉. (2.38)

The system can be reduced top equations sinceδα0 is related to the normalization

of the wave function. Indeed, considering Eq.(2.35) fork′ = 0, since we have put

O0 = 1 in (2.33), the value ofδα0 reduces to:

δα0 = Λ − ET (α0) −

p
∑

k=1

δαkSk0. (2.39)

Substituting (2.39) in (2.35) we obtain the reduced system of equations:

f̄k =

p
∑

k′=1

δαk′S̄kk′, (2.40)

where:

f̄k = 〈ΨT (α0)|Ok|ΨT (α0)〉〈ΨT (α0)|H|ΨT (α0)〉 − 〈ΨT (α0)|OkH|ΨT (α0)〉

(2.41)

and

S̄kk′ = Skk′ − Sk0Sk′0. (2.42)

Notice that the forces̄fk correspond tōfk = ∂ET (α)
∂αk

. Since at equilibrium one has

f̄k = 0, implying δαk = 0, this corresponds to satisfy the Euler equations for the

variational minimum:5
∂ET (α)

∂αk

= 0.

Moreover, from the definition (2.41), the fact thatf̄k = 0 implies that the varia-

tional wave function fulfills the same property of an exact eigenstate, namely:

〈OkH〉 = 〈Ok〉〈H〉, (2.43)

5This is strictly valid in the case in which the Hamiltonian does not depend on the variational

parameters, which is our case.
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which suggests a good accuracy of the variational state alsowith respect to the

expectation values of the operatorsOk.

Let us remark that the stochastic reconfiguration method is very close to the

steepest descent method. The main difference, which allowsus to obtain a more

stable algorithm, is that the stochastic reconfiguration method takes also into ac-

count the variation of the wave function. Indeed it is straightforward to show,

by using the linear approximation (2.33), that Eq. (2.40) isequivalent to the Euler

equation with the addition of a constraint related to the norm of the wave function,

namely:
∂ [ET (α0) − λ (〈ΨT (α0)|ΨT (α′)〉 − 1)]

∂α0
k

= 0, (2.44)

whereλ is a Lagrange multiplier that ensures that the norm of the twowave func-

tions does not differ of a large quantity. The fact that we canchange the parameters

of a large amount, without changing notably the wave function, allows us to reach

the minimum in a stable way, with fewer iterations.

Indeed, in the stochastic reconfiguration algorithm, the variationsδαk are re-

lated not only to the forces, but also to the inverse covariance matrixS̄−1, namely,

by writing Eq. (2.40) in vectorial notations:

δα = S̄−1f̄ .

The diagonal elements of the reduced covariance matrix (2.42) give direct infor-

mation about the fluctuations of the parametersOk. The fact that each component

of the force is multiplied by the inverse of the fluctuations allows us to move

mainly along the directions where the variance of the corresponding operatorOk

is small, i.e., where the signal-noise ratio is small. This avoids undesired instabil-

ities due to the fluctuations of the stochastic system. Moreover, the presence of

non-zero off-diagonal elements̄Sij allows us to move each parameter by taking

into account all the other directions at the same time. Therefore, we reach the

variational minimum being driven not only by the high-energy contributions, but

also by the parameters which contribute at low energy.

The equations (2.40) are solved stochastically with the Monte Carlo algorithm.

In practice, we performMSR Metropolis steps in order to calculate the expecta-

tion values of (2.41) and (2.42) and have small enough fluctuations. Then the

linear system (2.40) is solved in order to find the variationsδαk. Finally, once
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the variations{δαk} are calculated, the variational parameters{αk} are modified

according to:

α′
k = α0

k + ∆ δαk,

where∆ is a number that can be tuned in order to control the change of the param-

eters. Generally one starts with a large∆ in order to reach the minimum in few

iterations, and consequently∆ is decreased in order to reduce the fluctuations of

the converged parameter. The new wave function|Ψ(α′)〉 is then considered as the

starting state|Ψ(α0)〉 and the method is reiterated, until convergence is achieved.

Indeed, the stochastic nature of the system (2.40) implies that the forcesf̄k

are always determined with some statistical noiseηk, and by iterating the mini-

mization procedure several times, even when the variational minimum is reached,

the parameters will fluctuate around their mean values. Therefore, once conver-

gence is reached, one must average over a certain number of iterations in order

to find the optimal parameters that are close to the energy minimum. Indeed, in

the case of a quadratic energy landscape, the averaged parameters correspond to

the minimum energy. However, in many cases it is possible to have non-harmonic

contributions, and the larger are the fluctuations, the larger is the bias that is intro-

duced. Indeed, one can describe the evolution of the variational parameters during

the minimization iterations by means of a standard Langevindynamics. The sta-

tistical fluctuations are similar to the thermal noise of theLangevin equation:

∂tαk = fk + ηk, (2.45)

where the thermal noise is defined as:

〈ηk(t)ηk′(t′)〉 = 2Tnoiseδ(t − t′)δk,k′. (2.46)

By increasing the number of sampled configurationsTnoise diminishes, since the

fluctuations are reduced, namelyTnoise ∝ M−1
SR. Therefore, there is an optimal

value ofMSR, which guarantees a fast convergence and avoids the parameters

to be biased within the statistical accuracy of the sampling. Moreover, we find

that the optimalMSR also depends on the type of operatorsOk included in the

minimization, hence on the type of variational parameters to be minimized.

It is possible to introduce another appropriate iterative scheme for the mini-

mization of the energy, based on the variational technique that in some case im-
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prove the stochastic schemes. Indeed, by using a very efficient statistical evalua-

tion of the first and second energy derivatives, it is possible to define a very rapidly

converging iterative scheme (the Hessian minimization) that, within the varia-

tional Monte Carlo, is much more convenient than the standard Newton method.

We refer to the original paper [102] for a detailed description of this method.

2.4 Green’s Function Monte Carlo

2.4.1 Basic Principles: importance sampling

The Green’s function Monte Carlo (GFMC) [103] is a stochastic technique that

allows us to filter out the ground-state|Φ0〉 of an HamiltonianH from a trial wave

function|ΨT 〉, provided that〈ΨT |Φ0〉 6= 0, by using the power method Eq. (2.1).

In practice we define a basis|x〉 (e.g. the spin configuration of the lattice) and

the iterative application of the Green’s functionGx′,x given by Eq. (2.1) reads

Ψn+1(x
′) =

∑

x

Gx′,xΨn(x). (2.47)

On large sizes it is not possible to evaluate exactly this recursive equation. Indeed,

after few steps, the application ofG generates transitions to a very large number

of different states, implying a huge amount of memory occupation. Therefore an

alternative approach is necessary. The solution is to sample in a statistical way the

matrix-vector product (2.47) by defining a Markov process.

In order to implement efficiently the power method, it is convenient to consider

not the original matrixG, but the slightly more involved non-symmetric one

Ḡx′,x =
ΨG(x′)

ΨG(x)
Gx′,x, (2.48)

whereΨG(x) is the so-calledguiding wave function. The convenience of usinḡG

instead ofG comes out from the following argument. If we considerḠ, the local

energyEx is given by

Ex =
∑

x′

ΨG(x′)

ΨG(x)
Hx′,x =

∑

x′

H̄x′,x. (2.49)

Thus if ΨG(x) is exactly equal to the ground-state ofH thenEx = E0, indepen-

dently onx. This is the so called zero-variance property, namely if theguiding
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wave function approaches an exact eigenstate ofH, the method is free of statis-

tical fluctuations. The guiding wave function has to be as simple as possible to

be efficiently implemented in the calculation of the matrix elements and as close

as possible to the ground-state ofG. Moreover, it is easy to show that ifΦi(x)

is an eigenvector ofG with eigenvalueEi, thenΨG(x)Φi(x) is an eigenvector of

Ḡ with the same eigenvalue, i.e.G andḠ have the same spectrum. It is worth

noting that, after the importance sampling transformation(2.48), the iteration step

(2.47), reads

Ψn+1(x
′)ΨG(x′) =

∑

x

Ḡx′,xΨn(x)ΨG(x). (2.50)

For simplicity, from now on the bar over an operator represents the same operator

after the importance sampling transformation.

2.4.2 Statistical implementation of the power method by the

many walker formulation

In order to define the statistical implementation of Eq. (2.50), we decompose the

matrix Ḡx′,x in terms of three factors:

Ḡx′,x = sx′,xpx′,xbx, (2.51)

wheresx′,x is the sign ofḠx′,x, bx is a normalization factor andpx′,x is astochastic

matrix, i.e. it fulfills the conditionspx′,x ≥ 0 and
∑

x′ px′,x = 1.

The basic element of the stochastic process is thewalker, which, in the sim-

plest formulation, is defined by(x, w), i.e. by its configuration in the latticex and

by a weightw. Stochastically, the iteration (2.50) is interpreted as a transition of

the walkerx → x′, whereas the weight of the walker is scaledw → w′ = sx′,xbxw.

This scheme defines a Markov process in the walker space(x, w). The basic idea

of the stochastic implementation of Eq. (2.50) is that, although the number of

non-zero elements of̄Gx′,x is of the order of the Hilbert space times the num-

ber of sites, the number of non-zero entries in each column isof the order of the

number of sites. Therefore all the non-zero elements ofḠx′,x for a fixedx can be

computed, even for large size systems.

The previous Markov iteration allows us to define the evolution of the proba-

bility distribution Pn(w, x) to have a walker with weightw and configurationx,
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namely:

Pn+1(w
′, x′) =

∑

x

px′,x

bx
Pn

(

w′

bxsx′,x
, x

)

. (2.52)

The first momentum of the probability distributionPn(w, x) completely deter-

mines the wave functionΨn(x) of the power method (2.1)

Ψn(x)ΨG(x) =

∫

dw w Pn(w, x). (2.53)

Indeed, it can be easily seen that the evolution (2.52) correctly reproduces the

dynamics of the wave function, Eq. (2.50). Therefore, afteran equilibration, the

probability Pn(w, x) converges to its equilibrium limitP ∗(w, x), which defines

the ground-state wave function

Φ0(x)ΨG(x) =

∫

dw w P ∗(w, x). (2.54)

Therefore, the ground-state energy is given by

E0 =
〈ΨG|H|Φ0〉

〈ΨG|Φ0〉
=

∑

x,x′ H̄x′,x

∫

dw w P0(w, x)
∑

x

∫

dw w P0(w, x)
. (2.55)

Using the fact that the local energyEx =
∑

x′ H̄x′,x, we have that the ground-

state energyE0 can be computed over a sampleX of independentN values of

configurations

E0 ≃

∑

(w,x)∈X wEx
∑

(w,x)∈X w
. (2.56)

In addition, within the same Monte Carlo sampling, it is alsopossible to calculate

the so-calledmixed averages[103] of arbitrary linear operatorsO,

〈O〉MA =
〈ΨG|O|Φ0〉

〈ΨG|Φ0〉
. (2.57)

In fact, such mixed averages can be calculated using Eq. (2.56) by substituting the

local energyEx with the local estimator associated to the operatorO, namely

Ox =
∑

x′

Ōx′,x . (2.58)

whereŌx′,x are the operator matrix elements transformed according to the guiding

wave function.
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In the practical implementation of the method, since the walker weights grow

exponentially with the Markov iteration, the procedure forthe statistical eval-

uation of the ground-state energy and the mixed averages is slightly different.

We can consider that, after many iterations, the configuration x, generated in the

Markov process, is distributed according to the maximum right eigenstate of the

matrix px′,x. This state is different from the stateΨG(x)Φ0(x) we are interested

in, and we can consider it as a trial state in the power method.At any Markov iter-

ation we can compute the weight of the walker assuming thatL iterations before

it was equal to 1. In this way the ground-state energy is givenby

E0 =

∑

n ExnGL
n

∑

n GL
n

, (2.59)

where

GL
n =

L
∏

j=1

bxn−j
sxn−j+1,xn−j

. (2.60)

In principle, the previously described procedure is free from any approxima-

tion, and, it gives exact results within the statistical errors. Unfortunately there are

two main technical problem. The first one is that the weightGL
n grows exponen-

tially by increasingL, implying a divergent variance in the energy average. Indeed

GL
n is a product ofL different factors and it can assume very large or very small

values. This problem has a simple solution by considering the GFMC technique

with many walkers and by introducing a reconfiguration scheme, which enables

to drop out the irrelevant walkers with small weights. Calandra and Sorella [104]

have introduced a reconfiguration scheme working at fixed number of walkers, in

a way that allows us to control the bias due to the finite walkerpopulation, which

we will describe in the following.

The second problem is much more serious and it is related to thesign problem.

It is due to the fact that the average sign,

〈sL〉 =

∑

n GL
n

∑

n |G
L
n |

, (2.61)

vanishes exponentially withL. Indeed walkers with positive and negative weights

cancel almost exactly, giving rise to an exponentially small quantity to sample,

with huge fluctuations. In the following section we will introduce the fixed node

technique that is an approximation that allow us to avoid thesign problem.
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Let us focus on the first problem and, in order to show how the reconfiguration

scheme works, let consider a case without sign problem, i.e.with sx′,x = 1. We

considerM walkers and label the corresponding configurations and weights with

a couple of vectors(x,w), with each component(xi, wi), i = 1, . . . , M corre-

sponding to theith walker. It is easy to generalize Eq. (2.52) to many independent

walkers

Pn+1(w
′,x′) =

∑

x1,...,xM

Pn

(

w′
1

bx1

, . . . ,
w′

M

bxM

)

px′

1
,x1

. . . px′

M ,xM

bx1
. . . bxM

. (2.62)

Again, the wave functionΨn(x) is completely determined by the first momentum

of the probabilityPn(w,x), namely

Ψn(x)ΨG(x) =

∫

[dw]
∑

x

∑

j wjδx,xj

M
Pn(w,x). (2.63)

If the evolution ofPn(w,x) is done without any restriction, we have that each

walker is completely uncorrelated from the other

Pn(w,x) =
∏

i=1,...,M

Pn(wi, xi). (2.64)

In order to prevent the divergence of the weights, we define a reconfiguration

process that changes the probability distribution withoutchanging its first mo-

mentum, i.e. the wave function:

P ′
n(w′,x′) =

∫

[dw]
∑

x

K(w′,x′,w,x)Pn(w,x), (2.65)

where the kernelK(w′,x′,w,x) is given by

K(w′,x′,w,x) =

M
∏

i=1

(

∑

j wjδx′

i,xj
∑

j wj

)

δ(w′
i −

1

M

∑

j

wj), (2.66)

where the symbol
∫

[dw] indicates theM dimensional integral over thewi vari-

ables.

