

Quantum Monte Carlo World Line Algorithms

Matthias Troyer, ETH Zürich

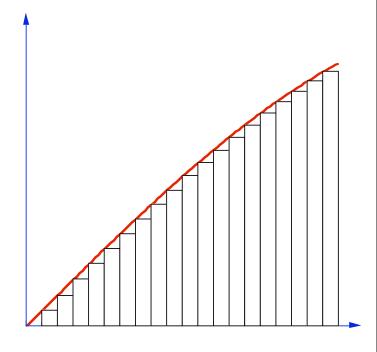
DPHYS



Integrating a function

Convert the integral to a discrete sum

$$\int_{a}^{b} f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f\left(a + i\frac{b-a}{N}\right) + O(1/N)$$



- Higher order integrators:
 - Trapezoidal rule:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{N} \left(\frac{1}{2} f(a) + \sum_{i=1}^{N-1} f\left(a + i\frac{b-a}{N}\right) + \frac{1}{2} f(b) \right) + O(1/N^{2})$$

Simpson rule:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{3N} \left(f(a) + \sum_{i=1}^{N-1} (3 - (-1)^{i}) f\left(a + i\frac{b-a}{N}\right) + f(b) \right) + O(1/N^{4})$$

Matthias Troyer January 29, 2009

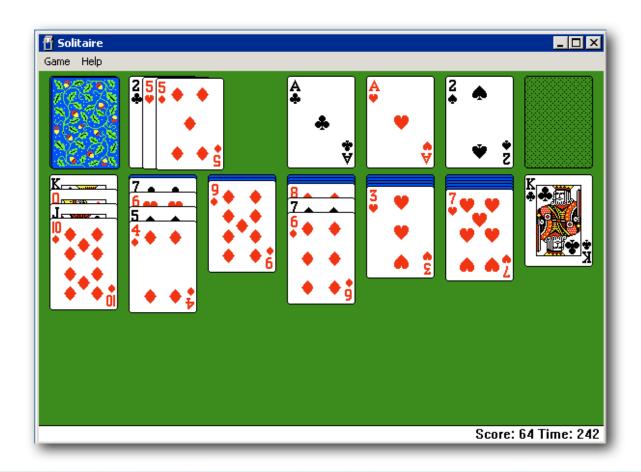
High dimensional integrals

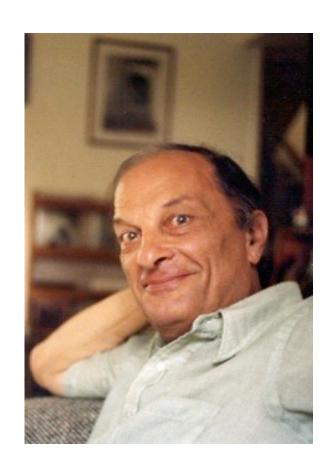
- Simpson rule with M points per dimension
 - one dimension the error is $O(M^{-4})$
 - d dimensions we need $N = M^d$ points the error is order $O(M^{-4}) = O(N^{-4/d})$
- An order n scheme in 1 dimension is order - n/d d in d dimensions!
- In a statistical mechanics model with N particles we have 6Ndimensional integrals (3N positions and 3N momenta).
- Integration becomes extremely inefficient!

January 29, 2009 Matthias Troyer | Matthias Troyer

Ulam: the Monte Carlo Method

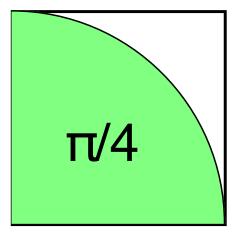
- What is the probability to win in Solitaire?
 - Ulam's answer: play it 100 times, count the number of wins and you have a pretty good estimate





Throwing stones into a pond

- How can we calculate π by throwing stones?
- Take a square surrounding the area we want to measure:



 Choose M pairs of random numbers (x, y) and count how many points (x, y) lie in the interesting area

January 29, 2009 Matthias Troyer | Matthias Troyer | 6

Monte Carlo integration

Consider an integral

$$\langle f \rangle = \int_{\Omega} f(\vec{x}) d\vec{x} / \int_{\Omega} d\vec{x}$$