In practice this reconfiguration process amounts to generate a new set ofM

walkers(x′,w′) in terms of the oldM walkers(x,w) in the following way: each

new walker will have a weight̄w = 1
M

∑

j wj and a new configurationx′
i among
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the possible old onesxj , chosen with a probabilitypi = wj(i)/
∑

k wk. After this

reconfiguration scheme, all the new walkers have the same weight and most of

the irrelevant walkers with small weight are dropped out. Moreover it is easy to

show that this kind of reconfiguration does not change the first momentum of the

probability distribution [104].

2.4.3 Fixed node and Gamma Correction

When the weights of the walkers are not all positive it is always possible to de-

fine the transition probability for the stochastic process,but even if the Markov

process converges to a probability distribution which determines the ground-state

wave function, calculations are unstable due to wild cancellations between posi-

tive and negative weights. It is then necessary to consider some kind of approx-

imation. The most popular one is the fixed node (FN) approximation [105]. In

this approach an effective Hamiltonian is defined, startingfrom H̄, by adding a

perturbationO:

Hγ
eff = H + (1 + γ)O. (2.67)

Here we follow [106] and introduce the external parameterγ, the original FN

approximation [105] being recovered forγ = 0. The operatorO is defined through

its matrix elements and depends upon a given guiding function |Ψ〉, which in our

case is the variational state|ΨV MC〉:

Ox′,x =

{

−Hx′,x if sx′,x = Ψx′Hx′,xΨx > 0
∑

y,sy,x>0 Hy,x
Ψy

Ψx
for x′ = x,

(2.68)

whereΨx = 〈x|Ψ〉. One have to notice that the above operator annihilates the

guiding function, namelyO|Ψ〉 = 0. Therefore, whenever the guiding function is

close to the exact ground state ofH the perturbation(1 + γ)O is expected to be

small and the effective Hamiltonian becomes very close to the original one.

Let us review the properties of the FN Hamiltonian in this scheme. Trivially,

for γ = −1, Hγ
eff coincides withH, as the perturbation vanishes. The most im-

portant property of this effective Hamiltonian is that forγ ≥ 0 its ground state

|Ψγ
0〉 can be efficiently computed by using the Green’s function Monte Carlo tech-

nique [103, 104] (becauseHγ
eff is free from the sign problem), which allows one
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to sample the distributionΠx ∝ 〈x|Ψ〉〈x|Ψγ
0〉 by means of a statistical implemen-

tation of the power method:Π ∝ limn→∞ GnΠ0, whereΠ0 is a starting distribu-

tion andGx′,x = Ψ(x′)(Λδx′,x −Hγ
eff,x′,x)/Ψ(x), is the Green’s function, defined

with a large or even infinite [107] positive constantΛ, δx′,x being the Kronecker

symbol.

The statistical method is very efficient forγ ≥ 0, since in this case all the

matrix elements ofG are non-negative and, therefore, it can represent a tran-

sition probability in configuration space, apart for a normalization factorbx =
∑

x′ Gx′,x. In this case, it follows immediately that the asymptotic distributionΠ

is also positive and, therefore, we arrive at the important conclusion that forγ ≥ 0

the ground state ofHγ
eff has the same signs of the chosen guiding function.

Within the FN approximation, we have a direct access to the ground-state en-

ergy Eγ
FN of the effective Hamiltonian by sampling the local energyeL(x) =

〈x|H|Ψ〉/〈x|Ψ〉 over the distributionΠx. In the following, we will denote the

standard FN energy forγ = 0 simply by EFN . It should be noted that, since

O|Ψ〉 = 0, we have thatEγ
FN is also the mixed average of the original Hamilto-

nian:

Eγ
FN =

〈Ψγ
0 |H

γ
eff |Ψ

γ
0〉

〈Ψγ
0 |Ψ

γ
0〉

=
〈Ψ|H|Ψγ

0〉

〈Ψ|Ψγ
0〉

. (2.69)

Eγ
FN gives a rigorous upper bound of the exact ground-state energy E0 = Eγ=−1

FN

since it is an increasing function ofγ as the operatorO is positive definite6 and

by the Hellman-Feynman theorem:

dEγ
FN

dγ
=

d〈Hγ
eff〉

dγ
= 〈

dHγ
eff

dγ
〉 = 〈O〉 ≥ 0, (2.70)

here〈. . . 〉 indicates the expectation value over|Ψγ
0〉. This upper bound is also

certainly below or equal to the variational energy of the guiding functionE =

〈Ψ|H|Ψ〉/〈Ψ|Ψ〉, since fromO|Ψ〉 = 0 it follows thatE is also the expectation

value of the FN Hamiltonian over|Ψ〉, namelyE = 〈Ψ|Hγ
eff |Ψ〉/〈Ψ|Ψ〉.

One of the advantages of having introduced the parameterγ is that it is pos-

sible to extract the expectation value of the original HamiltonianH over the FN

state|Ψγ
0〉. Indeed, by applying Eq. (2.70), we have that:

Eγ
Ψ0

= 〈H〉 = 〈Hγ
eff 〉 − (1 + γ)

d〈Hγ
eff〉

dγ

6This has been shown in [105], by proving that〈Φ|O|Φ〉 ≥ 0 for any wave function|Φ〉
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= Eγ
FN − (1 + γ)

dEγ
FN

dγ
, (2.71)

and therefore, by doing simulations for different values ofγ to calculate numeri-

cally the derivative, it is possible to evaluate the expectation value ofH over the

ground state of the FN Hamiltonian. Moreover, by using the definition (2.71) and

the fact thatEγ
FN is a convex function [106], it turns out that:

dEγ
Ψ0

dγ
= −(1 + γ)

d2Eγ
FN

dγ2
> 0, (2.72)

namelyEγ
Ψ0

is monotonically increasing withγ. A practical estimate ofEγ=0
Ψ0

, the

best variational energy that can be obtained within a stablestatistical method, can

be worked out by performing two calculations forγ = 0 andγ = γ̃ > 0 via:

Ẽγ=0
Ψ0

= EFN −
1

γ̃
(E γ̃

FN − EFN). (2.73)

Ẽγ=0
Ψ0

certainly improves the standard FN upper bound of the energyand still

Ẽγ=0
Ψ0

≥ Eγ=0
Ψ0

. This latter inequality follows from the convexity ofEγ
FN , implying

that its first derivative atγ = 0 is certainly larger or equal than the corresponding

finite difference estimate. In order to obtain a compromise between having small

enough statistical errors and a reasonable energy gain withrespect to the mixed

average of Eq. (2.69), we have computedẼγ=0
Ψ0

using γ̃ = 1 for obtaining our

results that we will show in the following chapter.

2.4.4 Forward walking technique

The GFMC technique can be used with success to compute also correlation func-

tions on the ground-state ofH. In particular, it is simple to compute expecta-

tion values of operators that are diagonal in the working basis, so thatOx,x′ =

δx,x′〈x|O|x〉. By using GFMC, the configurations of the walkers are distributed

asΨG(x)Φ0(x), however, in order to compute

〈O〉 =
〈Ψ0|O|Ψ0〉

〈Ψ0|Ψ0〉
, (2.74)

a further work is required. To this purpose, the desired expectation value is written

as

〈O〉 = lim
N,N ′→∞

〈ΨG|H
NOHN ′

|Ψ〉

〈ΨG|HN+N ′|Ψ〉
. (2.75)
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From a statistical point of view, Eq. (2.75) amounts first to sample a configuration

x afterN ′ GFMC steps, then to measure the quantity〈x|O|x〉, and finally to let the

walker propagate forward for furtherN steps. In order to evaluate the stochastic

average, an approach similar to that done for the energy is possible. In this case

we have:

〈O〉 =

∑

n OnGL
n

∑

n GL
n

, (2.76)

whereOn is the average over the walker population of the operatorO at the gen-

erationn, i.e. On = 1
M

∑

j On
j , beingOn

j the value of the operatorO on the

configurationxj of thejth walker at the iterationn, and

GL
n =

L−1
∏

j=−N

w̄n−j. (2.77)

Notice that the correcting factorsGL
n are different from the case of the energy.

Indeed, in this case,GL
n contain a further propagation ofN steps as compared to

the previous expression.

A further condition is necessary in order to control the biasin the forward

walking technique. The set of measured valuesOn
j with weight factors given by

Eq. (2.77) has to be modified after each reconfiguration process occurring in the

forward direction. In practice after each reconfiguration,we have to bookkeep

only the valuesOn
j of the observable that survive after the reconfiguration. There-

fore, after each reconfiguration,On′
i = Oj(i), for i = 1, . . . , M and the function

j(i) describing the reconfiguration scheme has to be computed: the walker with

indexi assumes the configuration with indexj(i) before the reconfiguration.

In order to implement recursively the forward walking, it isuseful to store

at each reconfiguration the integer functionjn(i) for each reconfigurationn and

the value ofOn
i of the operator for each walker. Then it is possible to compute

the relevant configurations contributing to the operatorO afterN reconfiguration

steps by recursive application of the integer functionjn(i).





Chapter 3

Phase Separation in the2D t−J

model

3.1 Introduction

The possible existence of charge and spin inhomogeneities and their relevance for

the low-temperature physics of cuprate superconductors isa long-standing prob-

lem, not yet completely clarified [26, 108]. In particular, the issue is twofold:

on the one hand, one is interested in understanding the low-energy behavior of

microscopic models and the possibility to have or not inhomogeneous phases in

physically relevant regions; on the other hand, it is also important to clarify the

possible relation between charge or spin inhomogeneities and the electronic pair-

ing, which may lead to a high critical temperature for superconductivity.

The original interest in the role of these inhomogeneities dates back to the

works by Emery and Kivelson [5, 44] and raised when neutron scattering ex-

periments [109, 110] suggested the possible formation of conducting hole-rich

regions separated from hole-poor ones with strong antiferromagnetic moments.

Indeed, in most materials, the presence of a true phase separation (PS) instability

is ruled out by the existence of the long-range Coulomb forcethat prevents the

charge from accumulating in macroscopic regions1, only allowing the possibility

1To our knowledge, the only cuprates superconductor showingPS isLa2CuO4+δ, due to the

presence of mobile apical oxygens atoms that can screen the Coulomb potential of the mobile

charges in theCuO2 plane [46].
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to have a mesoscopic charge segregation, i.e. charge density waves (CDW) or

the celebrated stripes. In the last decade, a great number ofdirect and indirect

pieces of evidence for such charge segregation have been presented in different

cuprate and nickelate materials, stimulating theoreticalinvestigations in simple

microscopic models [26, 108]. Several authors addressed the possibility of the

emergence of PS or CDW generating from the competition between the kinetic

energy, which tends to delocalize charge carriers, and various local interactions

(like, for instance, the on-site Coulomb repulsion, the antiferromagnetic superex-

change, or the coupling with some local phonon), which instead tend to freeze

electrons. Given the complexity of the strongly correlatedproblem, which con-

tains different energy scales, it is very difficult to study its ground-state and low-

energy properties. For instances, by considering mean-field approaches it is very

easy to overestimate the tendency of charge segregation [111–114]. In this re-

spect, a great advantage of the variational Monte Carlo (VMC) technique is that

it allows one to consider highly correlated wave functions,which are well beyond

a simple mean-field ansatz [68, 115, 116]. Then it would be very important to

compare the validity of the ansatz considered with exact ground-state properties

on fairly large system sizes, since the variational approach may fail, especially for

low-energy properties. This comparison is possible only for bosonic nonfrustrated

models by means of quantum Monte Carlo (QMC) projection techniques, but for

fermion systems the so-called sign problem prevents one from reaching the exact

zero temperature properties in a stable way. Nevertheless,very-well-established

and efficient approximate approaches are known for fermionic system that consid-

erably improve the quality of a given variational guess. Forinstance, the so-called

fixed-node (FN) method, that we have described in detail in the previous chapter,

allows one to obtain the lowest-energy state constrained tohave the same signs of

a given variational wave function. Therefore, the FN schemeprovides a simple

procedure to assess the stability of a particular variational wave function, its accu-

racy being related to the differences between its properties and the ones obtained

with the improved FN state.

In this chapter, we will revisit the problem of the PS instability in the t − J

model on the square lattice. This issue has been largely considered by several

authors in the recent past [78, 117–122]. Although a great effort has been done, a

general consensus forJ/t . 0.6 and small-hole dopingδ is still lacking.
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For very largeJ/t, at small hole doping, the ground state is phase separated be-

tween undoped regions, with long-range antiferromagneticcorrelations, and con-

ducting hole-rich regions. The simple explanation is basedon the fact that the

magnetic gain in accumulating the holes in a given region of space is much larger

than the loss of kinetic energy. Therefore, a phase-separated state will have a lower

energy than a homogeneous one. By decreasingJ/t, the situation is much less

clear, since the magnetic gain becomes comparable with the kinetic one. Emery,

Kivelson, and Lin [44], by using simple variational arguments, claimed that the

ground state of thet − J model should phase separate for all values of antifer-

romagnetic couplingJ and close to half filling. This claim was first confirmed

by using a more sophisticated Monte Carlo technique [118], but then disclaimed

by other authors, using slightly different Monte Carlo approaches and series ex-

pansions [119–122]. In particular, Calandra, Becca and Sorella, showed that, by

filtering out the high-energy components of a projected BCS wave function, it was

possible to obtain a homogeneous ground state forJ/t ∼ 0.4 [121]. Later, this

approach was questioned in Ref. [123], since it was noted that the ground state is

still unstable against PS for very small hole doping, where the previous variational

ansatz had technical problems. In particular, it has been shown that Monte Carlo

results could indicate an instability forδ . 0.05. Moreover, it was disappoint-

ing that it was not possible to define a stable variational wave function and that a

homogeneous state was obtained only after the filtering procedure. From all the

calculations done by different numerical techniques, it isnow clear that, in any

case, thet−J model forJ/t ∼ 0.5 is on the verge of charge instabilities and both

PS or CDW can be stabilized with small perturbations [124–126].

A key issue that was absent in the previous calculations and must be included

in a correct description is the presence of antiferromagnetic correlations at low

doping. Recently, by using a variational approach that contains both antiferro-

magnetism andd−wave pairing, Ivanov [78] suggested that antiferromagnetic

ordering could enhance the instability towards PS. However, in his approach, the

presence of an antiferromagnetic order parameter in the fermionic determinant

without the presence of a Jastrow term to take into account spin fluctuations im-

plies a wrong behaviour of the spin properties at small momenta, which in turn

could also induce incorrect charge properties. In fact, by using, a spin-wave ap-

proach for the Heisenberg model, it has been shown [99] that an exceptionally
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accurate description of the ground state is obtained by applying a long-range spin

Jastrow factor to the classically ordered state. In the corresponding variational

wave function, it is important that the Gaussian fluctuations induced by the jastrow

term are orthogonal to the direction of the order parameter,in order to reproduce

correctly the low-energy excitations. A simple generalization of this wave func-

tion was used to study the Hubbard model at half filling and forlow doping [127].

On the other hand, it is well known [96, 128, 129] that a projected BCS state

with dx2−y2 symmetry and no antiferromagnetic order provides an accurate wave

function for the low-doping region of thet−J model and remains rather accurate

in energy even at zero doping, where a magnetically ordered ground state is well

established in two dimensions. Therefore, in order to have an accurate variational

ansatz to describe lightly doped correlated insulators, itseems natural to include

both antiferromagnetic correlations and electronic pairing [130].

Following these suggestions, we construct a very accurate variational wave

function that describes an energetically stable homogeneous phase. Moreover, by

considering the FN approach, we have strong evidence in favour of a homoge-

neous ground state forJ/t . 0.7 for all accessible hole doping.

Our results give support to the RVB description of the superconducting pairing

solving an old debated question rised long time ago. From oneside Kivelson

and collaborators were convinced that superconductivity need CDW or stripes,

which give the origin of pairing. In contrast to this argument Rice and Anderson

supported the idea that thet−J model can show HTSC also with a homogeneous

phase, supporting in this way the idea that the origin of pairing must be addressed

to the RVB state. Our results show one more evidence that the RVB state gives

the correct way for describing the properties of the HTSC.

This chapter is organized as follow: first of all we will present how is possible

to study in a simple way the PS problem starting from the Maxwell construction;

after that we will present our improved variational wave function; and at the end

we will show our numerical results and finally we will draw ourconclusions.

3.2 Maxwell construction for Phase Separation

Let us enter a little bit more in detail in the problem of a finite number of holes in

an antiferromagnetic background. At finite hole doping there is competition be-
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tween the kinetic energy, which favors a homogeneous delocalized state, and the

interaction energy, which favors an inhomogeneous localized state. This competi-

tion may give rise to strong charge fluctuations and eventually to phase separation

or charge density waves.

In order to gain insight into the possible charge inhomogeneities in the lightly

dopedt − J model, it is instructive to consider the case of two holes andJ ≫ t.

In this limit the kinetic energy can be neglected, and the energy of a state with two

widely separated hole isE = E0 − 8BJ , whereE0 is the energy of the uniform

antiferromagnetic background andB is the antiferromagnetic energy per bond.

By contrast the energy of a state with the two holes clusteredtogether to form

a pair isE = E0 − 7BJ (see Fig. 3.1). A similar argument hold for a finite

number of holes and therefore this simple variational calculation shows that, for

very large values ofJ , the state in which the holes are segregated, leaving the rest

of the system undoped, is favored over the uniform one. At finite t the loss in

antiferromagnetic energy competes with the gain in kineticenergy, and it is not at

all obvious if the homogeneous state should have higher energy or not.

Figure 3.1: Two holes in an antiferromagnetic background. In theJ ≫ t limit, the

energy loss with respect to the ordered state is given by number of broken bonds.

If the holes are apart(a) the energy loss is8BJ whereas if they form a cluster(b)

it is 7BJ .

In the thermodynamic limit, the compressibility of a stablesystem is finite and

positive. Since the compressibility can be related to the second derivative of the
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energy per sitee(δ) with respect to the doping densityδ

χ =

(

∂2e

∂δ2

)−1

, (3.1)

it turns out that, in an infinite system, the stability criterium requires that the en-

ergy per site is a convex function of the density, see Fig. 3.2(a). By contrast,

if the compressibility is negative, the system phase separates, i.e. it creates two

macroscopic regions with densitiesδc1 andδc2. In this case, the energy of the ho-

mogeneous state can be lowered by forming two separated regions with different

densities, being the total energy given by the Maxwell construction, see Fig. 3.2

(b).

In Ref. [44], a very clever way to detect phase separation by using energy cal-

culations has been suggested. Assuming that, at a fixed hole dopingδ, the system

is composed of a hole-free and a hole-rich phase, with density x, and assuming

that the volume is large enough that the surface interactioncan be neglected, the

energy per site can be written in the form

e(δ) = min
x

e(δ, x) = min
x

{(

1 −
Lx

L

)

e0 +
Lx

L
ex

}

, (3.2)

whereL is the total number of sites,Lx is the number of sites in the hole-rich

phase,e0 is the energy per site of the Heisenberg (hole-free) phase, and ex is the

energy per site of the uniform hole-rich phase, which is a function ofx = Nh/Lx,

with Nh number of holes, finally the hole density of the total system isδ = Nh/L.

For fixed values ofNh andL, i.e. for a given dopingδ, e(δ, x) is a function of

Lx. The system phase-separates ife(δ, x) has a minimum as a function ofLx at

Lx < L. The energy per site can be rearranged into the form

e(δ, x) = e0 + δǫ(x), (3.3)

where

ǫ(x) =
ex − e0

x
(3.4)

is the energy per hole in the uniform hole-rich region. Therefore phase separation

occurs if ǫ(x) has a minimum at finitex, see Fig. 3.2(c) and (d). It is worth

noting that, in the thermodynamic limit, if the system phase-separates,ǫ(x) is a

flat function ofx for 0 < x < δc, whereas, in a finite size lattice, due to surface

terms,ǫ(x) can be slightly convex.
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Figure 3.2: Energy per site landscape versus doping for a stable (a) and a phase

separated(b) system. Energy per hole versus doping for a stable(c) and unstable

(d) system. The dashed line is the Maxwell construction.

In their work, Emery and co-worker [44] claimed that, at low doping the

ground-state of thet − J model is phase-separated for all the interaction strength

J . Their statement was supported by an exact diagonalizationon a small lattice

cluster and by a variational calculation forJ ≪ t. Although the exact diagonal-

ization results give insight into the physical properties of the cluster under consid-
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eration, for fermion systems it is impossible to consider sizes with more than32

sites and, for such small lattices, any size scaling in more than one dimension is

highly questionable. Since the phase separation is a long-wavelength instability, it

is crucial to consider large systems. Moreover, on small lattice and for low doping

it is not easy to distinguish between phase separation and pairing. For example,

for a16-site lattice, the clustering of two holes can represent both pairing or phase

separation at a doping ofδ ∼ 0.12. Therefore, calculations with larger cluster size

are needed.

By using quantum Monte Carlo and series expansion techniques, several au-

thors have addressed the problem of finding out the critical valueJc above which

there is phase separation at low doping in thet − J model [117–124, 131]. Al-

though there is no general consensus on the value ofJc, most of the calculations

agree that is between0.5t and 1.2t. Different quantum Monte Carlo calcula-

tions [119–121, 131] agree with aJc ∼ 0.5t, by contrast in Refs. [118, 123] it

was found that there is phase separation at all the interaction strengths. These dis-

crepancies are probably due to the fact that in the latter work the different dopings

are not achieved by varying the number of holes while keepingthe lattice sizes

constant, but by varying the lattice size while keeping the number of holes con-

stant. Although this procedure probably overcomes the problems of having shell

effects, it forces one to use fairly small size in the delicate low-doping region.

3.3 Thet − J model: variational approach

Thet−J model is defined by:

H = −t
∑

〈i,j〉σ

(

c†i,σcj,σ + h.c.
)

+ J
∑

〈i,j〉

(

Si · Sj −
1

4
ninj

)

, (3.5)

where〈. . . 〉 indicates the nearest-neighbor sites,c†i,σ (ci,σ) creates (destroys) an

electron with spinσ on the sitei, Si = (Sx
i , Sy

i , S
z
i ) is the spin operator,Sα

i =

1/2
∑

σ,σ′ c
†
i,στ

α
σ,σ′ci,σ′ , beingτα the Pauli matrices, andni =

∑

σ c†i,σci,σ is the

density operator.

We consider a square lattice withL sites and periodic boundary conditions

rotated by 45 degrees such thatL = 2l2 (tilted square lattice),l being an odd
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integer, so that the non-interacting ground state is non-degenerate at half fill-

ing. Finally, J is the antiferromagnetic exchange constant andt the amplitude

for nearest-neighbor hopping. In the following we will taket = 1.

3.3.1 Variational wave function: RVB projected WF

As pointed out by Gros [68], a very good variational wave function in the low

doping regime is given by the projectedd − wave BCS state

|ΨN
RV B〉 = PNPGΠk

(

1 + fkc
†
k,↑c

†
−k,↓

)

|0〉, (3.6)

WherePN projects onto the subspace ofN particles,PG is the Gutzwiller projec-

tor, which completely forbids doubly occupied sites, andfk is the pair amplitude

given by

fk =
∆k

ξk +
√

ξ2
k + ∆2

k

, (3.7)

with ∆k = ∆(cos kx − cos ky) , ξk = −2t(cos kx + cos ky) − µ, ∆ being a

variational parameter andµ the chemical potential.

The non-projected wave function (3.6) can be obtained as theground-state of

the mean-field Hamiltonian

HBCS =
∑

k

ξkc
†
k,σck,σ +

∑

k

∆k

[

c†k,↑c
†
−k,↓ + h.c.

]

. (3.8)

It is worth noting thatfk is highly singular for ad−wave superconducting order

parameter: it diverges along the diagonal directions forξk < 0, i.e. inside the

bare electronic Fermi surface. Therefore, it comes out thatthe wave function

(3.6) is ill-defined on every finite cluster containingk−points along the diagonal

direction. In order to avoid these singularities, it is useful to perform a particle-

hole transformation on down-spin

di = (−1)Ric†i,↓ (3.9)

ci = ci,↑ (3.10)
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whereRi is the lattice’s position of theith particle. After this transformation,

the average number of electronsN is related to the difference betweenc andd

particles as follows

N =
∑

i

(

〈c†i,↑ci,↑〉 + 〈c†i,↓ci,↓〉
)

= L +
∑

i

(

〈c†ici〉 − 〈d†
idi〉
)

, (3.11)

whereas the average magnetization is given by

M =
∑

i

(

〈c†i,↑ci,↑〉 − 〈c†i,↓ci,↓〉
)

= −L +
∑

i

(

〈c†ici〉 + 〈d†
idi〉
)

. (3.12)

After the particle-hole transformation, the wave function(3.6) can be written as

|ΨN
RV B〉 = P̃N P̃GΠk

(

ukd
†
k+Q + vkc

†
k

)

|0̃〉, (3.13)

whereP̃N and P̃G are the particle-hole transformed projectorsPN andPG, re-

spectively, whileQ = (π, π).

uk =

√

√

√

√

1

2

(

1 +
ξk

√

ξ2
k + ∆2

k

)

(3.14)

vk =
|∆k|

∆k

√

√

√

√

1

2

(

1 −
ξk

√

ξ2
k + ∆2

k

)

(3.15)

and |0̃〉 is the vacuum ofc andd particles, i.e.ck|0̃〉 = dk|0̃〉 = 0, defined by

|0̃〉 = Πkd
†
k|0〉. In this case the singular points are occupied by the particles. It is

worth noting that, if the magnetization is zero, the system is always at half-filling.

In order to improve this variational wave function, one can add to the wave

function (3.15) a density-density Jastrow factor [132]

Jd = exp

(

1

2

∑

i,j

uijninj

)

. (3.16)

Therefore, at the end the variational RVB projected wave function reads

|ΨRV B
V MC〉 = Jd|Ψ

N
RV B〉. (3.17)
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This wave function will be used in the following and represents the best non mag-

netic wave function at finite doping. In the next section, we will describe how to

introduce antifferromagnetism (AF) and obtain a very accurate wave function in

the low doping regime.

3.3.2 Improved variational wave function: PfaffianWF

Our improved variational ansatz is constructed by applyingdifferent projector

operators to a mean-field state:

|ΨPfaff
V MC 〉 = JsJdPNPG|ΨMF 〉, (3.18)

where,PG is the Gutzwiller projector that forbids double occupied sites,PN is the

projector onto the subspace with fixed number ofN particles,Js is a spin Jastrow

factor

Js = exp

(

1

2

∑

i,j

vijS
z
i S

z
j

)

, (3.19)

beingvij variational parameters, and finallyJd is a density Jastrow factor

Jd = exp

(

1

2

∑

i,j

uijninj

)

, (3.20)

beinguij other variational parameters. The above wave function can be efficiently

sampled by standard variational Monte Carlo, by employing arandom walk of a

configuration|x〉, defined by the electron positions and their spin components

along thez quantization axis. Indeed, in this case, both Jastrow termsare very

simple to compute since they only represent classical weights acting on the con-

figuration.