 Instead of evaluating it at equally spaced points evaluate it at M points x_i chosen randomly in Ω:

$$\langle f \rangle \approx \frac{1}{M} \sum_{i=1}^{M} f(\vec{x}_i)$$

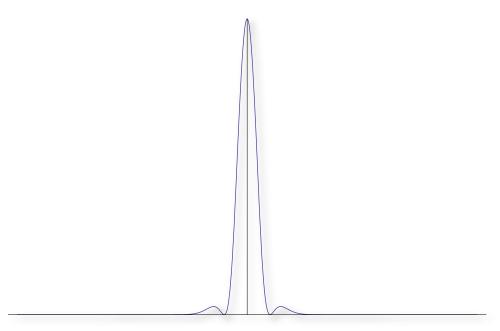
The error is statistical:

$$\Delta = \sqrt{\frac{\operatorname{Var} f}{M}} \propto M^{-1/2}$$

$$\operatorname{Var} f = \left\langle f^2 \right\rangle - \left\langle f \right\rangle^2$$

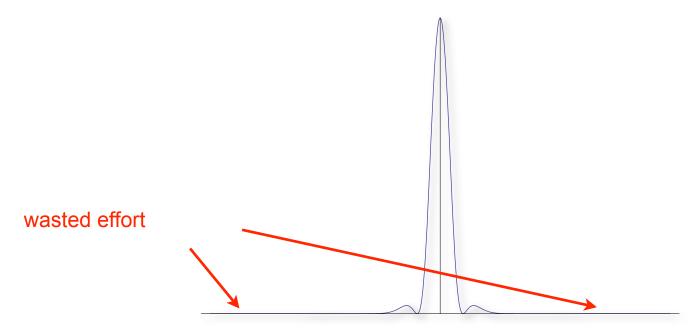
In d>8 dimensions Monte Carlo is better than Simpson!

Sharply peaked functions



- In many cases a function is large only in a tiny region
- Lots of time wasted in regions where the function is small
- The sampling error is large since the variance is large

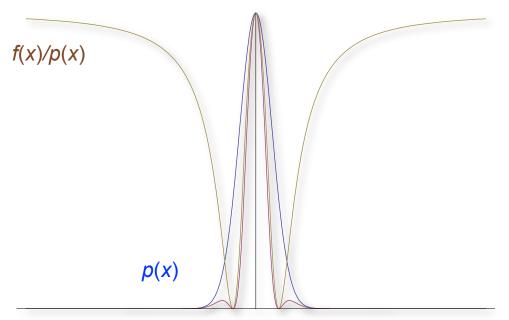
Sharply peaked functions



- In many cases a function is large only in a tiny region
- Lots of time wasted in regions where the function is small
- The sampling error is large since the variance is large

Institute for Theoretical Physics

Importance sampling



• Choose points not uniformly but with probability p(x):

$$\langle f \rangle = \left\langle \frac{f}{p} \right\rangle_p := \int_{\Omega} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x} / \int_{\Omega} d\vec{x}$$

- The error is now determined by Var f/p
- Find p similar to f and such that p-distributed random numbers are easily available

January 29, 2009 Matthias Troyer | Matthias Troyer

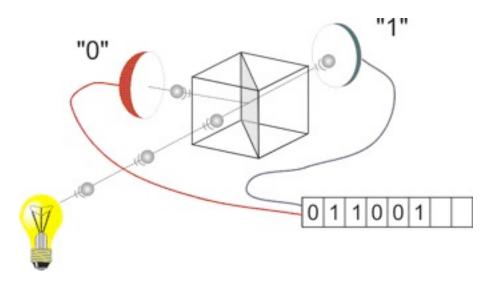
2. Generating Random Numbers

Matthias Troyer

10

Random numbers

- Real random numbers are hard to obtain
 - classical chaos (atmospheric noise)
 - quantum mechanics
- Commercial products: quantum random number generators
 - based on photons and semi-transparent mirror
 - 4 Mbit/s from a USB device, too slow for most MC simulations



http://www.idquantique.com/

DPHYS

Department of Physics Institute for Theoretical Physics

Pseudo Random numbers

Are generated by an algorithm

- Are generated by an algorithm
- Not random at all, but completely deterministic

- Are generated by an algorithm
- Not random at all, but completely deterministic
- Look nearly random however when algorithm is not known and may be good enough for our purposes

- Are generated by an algorithm
- Not random at all, but completely deterministic
- Look nearly random however when algorithm is not known and may be good enough for our purposes
- Never trust pseudo random numbers however!