The main difference from previous approaches is the presence of the spin Jas-

trow factor and the choice of the mean-field state|ΨMF 〉, which includes both su-

perconducting and antiferromagnetic order parameters. Actually, |ΨMF 〉 is taken

as the ground state of the mean-field Hamiltonian

HMF =
∑

i,j,σ

ti,j

(

c†i,σcj,σ + h.c.
)

− µ
∑

i,σ

ni,σ

+
∑

〈i,j〉
∆i,j

(

c†i,↑c
†
j,↓ + c†j,↑c

†
i,↓ + h.c.

)

+ HAF , (3.21)
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where, in addition to the BCS pairing∆i,j (with d-wave symmetry), we also con-

sider a staggered magnetic field∆AF in thex−y plane:

HAF = ∆AF

∑

i

(−1)Ri

(

c†i,↑ci,↓ + c†i,↓ci,↑

)

, (3.22)

where∆AF is a variational parameter that, together with the chemicalpotentialµ

and the next-nearest-neighbor hopping of Eq. (3.21), can bedetermined by mini-

mizing the variational energy ofH (3.5). This kind of mean-field wave function

was first introduced by Bouchaud, Georges, and Lhuillier [133] and then used to

study 3He systems and small atoms and molecules [134, 135]. Recently,it has

been also used to study thet−J model on the triangular lattice [136]. However,

in these approaches the role of the long-range spin Jastrow factor was missed. We

emphasize that, in the mean-field Hamiltonian (3.21), the magnetic order param-

eter is in thex−y plane and not along thez direction like:

HAF = ∆AF

∑

i

(−1)Ri

(

c†i,↑ci,↑ − c†i,↓ci,↓

)

. (3.23)

Indeed, as already mentioned at the beginning of this chapter, only in the case of

Eq. (3.22), the presence of the spin Jastrow factor (3.19) can introduce relevant

fluctuations over the mean-field order parameter∆AF , leading to an accurate de-

scription of the spin properties. By contrast, if the Jastrow potential is applied to

the mean-field ansatz (3.23), it cannot induce correct spin fluctuations and it is not

efficient in lowering the energy.

Finally, as already shown in Ref. [96], the presence of the density Jastrow

factor helps to reproduce the charge correlations of the superconducting regime,

giving rise to the correct Goldstone modes.

The mean-filed Hamiltonian (3.21) is quadratic in the fermionic operators and

can be easily diagonalized in real space. Its ground state has the general form:

|ΨMF 〉 = exp





1

2

∑

i,j,σi,σj

f
σi,σj

i,j c†i,σi
c†j,σj



 |0〉, (3.24)

the pairing functionfσiσj

ij being an antisymmetric4L × 4L matrix, i.e. f
σi,σj

i,j =

−f
σj ,σi

j,i . Notice that in the case of the standard BCS Hamiltonian, with ∆AF = 0

or even with∆AF alongz, we have thatf ↑,↑
i,j = f ↓,↓

i,j = 0, while in presence of
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magnetic field in thex−y plane the pairing function acquires non-zero contribu-

tions also in this triplet channel. The technical difficultywhen dealing with such

a state is that, given a generic configuration with definitez-component of the spin

|x〉 = c†i1,σ1
. . . c†iN ,σN

|0〉, we have that:

〈x|ΨMF 〉 = Pf [F ] = Pf

(

f ↑,↑
ij f ↑,↓

ij

f ↓,↑
ij f ↓,↓

ij

)

, (3.25)

wherePf [F ] is the Pfaffian of the pairing function. See the Appendix, formore

technical details on the Pfaffian and how it is used for describe our new variational

wave function. It should be noticed that, wheneverf ↑,↑
i,j = f ↓,↓

i,j = 0, the usual form

of 〈x|ΨMF 〉 written in terms of a determinant is recovered.

The fact of dealing with Pfaffians makes the algorithm slowerthan the case of

determinants, but the important point is that the algebra ofPfaffians still allows us

to have a very efficient updating procedure in the Monte Carlocalculation. Then,

by using the minimization technique described in Ref. [102], we are able to deal

with a large number of variational parameters and in particular we can optimize

all the independent coefficientvij anduij , beside the parameters contained in the

mean-field Hamiltonian (3.21).

3.4 Results: Properties of the PfaffianWF and Phase

Separation

3.4.1 Half-filled case

The inclusion of the magnetic field and the spin Jastrow factor strongly improves

the energies with respect to the non-magnetic wave function. First we consider

the half-filled case of a 26-site cluster, where the FN isexact(within the error-

bars), i.e.,EFN/L = −1.184450(2) (in unit of J = 1) and also the variational

energy is very goodEV MC/L = −1.18213(1). On the other hand, although the

signs of the non-magnetic wave function are correct (with the choice ofti,j and

∆i,j connecting opposite sublattices andµ = 0), this state vanishes on many rele-

vant configurations. This implies that, due to the importance sampling procedure

described in the previous chapter, such configurations are never visited by the
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Markov process, leading toEFN/L = −1.1833(3), despite the fact that the vari-

ational energy is not so poorEV MC/L = −1.15334(1). We also notice that in

this case the FN is highly unstable and many walkers are needed to stabilize its

convergence.
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Figure 3.3: Results for the total spin〈S2〉 at half filling as a function of the clus-

ter sizeL for the wave function of Eq. (3.18) defined by the mean-field Hamilto-

nian (3.21) and the two possible orientations of the magnetic field, i.e., Eqs. (3.22),

indicated by “Pfaff”, and (3.23), indicated by “RVB+AF”. The FN results for the

former case are also shown.

It is important to stress that the concomitant presence of the magnetic order

parameter∆AF , that breaks theSU(2) spin symmetry of the electronic part, and

the spin Jastrow factor of Eq. (3.19), that also breaks the spin symmetry, gives

rise to an almost symmetric state, even for large sizes. Thiscan be verified by

calculating the total spinS2: In Fig. 3.3 we report the results for the two wave

functions with magnetic order in thex−y plane and along thez direction, usually
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considered to describe the half-filled case and the lightly doped region [74, 78].

In the same figure, we also report the FN value ofS2 (by using the former state as

the guiding function) in order to show that a totally symmetric state is eventually

recovered.
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Figure 3.4: Spin-spin correlations at the maximum distanceat half filling for the

wave functions of Fig. 3.3. The exact value in the thermodynamic limit is marked

by the arrow.

By a direct calculation of the spin-spin correlations at themaximum distance,

we obtain that also the value of the magnetization at half filling is in a very good

agreement with the exact result [104, 137], see Fig. 3.4. It should be noted that the

variational wave function with the magnetization in thex−y plane and the spin

Jastrow factor has very accurate isotropic spin-spin correlations, though in thez

direction they decay to zero in the thermodynamic limit. By performing the FN

approach (withγ = 0), a finite value for the correlations alongz is recovered. By

contrast, when the magnetization is directed alongz in the variational ansatz, the
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spin correlations are almost Ising-like in the same direction and lead to overesti-

mate the thermodynamic value of the magnetization, namelym ∼ 0.37, instead

of the well established value ofm ∼ 0.30, see Fig. 3.4.
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Figure 3.5: Spin structure factorS(q) at half filling for the variational wave func-

tion of Eq. (3.18) defined by the mean-field Hamiltonian of Eqs. (3.21) and (3.22)

with long-range and short-range (i.e., nearest-neighbor)Jastrow factors. Inset:

Detail for small momenta.

Finally, we want to stress that the long-range tail of the spin Jastrow factor,

obtained by minimizing the energy and leading tovq ∼ 1/|q| for small |q| (vq

being the Fourier transform ofvij), is necessary to correctly reproduce the small-q

behavior of the spin-structure factor

S(q) =
1

L

∑

l,m

eiq(Rl−Rm)Sz
l S

z
m. (3.26)

Indeed, as it is clear from Fig. 3.5, only with a long-range spin Jastrow factor, it

is possible to obtainS(q) ∼ |q| for small momenta and, therefore, a gapless spin
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Table 3.1: Ground state energy for2 holes on26 sites and different values ofJ/t.

Two wave function with and without∆AF are indicated with “Pfaff” and “RVB”,

respectively. The variational results are indicated by VMCand the Fixed-node

ones by FN. In the last two columns we report the extrapolatedvalue of Eq. (2.73)

with the Pfaffian wave function and exact results by Lanczos method, respectively.
J/t ERV B

V MC/L ERV B
FN /L EPfaff

V MC /L EPfaff
FN /L Ẽγ=0

Ψ0
/L Eex/L

0.3 -0.48334(1) -0.49256(1) -0.48476(1) -0.49325(1) -0.49445(2) -0.50097

0.4 -0.57664(1) -0.58625(1) -0.57978(1) -0.58770(1) -0.58881(2) -0.59452

0.5 -0.67045(1) -0.68091(1) -0.67568(1) -0.68327(1) -0.68434(3) -0.68945

0.6 -0.76463(1) -0.77645(1) -0.77228(1) -0.77960(1) -0.78062(3) -0.78537

0.8 -0.95410(1) -0.96920(1) -0.96706(1) -0.97414(1) -0.97505(3) -0.97935

1.0 -1.14483(1) -1.16385(1) -1.16352(1) -1.17052(1) -1.17136(2) -1.17538

spectrum. By contrast, with a short-range spin Jastrow term(for instance with a

nearest-neighbor term),S(q) ∼ const, for smallq, that is clearly not correct.

3.4.2 Doped region

In order to show the accuracy of the wave function (3.18) in the doped region,we

report in Table 4.1 and 3.2 the energies for2 and4 holes in26 sites compared with

the exact diagonalization data. In the same table we also show the results obtained

from the wave function without the antiferromagnetic orderparameter. Finally, we

report the values of the extrapolated energiesẼγ=0
Ψ0

given by Eq. (2.73). Also in

these doped cases, the inclusion of the magnetic field with the spin Jastrow term

substantially improves the accuracy of the non-magnetic wave function.

Let us move to the central issue of this chapter. In order to detect a possible

PS instability, it is convenient to follow the criterion given in Ref. [44], described

briefly at the beginning of this chapter, and consider the energy per hole:

eh(δ) =
e(δ) − e(0)

δ
, (3.27)

wheree(δ) is the energy per site at hole dopingδ ande(0) is its value at half filling.

For a stable system,eh(δ) must be a monotonically increasing function ofδ, since

in this case the energy is a convex function of the doping andeh(δ) represents the
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Table 3.2: The same as in Table 4.1 but for4 holes on26 sites.
J/t ERV B

V MC/L ERV B
FN /L EPfaff

V MC /L EPfaff
FN /L Ẽγ=0

Ψ0
/L Eex/L

0.3 -0.61372(1) -0.62752(1) -0.61478(1) -0.62754(1) -0.62958(3) -0.64262

0.4 -0.68894(1) -0.70101(1) -0.68946(1) -0.70106(1) -0.70292(2) -0.71437

0.5 -0.76461(1) -0.77571(1) -0.76512(1) -0.77595(1) -0.77770(4) -0.78812

0.6 -0.84065(1) -0.85132(1) -0.84170(1) -0.85189(1) -0.85348(3) -0.86337

0.8 -0.99361(1) -1.00476(1) -0.99709(1) -1.00659(1) -1.00806(2) -1.01733

1.0 -1.14760(1) -1.16072(1) -1.15479(1) -1.16422(1) -1.16566(3) -1.17493

chord joining half filling and the dopingδ. On the other hand, the PS instability is

marked by a minimum at a givenδc on finite clusters, and a flat behavior up toδc

in the thermodynamic limit where the Maxwell construction is implied.

Firstly, Fig. 3.6 shows the results ofeh(δ) for different ratiosJ/t on the 26-site

cluster, where the exact data are available by the Lanczos method. Although these

data are already contained in tables 4.1 and 3.2, their graphical representation bet-

ter shows our accuracy to estimate the slope of the energy perhole. In particular,

we stress the fact that, even though already the variationalresults of the wave

function (3.18) are very accurate, there is a strong improvement by considering

the FN approach, both in the mixed average of Eq. (2.69) and inthe extrapolation

of Eq. (2.73), for which a perfect estimation of the slope is obtained.

Then we can move to large cluster to extract the thermodynamic properties.

We report in Fig. 3.7 the results of the energy per hole forJ/t = 0.4. For compar-

ison, the FN calculations forγ = 0 are performed by using two different guiding

functions, including or not the antiferromagnetic order parameter and the spin

Jastrow factor. At large doping the results are independenton the choice of the

guiding state, clearly indicating that the antiferromagnetism is not essential in that

region. However, by decreasing the hole concentration, theinclusion of the an-

tiferromagnetic order becomes crucial for the stabilization of the homogeneous

phase, whereas the simple projected BCS state is eventuallyunstable at small

doping. This latter outcome actually is in agreement with our previous calcula-

tions [121] and confirms what has been noticed by Hellberg andManousakis [123]

and interpreted as an evidence for PS close to the insulatinglimit.

By contrast, our present FN results, based on the wave function with antifer-
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Figure 3.6: Energy per holeeh(δ) as a function of the dopingδ for the 26-site

cluster calculated by different approaches: The variational calculations for the

Pfaffian wave function (circles), the FN approach of Eq. (2.69) (squares), and the

expectation value of the Hamiltonian over the FN ground state given by Eq. (2.73)

(triangles); the exact results are also shown (diamonds).

romagnetic fluctuations, strongly improve the accuracy of previous calculations

for small doping and point towards the stability of the homogeneous phase for

all hole concentrations. Quite impressively, the energiesare very accurate on the

whole doping regime analyzed and there is not a qualitative difference if one con-

siders the expectation value of the Hamiltonian (2.73), seeFig 3.7. These results

indicate that the ground state is stable for all the hole concentrations, namely

down toδ ∼ 0.01 (i.e., two holes on 242 sites). Remarkably, also the variational

wave function is stable for such value of the super-exchangeinteraction and small
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Figure 3.7: Energy per holeeh(δ) as a function of the dopingδ for J/t = 0.4

and different sizes. The results are obtained by using the FNapproach described

in the text. Two different states are used as guiding function: The simple non-

magnetic state, denoted by “RVB” and the state with pairing,antiferromagnetism

in thex−y plane, and the spin Jastrow factor, denoted by “Pfaff”. The expectation

value of the Hamiltonian over the FN ground state are also shown for L = 162 for

the latter case. Inset: Variational results ofeh(δ) for the Pfaffian wave function.

hole concentrations, see the inset of Fig 3.7. To our knowledge, this is the first

successful attempt to obtain a variational state which is clearly stable towards the

formation of regions with segregated holes, when approaching the Mott insulating

regime.