Linear congruential generators

- are of the simple form $x_{n+1}=f(x_n)$
- A reasonably good choice is the GGL generator

$$x_{n+1} = (ax_n + c) \bmod m$$

with
$$a = 16807$$
, $c = 0$, $m = 2^{31}$ -1

- quality depends sensitively on a,c,m
- Periodicity is a problem with such 32-bit generators
 - The sequence repeats identically after 2³¹-1 iterations
 - With 500 million numbers per second that is just 4 seconds!
 - Should not be used anymore!

Institute for Theoretical Physics

Lagged Fibonacci generators

$$x_n = x_{n-p} \otimes x_{n-q} \mod m$$

- Good choices are
 - **(2281,1252,+)**
 - (9689,5502,+)
 - **(44497,23463,+)**
- Seed blocks usually generated by linear congruential
- Has very long periods since large block of seeds
- A very fast generator: vectorizes and pipelines very well

More advanced generators

- As well-established generators fail new tests, better and better generators get developed
 - Mersenne twister (Matsumoto & Nishimura, 1997)
 - Well generator (Panneton and L'Ecuyer , 2004)
- Number theory enters the generator design: predicting the next number is equivalent to solving a very hard mathematical problem

DPHYS

Department of Physics Institute for Theoretical Physics

Are these numbers really random?

Department of Physics Institute for Theoretical Physics

Are these numbers really random?

No!

DPHYS

Department of Physics
Institute for Theoretical Physics

Are these numbers really random?

- No!
- Are they random enough?
 - Maybe?

Are these numbers really random?

- No!
- Are they random enough?
 - Maybe?
- Statistical tests for distribution and correlations

Are these numbers really random?

- No!
- Are they random enough?
 - Maybe?
- Statistical tests for distribution and correlations
- Are these tests enough?
 - No! Your calculation could depend in a subtle way on hidden correlations!

Are these numbers really random?

- No!
- Are they random enough?
 - Maybe?
- Statistical tests for distribution and correlations
- Are these tests enough?
 - No! Your calculation could depend in a subtle way on hidden correlations!
- What is the ultimate test?
 - Run your simulation with various random number generators and compare the results

Marsaglia's diehard tests

- Birthday spacings: Choose random points on a large interval. The spacings between the points should be asymptotically Poisson distributed. The name is based on the birthday paradox.
- Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur with statistically equal probability.
- Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then determine the rank of the matrix.
 Count the ranks.
- Monkey tests: Treat sequences of some number of bits as "words". Count the
 overlapping words in a stream. The number of "words" that don't appear should
 follow a known distribution. The name is based on the infinite monkey theorem.
- Count the 1s: Count the 1 bits in each of either successive or chosen bytes.
 Convert the counts to "letters", and count the occurrences of five-letter "words".
- **Parking lot test:** Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 tries, the number of successfully "parked" circles should follow a certain normal distribution.

Marsaglia's diehard tests (cont.)

- Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum distance between the pairs. The square of this distance should be exponentially distributed with a certain mean.
- Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is the minimum distance to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.
- The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1.
 Repeat this 100,000 times. The number of floats needed to reach 1 should follow a certain distribution.
- Overlapping sums test: Generate a long sequence of random floats on [0,1).
 Add sequences of 100 consecutive floats. The sums should be normally distributed with characteristic mean and sigma.
- Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should follow a certain distribution.
- The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow a certain distribution.

Non-uniform random numbers

- we found ways to generate pseudo random numbers u in the interval [0,1[
- How do we get other uniform distributions?
 - uniform x in [a,b[: x = a+(b-a) u
- Other distributions:
 - Inversion of integrated distribution
 - Rejection method

Non-uniform distributions

- How can we get a random number x distributed with f(x) in the interval [a,b[from a uniform random number u?
- Look at probabilities:

$$P[x < y] = \int_{a}^{y} f(t) dt =: F(y) \equiv P[u < F(y)]$$

$$\Rightarrow x = F^{-1}(u)$$

- This method is feasible if the integral can be inverted easily
 - exponential distribution $f(x)=\lambda \exp(-\lambda x)$
 - can be obtained from uniform by x=-1/λ ln(1-u)

Normally distributed numbers

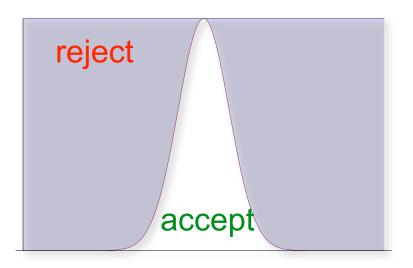
The normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2)$$

- cannot easily be integrated in one dimension but can be easily integrated in 2 dimensions!
- We can obtain two normally distributed numbers from two uniform ones (Box-Muller method)

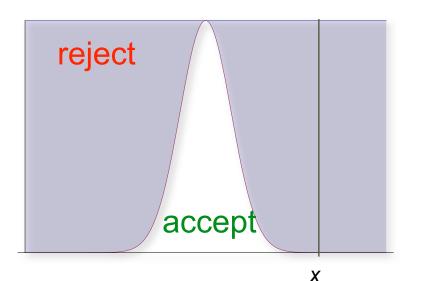
$$n_1 = \sqrt{-2\ln(1 - u_1)} \sin u_2$$

$$n_2 = \sqrt{-2\ln(1 - u_1)}\cos u_2$$



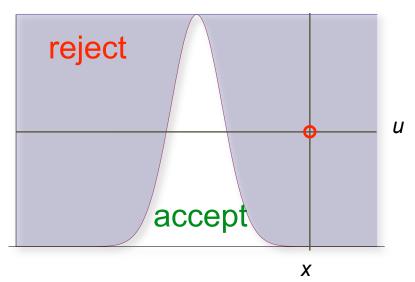
- Look for a simple distribution h that bounds f: $f(x) < \lambda h(x)$
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if u < f(x)/ λh(x),
 otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found

f/h

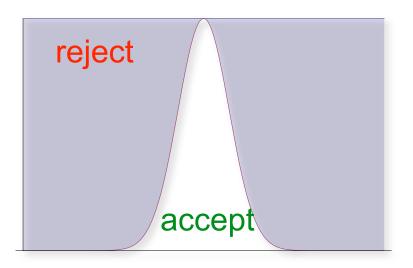


- Look for a simple distribution h that bounds f: $f(x) < \lambda h(x)$
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if $u < f(x)/\lambda h(x)$, otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found

f/h

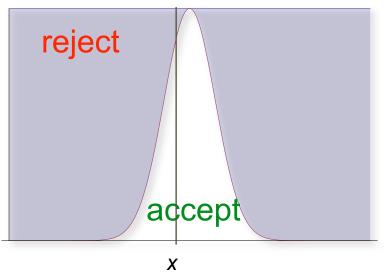


- Look for a simple distribution h that bounds f: $f(x) < \lambda h(x)$
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if $u < f(x)/\lambda h(x)$, otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found



- Look for a simple distribution h that bounds f: $f(x) < \lambda h(x)$
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if u < f(x)/ λh(x),
 otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found

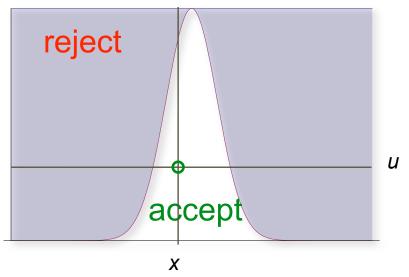
f/h



- Look for a simple distribution h that bounds f: $f(x) < \lambda h(x)$
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if $u < f(x)/\lambda h(x)$, otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found

Rejection method (von Neumann)

f/h



- Look for a simple distribution h that bounds f: f(x) < λh(x)
 - Choose an h-distributed number x
 - Choose a uniform random number number 0 ≤ u < 1</p>
 - Accept x if $u < f(x)/\lambda h(x)$, otherwise reject x and get a new pair (x,u)
- Needs a good guess h to be efficient, numerical inversion of integral might be faster if no suitable h can be found