From the energy calculation it is straightforward to estimate the compressibil-
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Figure 3.8: The inverse compressibility of the half-filled Mott insulator forJ/t =

0.4 calculated by extracting the second derivative of the polynomial fit of the FN

energy. Inset: The chemical potential, defined through the difference of ground-

state energies, as a function of the doping for different sizes of the cluster.

ity χ for δ → 0:

χ−1 =
∂2e(δ)

∂δ2
. (3.28)

Recently, Imada and coworkers [138, 139], by using hyper-scaling arguments and

numerical simulations on the Hubbard model, proposed that the compressibility

must diverge when the insulating phase is approached by decreasing the doping

concentration. Their arguments imply thate(δ) ∼ δ3 for small doping, as in the

one-dimensional case, where the charge properties can be simply understood by

considering spinless fermions. Instead, within our FN approach, we find that the
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compressibility stays finite up to half filling. Indeed, forJ/t = 0.4 and in general

for the stable magnetic phase, the variational calculationprovides a finite com-

pressibility that is further decreased by the more accurateFN approximation. It

should be noticed that a much larger compressibility, or even an infinite one, could

be worked out when considering only small size calculations, like the ones used

in Ref. [138] to obtainχ ∼ |µ− µc|−1/2 ∼ δ−1 (whereµ is the chemical potential

andµc is nothing but the charge gap at half filling): In this case, itis possible

to underestimate the slope of the energy at small doping and,therefore, also to

overestimate the value ofχ. Instead, from our large cluster calculations, we have

a clear evidence that the chemical potential is linear with the doping close to half

filling or, equivalently, thate(δ) ∼ δ2, implying a finite compressibility when

δ → 0, see Fig. 3.8. Our calculations are rather robust and do not depend upon

the number of holes considered and a very accurate polynomial fit of the energy

turns out to be very stable. We argue that the infinite compressibility scenario

proposed by Imada and coworkers could be correct when the antiferromagnetism

does not play an important role and the undoped system is a spin liquid with no

magnetic order. This is also supported by dynamical mean-field theory calcula-

tions by Kotliar and coworkers [140] on the Hubbard model, where the mean-field

solution without an antiferromagnetic order parameter leads to a diverging com-

pressibility close to the Mott regime.

By increasing the antiferromagnetic super-exchange, we come closer to the

PS region. Indeed, forJ/t = 0.6 we obtain that the energy per holeeh(δ) shows

a slightly non-monotonic behavior with a minimum forδc ∼ 0.17, when consid-

ering the FN energies. This minimum disappears by performing the extrapolation

of Eq. (2.73) to estimate the expectation value of thet−J Hamiltonian over the

FN ground state, see Fig. 3.9. This fact would indicate that,for this value ofJ/t,

the FN Hamiltonian (2.67) has an higher tendency towards PS than the original

t−J model. In this case, the mixed average of Eq. (2.69) is slightly biased, and

this bias can be eliminated by considering the actual expectation value of thet−J

Hamiltonian over the FN ground state. In doing this, we approach the exact re-

sult (by improving the energy) and an homogeneous phase, with a monotonically

increasing energy per hole, is obtained. Within this more accurate scheme, we

substantially improve previous results which were based onthe mixed average of

the FN approximation and indicated a rather high critical doping [121]. Unfortu-
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Figure 3.9: The same as in Fig. 3.7 forJ/t = 0.6.

nately, within our numerical approach, it is very difficult to study the possible for-

mation of hole droplets close to the PS instability, as suggested by Poilblanc [141].

Indeed, this would require a very delicate size scaling of the binding energy of few

holes, which is beyond our present possibilities.

By further increasing the super-exchange coupling, we eventually enter into

the PS region: ForJ/t = 0.8, the energy per hole has a rather deep minimum

at finite doping and also the expectation value (2.73) clearly indicates a non-

monotonic behavior, see Fig. 3.10.

Finally, it is important to stress that very similar resultscan be also obtained

by considering the density-density correlation function

N(q) =
1

L

∑

l,m

eiq(Rl−Rm)nlnm. (3.29)
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Figure 3.10: The same as in Fig. 3.7 forJ/t = 0.8.

In this case, sinceN(q) is a diagonal operator in the configuration space, it is

easy to compute its average value over the FN ground state by using the so-called

forward-walking technique [104]. This quantity is therefore free from possible

bias coming from mixed averages. The PS instability is signaled by the diver-

gence at small momenta ofN(q). In a previous paper of Calandra, Becca and

Sorella [121], was reported the calculations of this quantity, showing the presence

of a finite-q peak, linearly depending upon the doping, close to the PS instability.

Here, thanks to the accuracy of the guiding function and the progress in stabi-

lizing the statistical implementation of the FN technique,we are able to present

much more accurate results that confirm the previous ones. Indeed, the existence

of this peak is due to the closeness of the PS: Figs. 3.11 and 3.12 show the evo-

lution of N(q) by increasingJ/t for two values of the doping, near the insulating
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Figure 3.11: FN results for the density correlation function for 8 holes on162 sites

and different values ofJ/t. The high-symmetry points are marked asΓ = (0, 0),

X = (π, π), andM = (π, 0).

regime. In particular, we obtain the evidence for a stable homogeneous phase for

J/t ∼ 0.4, confirming the indications given by the analysis based uponthe energy

per hole. Then also the progressive development of a huge peak aroundq = (0, 0)

for J/t ∼ 0.7 is in good agreement with the energy calculations.

All together, these results allow us to draw our final phase diagram of Fig. 3.13,

where we report, for comparison, also some of the previous estimations for the PS

boundaries.
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Figure 3.12: The same as in Fig. 3.11 but for16 holes on162 sites.

3.5 Conclusion

We have revisited the problem of the PS instability in thet−J model. By gen-

eralizing the Pfaffian wave function introduced some time ago [133], we have

defined a very accurate variational state that, for the first one to our knowledge,

is stable against PS at low doping. In particular, we have shown the necessity

to consider both an antiferromagnetic order parameter (in the fermionic determi-

nant) and a spin Jastrow factor, to mimic the spin fluctuations. In this way all the

low-energy properties of the exact ground state are correctly reproduced. Then,

by using a more sophisticated Monte Carlo technique that canfilter out the high-

energy components of a given trial wave function, we can obtain the ground state
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Figure 3.13: Boundary for the phase separation (PS) instability. The results of

previous works are also shown for comparison. The line is a guide to the eye.

of an effective Hamiltonian and, at the same time, assess thestability of our initial

guess. So, we have shown that forJ/t = 0.4, the ground state does not phase

separate at any hole doping down toδ ∼ 0.01, giving a serious improvement on

the possible PS boundaries at smallJ/t. Remarkably, the analysis based on the

energy per hole is also corroborated by the calculation of the static density-density

correlations. The phase separation, in the low doping region, appears at a criti-

cal antiferromagnetic coupling slightly larger than the value given in Ref. [121],

namely here we findJc/t ∼ 0.7. Although future improvements in the Monte

Carlo technique or in the accuracy of the variational wave function may lead to

an higher coupling, it looks unlikely to reach the critical point recently obtained

by high-temperature expansion, i.e.,Jc/t ∼ 1.2 [117, 122]. In fact, as shown in

Fig. 3.6, our present accuracy in the energy per hole is about0.05t and its slope is

almost correct. This holds rather independently ofJ/t and system sizes, at least
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for the clusters where exact results are available. ForJ/t = 0.8 (see Fig. 3.10), the

minimum of the energy per hole implies an energy gain for the inhomogeneous

phase of about0.05t per hole, i.e., comparable with our maximum possible error

estimated before. Thus we expect thatJc/t cannot be much larger than0.8 even

for a numerically exact method.

Moreover, we do not expect that different variational wave functions (used as

guiding states for the FN approach) can strongly modify our results. Indeed, for

the simplet−J model of Eq. (3.5) there are strong evidences that, forδ . 0.4 and

J/t between0.2 and0.7, the best variational state is given by projecting a state

with electron pairing (and possibly a finite antiferromagnetic order). Different

choices for the wave function, containing for instance flux phases or stripes, have

higher energies and they become competitive only when additional interactions,

like a next-nearest-neighbor Coulomb repulsion, or different topologies of the

Fermi surface are considered in the microscopic Hamiltonian [125, 142, 143].

Finally, we have obtained that, in contrast with what was found in the Hub-

bard model, the compressibility stays finite by approachingthe Mott insulator.

A simple explanation of a finite compressibility in two dimensions is obtained

by assuming that the holes form hole pockets around the nodalpoints [i.e.,q =

(±π/2,±π/2)] and behave as spinless fermions, implying thate(δ) ≃ δ1+2/D,

whereD is the spatial dimension. In this simple scenario the compressibility is

divergent only in one dimension, whereas it is finite in two dimensions, and should

approach zero in three dimensions, leading to a more conventional metal-insulator

transition.

The stability against phase separation of a wave function with explicit antifer-

romagnetism and d-wave superconducting order parameter provides new insight

for understanding the phase diagram of the high-temperature superconductors.

Remarkably, in the clean system, possibly idealized by thet−J model, the an-

tiferromagnetism and the d-wave order parameter should notexclude each other,

at least at the variational level, and actually cooperate todecrease the energy and

lead to a stable homogeneous phase.



Chapter 4

Magnetism and superconductivity in

the t−t′−J

4.1 Introduction

As already discussed in the first chapter, after more than twenty years from the dis-

covery of high-temperature superconductivity, a comprehensive description of the

cuprate materials is still lacking. One of the main concern is about the origin of the

electron pairing, namely if it is due to electron-phonon coupling, like in the stan-

dard theory by Bardeen, Cooper and Schrieffer (BCS) [2], or it can be explained

by alternative mechanisms, based on the electronic interaction alone. From one

side, though the isotope effect in cuprates (if any) is much smaller than the one

observed in BCS superconductors, there are experiments suggesting a strong cou-

pling between electrons and localized lattice vibrations [144, 145]. On the other

side, besides a clear experimental outcome showing unusualbehaviors in both

metallic and superconducting phases, there is an increasing theoretical evidence

that purely electronic models can indeed sustain a robust pairing, possibly leading

to a high critical temperature [96, 146, 147]. Within the latter scenario, the mini-

mal microscopic model to describe the low-energy physics has been proposed to

be the Hubbard model or its strong-coupling limit, namely the t−J model, which

includes an antiferromagnetic coupling between localizedspins and a kinetic term

for the hole motion [57, 58]. Anderson proposed that electron pairing could nat-

urally emerge from doping a Mott insulator, described by a resonating valence
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bond (RVB) state, where the spins are coupled together forming a liquid of sin-

glets [57]. Indeed, subsequent numerical calculations forthe t−J model [68],

showed that, though the corresponding Mott insulator (described by the Heisen-

berg model) has magnetic order, the RVB wave function with d-wave symmetry

in the electron pairing can be stabilized in a huge region of doping close to the

half-filled insulator. These calculations have been improved by studying the ac-

curacy of such a variational state, giving solid and convincing arguments for the

existence of a superconducting phase in thet−J model [96]. However, other nu-

merical techniques, like Density Matrix Renormalization Group, provided some

evidence that charge inhomogeneities can occur at particular filling concentra-

tions. These stripes are probably enhanced by the strong anisotropic boundary

conditions used in this approach [50, 125, 126].

Coming back to the projected RVB wave function, it is worth mentioning that

an approximate and simplified picture can be obtained by the renormalized mean-

field theory (RMFT), the so-called “plain vanilla” approach[148]. When this

approach is applied to thet − J model, it is possible to describe many unusual

properties of the high-temperature superconductors and capture the most impor-

tant aspects of the cuprate phase diagram1.

However, at present, most of the calculations have been doneby neglecting an-

tiferromagnetic correlations, that are definitively important at low doping. Within

RMFT and most of the variational calculations, the magneticcorrelations are

omitted, implying a spin liquid (disordered) state in the insulating regime. Al-

though antiferromagnetism can be easily introduced in bothapproaches, it is of-

ten not satisfactorily described, since the presence of an antiferromagnetic order

parameter in the fermionic determinant implies a wrong behavior of the spin prop-

erties at small momenta [78, 149], unless a spin Jastrow factor is used to describe

the corresponding spin-wave fluctuations. Indeed, it is nowwell known that the

accurate correlated description of an ordered state is obtained by applying a long-

range spin Jastrow factor to a state with magnetic order [97,99, 127]. The impor-

tant point is that the Gaussian fluctuations induced by the Jastrow term must be

orthogonal to the direction of the order parameter, in orderto reproduce correctly

1For a recent review on the RMFT and variational Monte Carlo based on the RVB wave func-

tion, see for instance, B. Edegger, V.N. Muthukumar, and C. Gros, to be published in Advances in

Physics.
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the low-energy spin-wave excitations. Moreover, by generalizing the variational

wave function to consider Pfaffians instead of simple determinants [7, 133], it is

possible to consider both electron pairing and magnetic order, that are definitively

important to determine the phase diagram of thet−J model.

The interplay between superconductivity and magnetism is the subject of an

intense investigation in the recent years. In most of the thermodynamic measure-

ments these two kinds of order do not coexist, though elasticneutron scattering

experiments for underdopedYBa2Cu3Ox could suggest a possible coexistence,

with a small staggered magnetization [150–152].