DPHYS

3. The Metropolis Algorithm

23

Matthias Troyer

Monte Carlo for classical systems

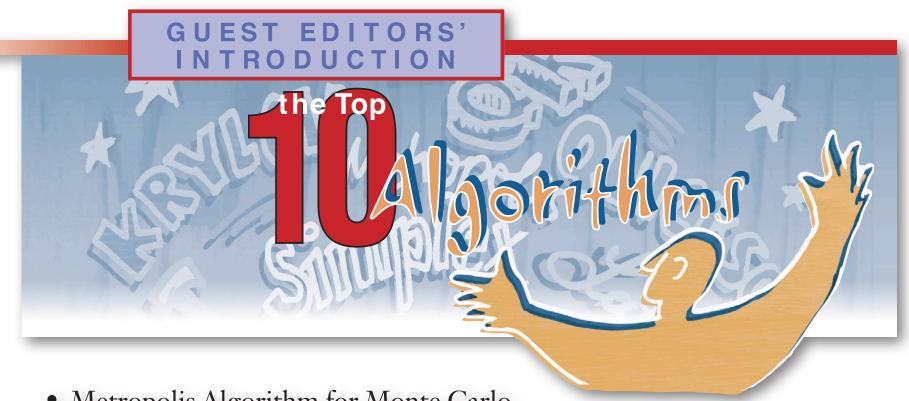
Evaluate phase space integral by importance sampling

$$\langle A \rangle = \frac{\int\limits_{\Omega} A(c) p(c) dc}{\int\limits_{\Omega} p(c) dc} \longrightarrow \langle A \rangle \approx \overline{A} = \frac{1}{M} \sum_{i=1}^{M} A_{c_i}$$

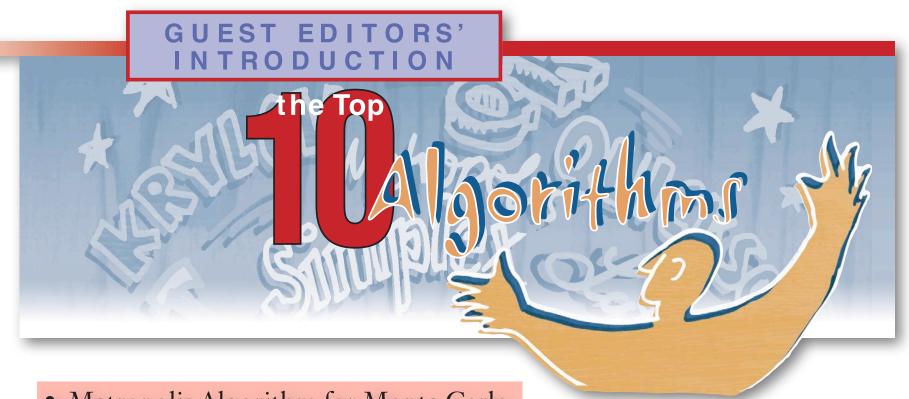
Pick configurations with the correct Boltzmann weight

$$P[c] = \frac{p(c)}{Z} = \frac{\exp(-\beta E(c))}{Z}$$

• But how do we create configurations with that distribution?
The key problem in statistical mechanics!



- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- Integer Relation Detection
- Fast Multipole Method



- Metropolis Algorithm for Monte Carlo
- Simplex Method for Linear Programming
- Krylov Subspace Iteration Methods
- The Decompositional Approach to Matrix Computations
- The Fortran Optimizing Compiler
- QR Algorithm for Computing Eigenvalues
- Quicksort Algorithm for Sorting
- Fast Fourier Transform
- Integer Relation Detection
- Fast Multipole Method

The Metropolis Algorithm (1953)

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 21. NUMBER 6

JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD Teller,* Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules. Classical statistics is assumed,

II. THE GENERAL METHOD FOR AN ARBITRARY POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for numerical work, we can, of course, consider only a finite number of particles. This number N may be as high as several hundred. Our system consists of a square† con-

The Metropolis Algorithm (1953)

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 21, NUMBER 6

JUNE, 1953

Equation of State Calculations by Fast Computing Machines

NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD Teller,* Department of Physics, University of Chicago, Chicago, Illinois (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

THE purpose of this paper is to describe a general method, suitable for fast electronic computing machines, of calculating the properties of any substance which may be considered as composed of interacting individual molecules. Classical statistics is assumed,

II. THE GENERAL METHOD FOR AN ARBITRARY POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for numerical work, we can, of course, consider only a finite number of particles. This number N may be as high as several hundred. Our system consists of a square† con-

Markov chain Monte Carlo

Instead of drawing independent samples c_i we build a Markov chain

$$c_1 \rightarrow c_2 \rightarrow \dots \rightarrow c_i \rightarrow c_{i+1} \rightarrow \dots$$

- Transition probabilities $W_{x,y}$ for transition $x \to y$ need to satisfy:
 - Normalization:

$$\sum_{v} W_{x,y} = 1$$

Ergodicity: any configuration reachable from any other

$$\forall x, y \; \exists n \; : \; \left(W^n\right)_{x,y} \neq 0$$

Balance: the distribution should be stationary

$$0 = \frac{d}{dt}p(x) = \sum_{y} p(y)W_{y,x} - \sum_{y} p(x)W_{x,y} \Rightarrow p(x) = \sum_{y} p(y)W_{y,x}$$

Detailed balance is sufficient but not necessary for balance

$$\frac{W_{x,y}}{W_{y,x}} = \frac{p(y)}{p(x)}$$

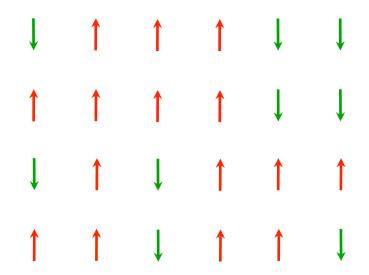
The Metropolis algorithm

- Teller's proposal was to use rejection sampling:
 - Propose a change with an a-priori proposal rate $A_{x,y}$
 - Accept the proposal with a probability $P_{x,y}$
 - The total transition rate is $W_{x,y} = A_{x,y} P_{x,y}$
- The choice

$$P_{x,y} = \min \left[1, \frac{A_{y,x} p(y)}{A_{x,y} p(x)} \right]$$

satisfies detailed balance and was proposed by Metropolis et al

Metropolis algorithm for the Ising model

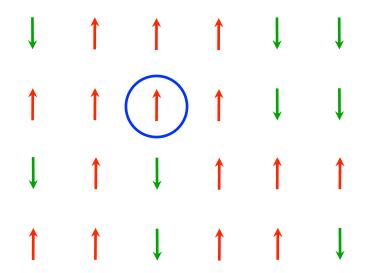


- 1. Pick a random spin and propose to flip it
- 2. Accept the flip with probability

$$P = \min \left[1, e^{-(E_{new} - E_{old})/T} \right]$$

3. Perform a measurement independent of whether the proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model

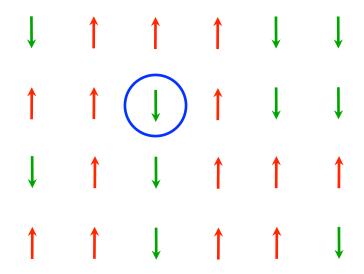


- 1. Pick a random spin and propose to flip it
- 2. Accept the flip with probability

$$P = \min \left[1, e^{-(E_{new} - E_{old})/T} \right]$$

3. Perform a measurement independent of whether the proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model



- 1. Pick a random spin and propose to flip it
- 2. Accept the flip with probability

$$P = \min \left[1, e^{-(E_{new} - E_{old})/T} \right]$$

3. Perform a measurement independent of whether the proposed flip was accepted or rejected!

Equilibration

- Starting from a random initial configuration it takes a while to reach the equilibrium distribution
- The desired equilibrium distribution is a left eigenvector with eigenvalue 1 (this is just the balance condition)