On the contrary, in thet−J model, there is an evidence in favor of a coex-

istence [96], the antiferromagnetic order surviving up to arelatively large hole

doping, i.e.,δ ∼ 0.1 for J/t = 0.2 [7]. Therefore, the regime of magnetic order

predicted by these calculations extend to much larger doping than the experimen-

tal results and also the robustness of the coexistence of superconductivity and

antiferromagnetism seems to be inconsistent with the experimental outcome. Of

course, disorder effects, which are expected to be important especially in the un-

derdoped region, would affect the general phase diagram [28]. However, without

invoking disorder, one is also interested to understand if alternative ingredients

can modify the phase diagram of the simplet−J model. For instance, band struc-

ture calculations support the presence of a sizable second-neighbor hoppingt′ in

cuprate materials, showing a possible connection between the value of the highest

critical temperature and the ratiot′/t. [153] Moreover, an experimental analysis

suggests an influence of the value oft′/t on the pseudogap energy scale [154].

From a theoretical point of view, the effect oft′ is still not completely elucidated,

though there are different calculations providing evidence that a finitet′ could sup-

press superconductivity in the low-doping regime [143, 155–159]. On the other

hand, recent Monte Carlo calculations suggest that the presence oft′ (as well as

a third-neighbor hoppingt′′) could induce an enhancement of pairing in optimal

and overdoped regions [158, 159].

In this chapter, we want to examine the problem of the interplay between mag-

netism and superconductivity in thet−J model and its extension including a next-

nearest-neighbor hoppingt′ by using improved variational and Green’s function

Monte Carlo (GFMC) techniques. Indeed, especially the latter approach has been

demonstrated to be very efficient in projecting out a very accurate approximation
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of the exact ground state and, therefore, can give useful insight into this important

issue related to high-temperature superconductivity.

4.2 Model and Method

In this section, we introduce the basic notations for thet−t′−J model and for the

techniques used to obtain our numerical results. First of all, we give the definition

of the model and next we briefly describe the GFMC method within the fixed-node

approximation, that is used to work out the main results of this chapter.

We consider thet−t′−J model on a two-dimensional square lattice withL

sites and periodic boundary conditions on both directions:

H = J
∑

〈i,j〉

(

Si · Sj −
1

4
ninj

)

− t
∑

〈i,j〉σ
c†i,σcj,σ − t′

∑

〈〈k,l〉〉σ
c†k,σcl,σ + h.c. (4.1)

where〈. . . 〉 indicates the nearest-neighbor sites,〈〈. . . 〉〉 the next-nearest-neighbor

sites, c†i,σ (ci,σ) creates (destroys) an electron with spinσ on the sitei, Si =

(Sx
i , Sy

i , S
z
i ) is the spin operator,Sα

i =
∑

σ,σ′ c
†
i,στ

α
σ,σ′ci,σ′ , being τα the Pauli

matrices, andni =
∑

σ c†i,σci,σ is the local density operator. In the following, we

sett = 1 and considert′ = 0 andt′/t = −0.2. Moreover, we consider two kinds

of square clusters: Standard clusters withL = l × l sites and45◦ tilted lattices

with L = 2 × l2 sites. Besides translational symmetries, both of them haveall

reflection and rotational symmetries.

The variational wave function that we used, is the one definedin the previous

chapter by:

|ΨPfaff
V MC 〉 = JsJdPNPG|ΦMF 〉, (4.2)

wherePG is the Gutzwiller projector that forbids double occupied sites,PN is the

projector onto the subspace with fixed number ofN particles,Js is a spin Jastrow

factor(3.19), and finallyJd is a density Jastrow factor(3.20).

As explained in the second chapter, the above wave function can be efficiently

sampled by standard variational Monte Carlo, by employing arandom walk of
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a configuration|x〉, defined by the electron positions and their spin components

along thez quantization axis. Indeed, in this case, both Jastrow termsare very

simple to compute, since they only represent classical weights acting on the con-

figuration.

As reported in the previous chapter, the main difference from previous ap-

proaches is the presence of the spin Jastrow factor and the choice of the mean-

field state|ΦMF 〉, defined as the ground state of the mean-field Hamiltonian(3.21),

where we include both BCS pairing∆i,j [with d-wave symmetry, i.e., for nearest-

neighbor sites∆k = ∆(cos kx − cos ky)] and staggered magnetic field in thex−y

plane(3.22) where∆AF is a variational parameter that, together with the chemi-

cal potentialµ and the next-nearest-neighbor hopping of Eq. (3.21), can bedeter-

mined by minimizing the variational energy ofH. As seen in the previous chapter,

whenever both∆ and∆AF are finite, the mean-field state|ΦMF 〉 can be described

in terms of Pfaffians, instead if∆ = 0 or ∆AF = 0 it can be described by us-

ing determinants. Moreover, only in the case where the magnetic order parameter

is in thex−y plane, the presence of the spin Jastrow factor (3.19) can introduce

relevant fluctuations over the mean-field order parameter∆AF , leading to an ac-

curate description of the spin properties. The variationalparameters contained in

the mean-field Hamiltonian (3.21) and in the Jastrow factors(3.19) and (3.20) are

calculated by using the optimization technique described in Refs. [160, 161], that

make it possible to handle with a rather large number of variational parameters.

The optimized variational wave function|ΨPfaff
V MC 〉 can be also used asguiding

function within the GFMC method to filter out an approximation of the ground

state|ΨFN
0 〉. Indeed, due to the presence of the fermionic sign problem, in order

to have a stable numerical calculation, the GFMC must be implemented within the

fixed-node (FN) approach, that imposes to|ΨFN
0 〉 to have the same nodal structure

of the variational ansatz [105]. We have seen in the second chapter the basic

definitions of the standard FN method. Here, we just recall some basic definitions

that can be useful in the following.

Since|ΨFN
0 〉 is an exact eigenstate of the effective HamiltonianHeff (2.67),

the corresponding ground-state energy can be evaluated efficiently by computing

EMA =
〈ΨV MC |Heff |ΨFN

0 〉

〈ΨV MC |ΨFN
0 〉

, (4.3)

namely the statistical average of the local energyeL(x) = 〈ΨV MC |H|x〉/〈ΨV MC |x〉
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over the distributionΠx ∝ 〈x|ΨV MC〉〈x|ΨFN
0 〉. The mixed average (MA) quan-

tity EMA ≤ EV MC because, by the variational principle

EMA ≤
〈ΨV MC |Heff |ΨV MC〉

〈ΨV MC |ΨV MC〉
= EV MC . (4.4)

Moreover,EMA represents an upper bound of the expectation valueEFN of H

over|ΨFN
0 〉 [105]. In the following, we will denote by FN the (variational) results

obtained by using the GFMC method with fixed-node approximation, whereas

the standard variational Monte Carlo results obtained by considering the wave

function of Eq. (3.18) will be denoted by VMC.

Summarizing, the FN approach is a more general and powerful variational

method than the straightforward variational Monte Carlo. Within the FN method,

the wave function|ΨFN
0 〉, the ground state ofHeff is known only statistically,

and, just as in the variational approach,EFN depends explicitly on the variational

parameters defining the guiding function|ΨV MC〉. The main advantage of the FN

approach is that it provides the exact ground-state wave function for the undoped

insulator (where the signs of the exact ground state are known), and therefore it

is expected to be particularly accurate in the important low-doping region. More-

over, the FN method is known to be very efficient in various cases: For instance,

it has allowed to obtain a basically exact description of thethree-dimensional sys-

tem of electrons interacting through the realistic Coulombpotential (in presence

of a uniform positive background) [162]. Therefore, it represent a very powerful

tool to describe the electron correlation in electronic systems.

4.3 Results

4.3.1 Phase separation

Before showing the results on magnetic and superconductingproperties, we briefly

discuss the stability against phase separation. In order todetect a possible phase

separation, it is very useful to follow the criterion given in the previous chapter

and in Ref. [44] and consider the energy per hole:

eh(δ) =
e(δ) − e(0)

δ
, (4.5)
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Figure 4.1: Energy per holeeh(δ), calculated by using the FN method, as a func-

tion of the dopingδ for L = 98 and 162 and two values of the next-nearest-

neighbor hoppingt′/t = 0 and−0.2.

wheree(δ) is the energy per site at hole dopingδ and e(0) is its value at half

filling. In practice,eh(δ) represents the chord joining the energy per site at half

filling and the one at dopingδ. For a stable system,eh(δ) must be a monotonically

increasing function ofδ, implying that energy is a convex function of the doping.

By contrast, the phase separation instability is marked by aminimum at a givenδc

on finite clusters, and a flat behavior up toδc in the thermodynamic limit where the

Maxwell construction is implied. In the previous chapter, we demonstrated exis-

tence of an homogeneous state fort′ = 0 andJ/t . 0.7. As shown in Table 4.1,

the FN approximation, that is exact at zero doping [7], provides a substantial low-

ering of the VMC energy, especially away from half filling andfor a finitet′. This

is a first indication that the simple variational approach could not be adequate to
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Table 4.1: Variational (VMC) and fixed-node (FN) energies per site forJ/t = 0.2

andt′ = 0 (third and fourth columns), andt′/t = −0.2 (fifth and sixth columns)

for two clusters withL = 98 and162 and different hole concentrationsNh =

L − N
L Nh EV MC/L EFN/L EV MC/L EFN/L

98 0 -0.233879(1) -0.23432(1) -0.233879(1) -0.23432(1)

98 2 -0.274144(5) -0.27752(1) -0.27290(1) -0.27808(1)

98 4 -0.31429(1) -0.32053(1) -0.31189(1) -0.32123(1)

98 6 -0.35482(1) -0.36328(1) -0.35132(1) -0.36405(1)

98 8 -0.39550(1) -0.40563(2) -0.39028(1) -0.40575(1)

98 10 -0.43581(1) -0.44728(2) -0.42814(1) -0.44561(1)

162 0 -0.233707(1) -0.23409(1) -0.233707(1) -0.23409(1)

162 2 -0.258002(5) -0.26020(1) -0.257260(5) -0.26012(1)

162 4 -0.282117(5) -0.28621(1) -0.28067(1) -0.28698(1)

162 6 -0.306324(5) -0.31212(1) -0.30429(1) -0.31307(1)

162 8 -0.33060(1) -0.33793(1) -0.32807(1) -0.33925(2)

162 10 -0.35498(1) -0.36360(2) -0.35207(1) -0.36514(2)

162 12 -0.37954(1) -0.38912(2) -0.37567(1) -0.39079(2)

162 14 -0.40406(1) -0.41446(2) -0.39939(1) -0.41520(2)

162 16 -0.42838(1) -0.43946(2) -0.42232(1) -0.43936(2)

provide a reliable quantitative description of the ground-state properties.

The FN results clearly indicate that the inclusion of a negative next-nearest-

neighbor hopping contributes to further stabilize the homogeneous phase at finite

doping, see Fig. 4.1. This result is compatible with the outcome of recent calcula-

tions based on cluster dynamical mean-field theory on the Hubbard model, where

a negative ratiot′/t enhances the stability of the homogeneous phase, whereas

positive values oft′ favor phase separation [163]. Here, we do not want to address

in much detail this issue and we will focus our attention on the more interesting

magnetic and superconducting properties.
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4.3.2 Antiferromagnetic properties

Here we present the results for the magnetic properties of the t−t′−J model

and compare the FN approach with the VMC one, based upon the wave func-

tion (3.18). As already discussed in the previous chapter, the optimized wave

function (3.18) breaks the SU(2) spin symmetry, because of the magnetic order

parameter∆AF of Eq. (3.22) and the spin Jastrow factor (3.19). It turns outthat

at half-filling and in the low-doping regime, the variational state (3.18) has an an-

tiferromagnetic order in thex−y plane, whereas the spin-spin correlations in the

z axis decay very rapidly. Therefore, in order to assess the magnetic order at the

variational level, we have to consider the isotropic spin-spin correlations:

〈S0 · Sr〉 =
〈ΨV MC |S0 · Sr|ΨV MC〉

〈ΨV MC |ΨV MC〉
. (4.6)

The FN approach alleviates the anisotropy between thex−y plane and thez

axis; in this case, we find that a rather accurate (and much less computational

expensive) way to estimate of the magnetic moment can be obtained from thez

component of the spin-spin correlations:

〈Sz
0S

z
r 〉 =

〈ΨFN
0 |Sz

0S
z
r |Ψ

FN
0 〉

〈ΨFN
0 |ΨFN

0 〉
, (4.7)

that, since the operatorSz
0S

z
r is diagonal in the basis used in the Monte Carlo

sampling, can be easily computed within the forward-walking technique [104].

From the spin-spin correlations at the maximum distance, itis possible to

extract the value of the magnetization. In particular, for the variational wave

function, that is not a singlet when the antiferromagnetic order sets in,M =

limr→∞
√

〈S0 · Sr〉, whereas for the FN one, the magnetization can be estimated

by M = limr→∞
√

3〈Sz
0S

z
r 〉. The spin isotropy of the FN wave function can be

checked by explicitly computing the mixed-average of the total spin square

〈S2〉MA =
〈ΨV MC |S2|ΨFN

0 〉

〈ΨV MC |ΨFN
0 〉

, (4.8)

that vanishes if|ΨFN
0 〉 is a perfect singlet, even if|ΨV MC〉 has not a definite value

of the spin.

In Fig. 4.2 we report the results of the magnetization in thet−J model with

J/t = 0.2 and0.4. At finite doping, it is not possible to perform a precise size
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Figure 4.2: Magnetization obtained from the spin-spin correlations at the maxi-

mum distance calculated for thet−J model withJ/t = 0.2 (upper panel) and

J/t = 0.4 (lower panel). For the VMC calculations the error-bars are smaller than

the symbol sizes. The VMC magnetization has been obtained from the isotropic

correlations, whereas the FN one from the correlations along thez axis (see text).

scaling extrapolation since it is very rare to obtain the same doping concentration

for different cluster sizes. Moreover, though the FN approach is able to recover

an exact singlet state at half filling,〈S2〉MA increases by doping, reaching its

maximum aroundδ ∼ 0.06, e.g.,〈S2〉MA ∼ 1 for 8 holes on162 sites. This could

explain that, especially forJ/t = 0.2, the FN results are a bit larger than the VMC

ones forδ ∼ 0.06. Definitively, close to the transition point, where the mean-

field order parameter∆AF goes to zero (together with the parameters defining

the spin Jastrow factor), both the VMC and FN wave functions are almost spin

singlets. Therefore, we are rather confident in the estimation of the critical doping
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δc, where long-range antiferromagnetic order disappears. Inparticular, we find

δc = 0.10± 0.01 andδc = 0.13± 0.02 for J/t = 0.2 andJ/t = 0.4, respectively.
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Figure 4.3: Static spin structure factorS(q) for L = 16 × 16 cluster and different

hole concentrations for thet−J model withJ/t = 0.2. Γ = (0, 0), X = (π, π),

andM = (π, 0). Inset:S(q) for the variational state (empty symbols) and for the

FN approximation (full symbols).

At low doping, we have evidence that long-range order is always commen-

surate, with a (diverging) peak atX = (π, π) in the static spin structure factor,

defined as

S(q) =
1

L

∑

l,m

eiq(Rl−Rm)Sz
l S

z
m. (4.9)
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Figure 4.4: Spin structure factorS(q) for the t−J with J/t = 0.2 and doping

δ = 1/8 and different clusters (L = 8 × 8, 12 × 12, 16 × 16, and20 × 20). The

case of the Hubbard model atU/t = 4 andL = 16 × 16 is also reported for

comparison. Inset: Size scaling of the peak as a function of1/L.

This outcome is clear for all kinds of cluster considered, namely both for standard

l × l and45◦ tilted lattices. By contrast, close to the critical doping,we have

the indication that some incommensurate peaks develop. Remarkably, we do not

find any strong doping dependence of the peak positions. We show the results of

S(q) for the16 × 16 cluster andJ/t = 0.2 in Fig. 4.3, where the evolution of the

peak as a function of the dopingδ is reported. By increasing the hole doping, the

commensurate peak atX reduces its intensity and eventually shifts to a different

k-point, i.e.,(π, π − 2π/L). This is a genuine effect of the FN projection, since
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the variational wave function always shows commensurate correlations, see inset

of Fig. 4.3. Moreover, this feature can be obtained only whenthe BCS parameter

is considered, a FN calculation with a fully projected free-electron determinant

cannot reproduce an incommensurate peak inS(q) (see Fig. 4.5).Interestingly,

for all the cluster sizes we considered, i.e., up toL = 20 × 20, the peak always

appears at(π, π − 2π/L), namely the closest k-point toX along the border of the

Brillouin zone. This indicates that, in the thermodynamic limit, the peak should be

located very close toX and it is not compatible with(π, π−2πδ), found in cuprate

materials [48]. As one can see from Fig. 4.6 and Fig. 4.7, the above mentioned

peak, besides to be quite independent from doping, is also qualitatively indepen-

dent from the presence of thet′ term, which frustrates the antiferromagnetic order

of the system.
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Figure 4.5: Static spin structure factorS(q), calculated with a BCS wave function

(Left panel) and with a free-electron wave function (Right panel).
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Figure 4.6: Static spin structure factorS(q) for thet−J model on theL = 12×12

cluster withJ/t = 0.2.

Although size scaling extrapolations are not possible for ageneric hole doping,

we do not have evidence that the incommensurate peak diverges in the thermody-

namic limit, implying no incommensurate long-range order at finite doping con-

centrations. Nevertheless, once the commensurate magnetic order is melted, the

ground state is characterized by short-range incommensurate spin correlations. In

Fig. 4.4, we show the results forJ/t = 0.2 andδ = 1/8, where different clusters

with the same doping are available. Interestingly, the position of the incommen-

surate peak is the same as the one found in the Hubbard model atU/t = 4 (where

our FN results correctly reproduce the previous data reported in Ref. [164] on the

10 × 10 lattice), though its intensity is much more reduced compared to the case

of the t−J model. This fact suggests that the peak is not related to the strong

coupling limit.
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Figure 4.7: The same as Fig.4.6 for thet−t′−J model withJ/t = 0.2 andt′/t =

−0.2.

Coming back to the commensurate magnetic order close to half-filling, we

stress that the puret−J model shows robust antiferromagnetic correlations, with a

critical doping much larger than the one observed in the hole-doped cuprates mate-

rials, where the long-range order disappears atδc ∼ 0.05 [48]. This smaller value

of the critical doping cannot be explained by reducing the antiferromagnetic super-

exchangeJ , given the fact that, by changingJ/t from 0.4 to 0.2, the variation of

δc is smaller that30%. Besides disorder effects that can be important in the un-

derdoped regime [28], one important ingredient to be considered in a microscopic

model is the next-nearest-neighbor hopping, that was shownto have remarkable

effects on both magnetic and superconducting properties [155, 156, 158, 159].

In particular, in spite exact diagonalization calculations suggest a suppression of
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antiferromagnetic correlations for negativet′/t [155], more recent Monte Carlo

simulations (also including a further third-neighbor hopping t′′) do not confirm

these results, pointing instead toward a suppression of superconducting correla-

tions [159].
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Figure 4.8: The same as in Fig. 4.2 for thet−t′−J model withJ/t = 0.2 and

t′/t = −0.2. For the VMC calculations the error-bars are smaller than the symbol

sizes. The dashed line indicates a tentative estimation forthe thermodynamic

limit.

In Fig. 4.8, we report the magnetization forJ/t = 0.2 andt′/t = −0.2. The

first outcome is that the VMC results, though pretty renormalized with respect

to the caset′ = 0, present a critical dopingδc very similar to the one found

for the puret−J model. By contrast, the FN approach strongly suppresses the

spin-spin correlations, even very close to half filling. In this case, the FN results
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have rather large size effects, that prevent us to extract a reliable estimate for

the thermodynamic limit. However, it is clear that the antiferromagnetic region

is tiny and we can estimate thatδc . 0.03. It should be emphasized that for

t′/t = −0.2 the variational wave function is not as accurate as for the pure t−J

model witht′ = 0, but nevertheless the projection technique, even if approximate,

is able to reduce the bias (e.g., the presence of a large magnetic order up toδ ∼

0.1), showing the importance of alternative numerical methodsto assess the actual

accuracy of the simple variational approach. Indeed, we areconfident that our FN

results represent a good approximation of the true ground-state properties. On

the contrary, the VMC calculations clearly show that the wave function (3.18)

overestimates the correct value of the magnetic moment.

4.3.3 Superconducting properties

In the following, we want to address the problem of the superconducting proper-

ties of the Hamiltonian (4.1). In particular, we would like to obtain an accurate

determination of the pair-pair correlations as a function of the hole doping and

clarify the role of the next-nearest-neighbor hoppingt′. The effect of such term

has been recently considered by using different numerical techniques. Density-

matrix renormalization group forn-leg ladders (withn = 4 and6) showed that

the effect of a negativet′ is to stabilize a metallic phase, without superconducting

correlations [156]. Moreover, improved variational MonteCarlo techniques sug-

gested thatt′ could suppress pairing at low doping, whereas some increasing of su-

perconducting correlations can be found in the optimal doping regime [158, 159].

A further variational study [157], suggested the possibility that a sufficiently large

ratio t′/t can disfavor superconductivity and stabilize charge instabilities (stripes)

near1/8 doping.

The pair-pair correlations are defined as

∆µ,ν(r) = Sr,µS
†
0,ν , (4.10)

whereS†
r,ν creates a singlet pair of electrons in the neighboring sitesr andr + µ,

namely

S†
r,µ = c†r,↑c

†
r+µ,↓ − c†r,↓c

†
r+µ,↑. (4.11)
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Most importantly, for the first time, we implemented the forward-walking tech-

nique in order to compute true expectation values of the pairing correlations over

the FN state:

〈∆µ,ν(r)〉 =
〈ΨFN

0 |∆µ,ν(r)|ΨFN
0 〉

〈ΨFN
0 |ΨFN

0 〉
. (4.12)

Indeed, given the fact that∆µ,ν(r) is a non-diagonal operator (in the|x〉 basis,

defined above), within the FN approach all the previous calculations [96] were

based upon the so-called mixed average, where, similarly toEq. (4.3), the state

on the left is replaced by the variational one. Now, by using Eq. (4.12), it is pos-

sible to verify the fairness of the variational results against a much more accurate

estimation of the exact correlation functions given by the FN approach.

The superconducting off-diagonal long-range order implies a non-zero value

of 〈∆µ,ν(r)〉 at large distancer. In the following, we consider the pair-pair cor-

relation at the maximum distance andµ = ν (parallel singlets) both for the vari-

ational case and for the FN approximation and denoteP 2
d = 4 limr→∞〈∆y,y(r)〉.

It is worth noting that, as far as the superconducting correlations are concerned,

there is no appreciable difference between the results obtained with and without

the antiferromagnetic order parameter and the long-range spin Jastrow factor. The

results for the puret−J model are reported in Fig 4.9, where we report two dif-

ferent values of the antiferromagnetic coupling, i.e.,J/t = 0.2 andJ/t = 0.4.

In this case, variational and FN calculations are in fairly good agreement, giving

a similar superconducting phase diagram. In contrast to RMFT, that predicts a

quadratic behavior of the pair-pair correlations, the variational results show that

these correlations have instead a linear behavior withδ in the underdoped regime,

even in the simplest case without Jastrow term [165]. Interestingly, the optimal

doping, i.e., the doping at which the maximum in the pair-pair correlations takes

place, occurs in both cases atδ ∼ 0.2, whereas the actual value of the correlations

is proportional toJ/t. At high doping, where antiferromagnetic fluctuations play

a minor role, the behavior of the pairing is unchanged whenJ is varied. Although

in this region there are some size effects, we can safely estimate that supercon-

ductivity disappears aroundδ ∼ 0.35 andδ ∼ 0.4 for J/t = 0.2 andJ/t = 0.4,

respectively.

It is worth noting that the density Jastrow term (3.20) is very important to

obtain an accurate estimation of the pairing correlations.Indeed, whereas the
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Figure 4.9: Pair-pair correlations at the maximum distanceas a function on the

doping forJ/t = 0.4 (upper panel) andJ/t = 0.2 (middle panel). The results for

the variational wave function (3.18) (empty symbols) and for the FN approxima-

tion (filled symbols) are reported. The results for the wave function without the

Jastrow factors (both for spin and density) and magnetic order parameter are also

reported (lower panel).

qualitative behavior as a function of doping is correctly captured by the simplest

variational wave function with BCS pairing and on-site Gutzwiller projector, the
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variational results based on such a state overestimate the pairing correlations at op-

timal doping by a factor two. Remarkably, the FN approach is able to correct this

bias and give approximately the same results as the one obtained starting from the

wave function with the long-range Jastrow factor, see Fig. 4.9. This fact demon-

strates once more the reliability of the FN method, that can reduce significantly

the dependence of the results upon the choice of the variational ansatz.

0 0.1 0.2 0.3 0.4 0.5 0.6
δ

0

0.005

0.01

0.015

0.02

0.025

0.03

P d2

L=98   VMC
L=162 VMC
L=98   FN
L=162 FN

J/t=0.2  
t’/t=-0.2

SC

Figure 4.10: The same as in Fig. 4.9 for thet−t′−J model withJ/t = 0.2 and

t′/t = −0.2. The dashed line indicates a tentative estimation for the thermody-

namic limit.

The inclusion of the next-nearest-neighbor hopping induces sizable modifi-

cations in the pairing correlations, though the qualitative dome-like behavior re-

mains unchanged, see Fig. 4.10. At low doping there is a sizable suppression

of the superconducting pairing, particularly evident after the FN projection, see

Fig. 4.11. Indeed, while for the puret−J model we clearly obtain a linear behav-



4.3 Results 103

ior of the pair-pair correlations withδ, indicating a superconducting phase as soon

as the Mott insulator is doped, in the case of a finitet′, the FN results could be

compatible with a finite critical doping, below which the system is not supercon-

ducting. This outcome is in agreement with earlier Monte Carlo calculations done

by Anisimov, Sorella et al., [166] where it was suggested that the extendedt−J

model with hoppings and super-exchange interactions derived from structural data

of theLa2CuO4 compound could explain the main experimental features of high-

temperature superconducting materials, with a finite critical doping for the onset

of electron pairing.
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Figure 4.11: Detail of the pair-pair correlations reportedin Figs. 4.9 and 4.10 at

low doping.

Remarkably, fromδ ∼ 0.1 to δ ∼ 0.4 there are huge size effects. Though,

for δ ∼ 0.3, small clusters, e.g.,L = 98, indicate stronger pairing correlations
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than the puret−J model withoutt′, larger clusters point out a large reduction of

P 2
d . Nonetheless, we have a rather clear evidence that forδ ∼ 0.3 there is a finite

superconducting order parameter in the thermodynamic limit, see Fig. 4.12. This

strong reduction of the superconducting correlations is a very interesting effect,

demonstrating that the superconducting wave function (even if supplemented by

magnetic order) deteriorates its accuracy by increasing the value oft′, that could

eventually stabilize competing phases with modulation in the charge distribution

and/or a magnetic flux through the plaquettes [167]. However, for t′/t = −0.2,

our variational wave function (3.18) remains a better energy when compared to

the one used in Ref. [167].
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Figure 4.12: Size scaling of the Pair-pair correlations at the maximum distance

for t−t′−J model withJ/t = 0.2 andt′/t = −0.2 at δ ∼ 0.3.



4.4 Conclusion 105

4.4 Conclusion

In this chapter, we considered the magnetic and superconducting properties of

the t−t′−J model within the variational and the FN approaches. We showed

that for t′ = 0 the ground-state properties can be accurately reproduced by a

state containing both electron pairing and suitable magnetic correlations, namely a

magnetic order parameter in the mean-field Hamiltonian thatdefines the fermionic

determinant and a spin Jastrow factor for describing the spin fluctuations. In this

case, we obtain a rather large magnetic phase, with a critical doping that slightly

depend upon the super-exchange couplingJ , i.e., δc = 0.10 ± 0.01 and δc =

0.13 ± 0.02 for J/t = 0.2 andJ/t = 0.4, respectively. The superconducting

correlations show a dome-like behavior and vanish when the Mott insulator at

half filling is approached. Interestingly, compared to the RMFT that predicts a

quadratic behavior of the pair-pair correlations as a function of the dopingδ, here

we found that a linear behavior is more plausible.

Then, we also reported important modifications due to the presence of a finite

ratio t′/t. The first effect of this further hopping term is to strongly suppress an-

tiferromagnetic correlations at low doping, shifting the critical doping to0.03 for

t′/t = −0.2. This is a genuine effect of the FN method, since, within the pure vari-

ational approach, though the spin-spin correlations are suppressed with respect to

the case oft′ = 0, the values of the critical doping for these two cases are very sim-

ilar. Most importantly, the presence of a finite value of the next-nearest-neighbor

hopping has dramatic effects on the superconducting properties. At small doping,

i.e.,δ . 0.1 there is a sizable suppression of the electronic pairing, possibly point-

ing toward a metallic phase in the slightly doped regime, as previously suggested

by using improved Monte Carlo techniques [166]. Moreover, for 0.1 . δ . 0.4,

though small lattices seem to indicate an increasing of superconductivity com-

pared to the puret−J model, larger clusters show huge size effects that strongly

renormalize the pairing correlations at large distance. However, for the value oft′

considered in this work, we are rather confident that superconducting off-diagonal

long-range order takes place in a considerable hole region.In any case, the huge

renormalization of the electronic pairing forδ ∼ 0.3, together with the fact that

the FN results are very different from the VMC ones based on a wave function

containing pairing (and magnetic order at low doping), is pointing towards the
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possibility to the existence of a non-superconducting phase (with magnetic fluxes

and/or charge order) that could be eventually stabilized byfurther increasing the

ratio t′/t.



Conclusions and perspectives

The variational approach, based upon the definition of a proper trial wave function,

is certainly one of the most powerful and general methods forstudying fundamen-

tal problems in several fields of Physics. This approach allows to obtain funda-

mental and sometimes surprising results, as well as predictions for new phenom-

ena. In particular, among many different applications, we would like to mention

the cases of the fractional quantum Hall effect explained bythe Laughlin wave

function and the elegant description of superconductivityby Bardeen, Cooper,

and Schrieffer in 1957. The most important aspect of this approach is to give an

immediate and straightforward description of the physicalproblem, by allowing

to clarify the most relevant effects. Sometimes, a good variational ansatz, though

approximate, is even better than knowing the exact solution, since the latter one

can be so complicated that it is very hard to handle and to be interpreted, like for

instance the Bethe ansatz solution of the Hubbard model in one dimension.

On the other hand, within the variational approach, correlation functions can

be generally computed by means of Monte Carlo techniques, that allow one to

study very large systems and give the possibility to obtain accurate phase dia-

grams. The limitation of Monte Carlo approaches is given by the computer mem-

ory and the computational time. In fact, the quantum Monte Carlo algorithms,

that are continuously developing even in the very recent years, scale at most with

the third power of the system size, making possible efficientcalculations on rather

large clusters.

In analogy with the standard BCS theory, the search of a particularly accurate

variational wave functions is extremely important to address the (still open) prob-

lems raised by the recent discovery of high-temperature superconductors (HTSC).

Of course in the case of HTSC there are much more complications with respect to

the conventional superconductors, due to the competition of many different energy
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scales. At present, the state of the art on the study of thet−J model by the vari-

ational approach is given by the Resonating Valence Bond (RVB) wave function

and it generalization to the case containing flux phases or charge-density waves.

Most calculations have been done taking non-magnetic states, even though they

are usually considered in relation to the underdoped and optimally doped regimes.

One of the great success of the RVB states was the prediction (before the experi-

mental evidence) of the d-wave symmetry of the pairing function. However, they

still present some problems, because they are not able to describe the correct mag-

netic properties close to the insulating regime at half filling. Indeed, until now,

many attempts have been done, but all of them contained some drawback, like for

instance a wrong spin-wave spectrum.

In this thesis, we introduced a new variational wave function that provides a

much better approximation than all the previous ones, allowing us to tackle in a

very accurate way a series of open problems. By means of our new variational

wave function, it is possible to obtain the correct magneticproperties at low dop-

ing: a very accurate estimation of the antiferromagnetic moment at half filling, a

very accurate estimation of the spin velocity, and the correct behavior of the spin-

spin structure factor, implying a correct spin-wave spectrum. Therefore, this state

gives us the possibility to obtain the (so far) most accurateresults at low dop-

ing. The fundamental ingredients in our trial wave functionare thelong-range

spin Jastrow factor and an uncorrelated state containing both magnetism and su-

perconductivity. In contrast to the previous attempts, where the Jastrow factor

was either missing or, at most, parallel to the axis of the magnetization, by using

very accurate numerical simulations, we have been able to show that the Jastrow

factor must be orthogonal to this axis in order to generate the correct quantum

fluctuations and reproduce the exact gapless behavior of thespin waves.

The impressive accuracy of our wave function at low doping allows us to ad-

dress different aspects of the phase diagram of thet−J model. In particular, we

considered the problem of the possible emergence of a phase separation in the

physical regime for HTSC, i.e., forJ/t ∼ 0.4. This issue is particularly impor-

tant for understanding the actual mechanism that leads to electronic pairing and

it was intensively discussed in the last 10 years. We found that thet−J model

does not phase-separates forJ/t . 0.7, giving a strong indication of the valid-

ity of the RVB description as the origin of superconductivity. Moreover, we find
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that, by approaching half filling, the compressibility stays finite, suggesting that,

close to the Mott insulator, holes form hole pockets around the nodal points, i.e.,

q = (±π/2,±π/2), and behave as spinless fermions.

In the second part of the present thesis, it was possible to address the magnetic

and superconducting properties, considering also the effect of a further second-

neighbor hoppingt′, in order to understand whether this extra coupling constant

can allow a connection between the microscopic model andhole-dopedcuprate

materials. Indeed, we have found that the simplet−J model is not adequate to

reproduce the phase diagram of the HTSC materials, and more ingredients have

to be considered. Indeed, there is a very large region, closeto half filling, with a

coexistence of superconductivity and antiferromagnetismthat strongly contrasts

with the experimental observation. In this respect, without invoking the relevance

of disorder effects, the presence of a finitet′ could help to have a closer con-

tact with hole-doped materials. In fact, the presence of a second-neighbor hop-

ping dramatically shrinks the antiferromagnetic region, by renormalizing also the

pairing correlations. These results suggest a possible non-superconducting phase

close to the Mott insulator. Moreover, we do not find a sizableenhancement of the

electron pairing by increasing the ratiot′/t. This could be in contradiction with

the empirical relation betweent′/t and the value ofTc, that has been recently put

forward. However, we have to remark that we only considered ground-state prop-

erties, without a direct calculation ofTc and, in a strongly-correlated system, the

relation between the critical temperature and the pairing correlations can be highly

non trivial. On the other hand, it is possible that the second-neighbor hopping term

deteriorates the accuracy of the variational wave function, and the presence of a

finite (and large)t′ could eventually stabilize competing phases with modulation

in the charge distribution and/or a magnetic flux through theplaquettes. Also in

this case, the relevance of this exotic phase on the actual critical temperature is

not clear.

Finally, work is in progress to considerelectron-dopedcuprates, i.e., by chang-

ing the sign oft′ with respect to thehole-dopedcase and the effect of a further

frustrating super-exchange termJ2. The latter ingredient, even if it is not proba-

bly relevant for HTSC, can be very useful to clarify the role of the antiferromag-

netic long-range order to establish pairing between electrons. Preliminary results

clearly indicate thatt′ leads to an enhancement of the antiferromagnetic order at
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low doping, which is in agreement with the experimental outcome.



Appendix A

Pfaffian wave function

A.1 Definition and properties of the Pfaffian

The Pfaffian is

Pf [A] = A [a1,2a3,4a5,6 . . . aN−1,N ] (A.1)

whereA is the antisymmetrization operator, the result is normalized such that

every equivalent term occurs only once, andai,j = −aj,i. For the case where

N = 4 this becomes

Pf [A] = a1,2a3,4 − a1,3a2,4 + a1,4a2,3. (A.2)

The Pfaffian is zero ifN is odd and has(N − 1)!! terms otherwise.

The Pfaffian can be constructed recursively as

Pf [A] =
∑

N−1 cyclic permutations of 2−N

a12A [a3,4a5,6 . . . aN−1,N ] , (A.3)

which we will rewrite as

Pf [A] ≡
N
∑

j=2

a1,jPc(a1,j). (A.4)

HerePc(a1,j) is defined to be the Pfaffian cofactor ofa1,j , and since there are an

odd number of indices in the cyclic exchange, the sign is positive. ForN = 4 it

becomes
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a1,2a3,4 + a1,3a4,2 + a1,4a2,3 (A.5)

and using the fact thata4,2 = −a2,4, we will obtain the Eq. (A.2). The case with

N = 6 gives a slightly more complicated example with the Pfaffian written as

a1,2A [a3,4a5,6]+a1,3A [a4,5a6,2]+a1,4A [a5,6a2,3]+a1,5A [a6,2a3,4]+a1,6A [a2,3a4,5]

(A.6)

which applying the Eq. (A.2) gives all the 15 terms.

In general, given a skew-symmetric matrixA











0 a1,2 a1,3 a1,4

−a1,2 0 a2,3 a2,4

−a1,3 −a2,3 0 a3,4

−a1,4 −a2,4 −a3,4 0











,

the Pfaffian of this matrix is defined to be Eq. (A.1) and as one can see, the

determinant ofA is the square of the Pfaffian.

A.2 Variational Monte Carlo implementation of the

Pfaffian wave function

We have seen in Chapter3, that the mean-filed Hamiltonian (3.21) is quadratic in

the fermionic operators and can be easily diagonalized in real space. Its ground

state has the general form:

|ΨMF 〉 = exp





1

2

∑

i,j,σi,σj

f
σi,σj

i,j c†i,σi
c†j,σj



 |0〉, (A.7)

the pairing functionfσiσj

ij being an antisymmetric4L × 4L matrix, i.e. f
σi,σj

i,j =

−f
σj ,σi

j,i . Notice that in the case of the standard BCS Hamiltonian, with ∆AF = 0

or even with∆AF alongz, we have thatf ↑,↑
i,j = f ↓,↓

i,j = 0, while in presence of

magnetic field in thex−y plane the pairing function acquires non-zero contribu-

tions also in this triplet channel. The technical difficultywhen dealing with such
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a state is that, given a generic configuration with definitez-component of the spin

|x〉 = c†i1,σ1
. . . c†iN ,σN

|0〉, we have that:

〈x|ΨMF 〉 = Pf [F ] = Pf

(

f ↑,↑
ij f ↑,↓

ij

f ↓,↑
ij f ↓,↓

ij

)

, (A.8)

wherePf [F ] is the Pfaffian of the pairing function. It should be noticed that,

wheneverf ↑,↑
i,j = f ↓,↓

i,j = 0, the usual form of〈x|ΨMF 〉 written in terms of a

determinant is recovered.

Let us enter,in this section, in more details giving a short proof of the statement

given above. First of all we emphasize that|ΨMF 〉 has neither a fixed number of

particles due to the presence of theBCS pairing, nor a fixed totalSz due to the

x−y plane magnetic order.

When we consider the projector onto the state ofN particles, we obtain

|ΨMF 〉 =







1

2

∑

i,j,σi,σj

f
σi,σj

i,j c†i,σi
c†j,σj







N/2

|0〉, (A.9)

then, expanding the product we have

|ΨMF 〉 =
∑

(R1,...,RN/2)(R
′

1
,...,R′

N/2
)

{

f(R1,R′

1
) . . . f(RN/2,R′

N/2
)

}

c†R1
c†R′

1

. . . c†RN/2
c†R′

N/2

|0〉

(A.10)

where we used the notationsRi = (xi, σi). Then the projection on the basis state

〈x| = 〈0|cR1
. . . cRN

is given by:

〈x|ΨMF 〉 =
∑

P

{

f(PR1
,PR2

) . . . f(PRN−1
,PRN

)

}

(−1)sign(P) (A.11)

where the sum is done on all possible permutationP, andP(Ri) = Rk, where

k = P(i). At this point, defining the following skew matrixFij = fRi,Rj , we can

note that

∑

P

{

f(PR1
,PR2

) . . . f(PRN−1
,PRN

)

}

(−1)sign(P) = Pf [F ] (A.12)

and this conclude the proof.
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In conclusion, we find that the wave function projected on a basis state|x〉,

when BCS pairing and magnetization on thex − y plane are present, is the Pfaf-

fian of the anty-symmetrized matrixF :

〈x|ΨMF 〉 = Pf [F ] = Pf

(

f ↑,↑
ij f ↑,↓

ij

f ↓,↑
ij f ↓,↓

ij

)

(A.13)

wherePf [F ] denote the Pfaffian of the matrixF . Using this last relation, the

wave function can now be evaluated numerically using a MonteCarlo procedure

with Pfaffian updates, as introduced in Ref. [133].

In the particular case wheref ↑,↑
i,j = f ↑,↑

i,j = 0 (this happen if in the mean field

Hamiltonian is present just the BCS interaction, or just theantiferromagnetic term

or both BCS and thez plane antifferomagentic terms), the Pfaffian reduces to a

simple determinant. In fact, the matrixF reduces to diagonal blocks:

F =

(

0 B

−BT 0

)

⇒ Pf [F ] = det(B), (A.14)

where the matrix elements ofB are thef ↑,↓
i,j of the equation (A.7). We emphasize

that the matrix that we need to update in the Pfaffian Monte Carlo simulations

has linear sizes twice larger than in the usual calculationswith determinants. In

conclusion, the Pfaffian Monte Carlo procedure is nothing else but an extension of

the usual variational wave function method, which allows totreat generally every

order parameter contained in the mean field Hamiltonian (3.21) in which we are

interested.
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