$$p(x) = \sum_{y} p(y) W_{y,x}$$

Convergence is controlled by the s largest eigenvalue

$$p(x,t) = p(x) + O(\lambda_2^t)$$

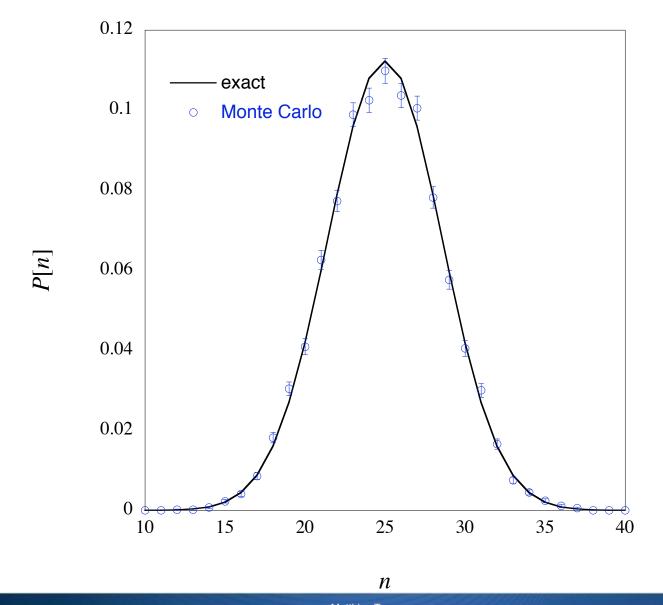
 We need to run the simulation for a while to equilibrate and only then start measuring

4. Monte Carlo Error Analysis

Matthias Troyer

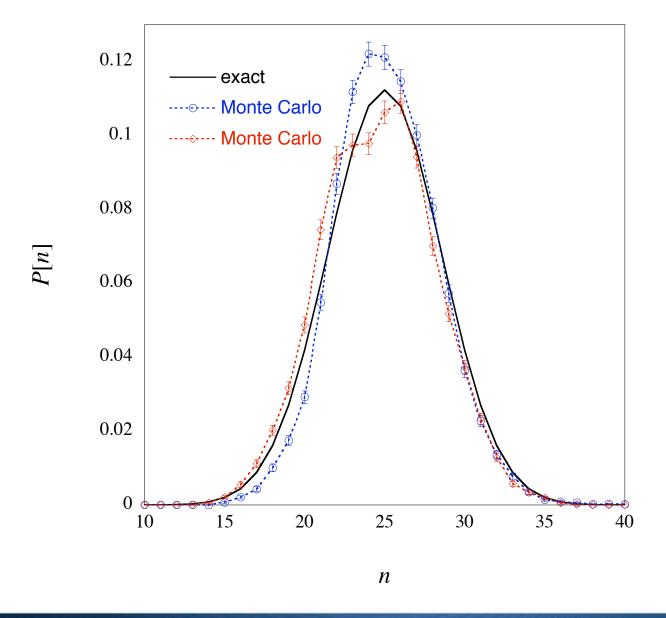
31

Dogs and fleas: direct sampling



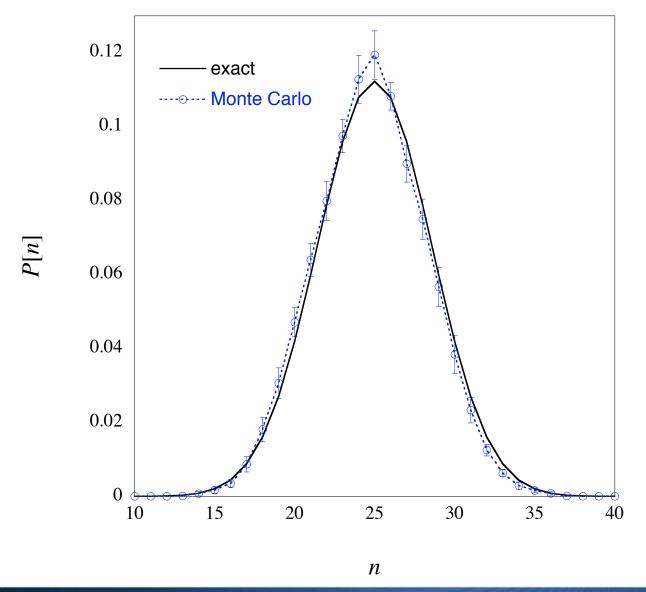
32

Dogs and fleas: naïve errors



Matthias Troyer

Dogs and fleas: uncorrelated samples



Matthias Troyer

Monte Carlo error analysis

The simple formula

$$\Delta A = \sqrt{\frac{\operatorname{Var} A}{M}}$$

is valid only for independent samples

The Metropolis algorithm gives us correlated samples!
 The number of independent samples is reduced

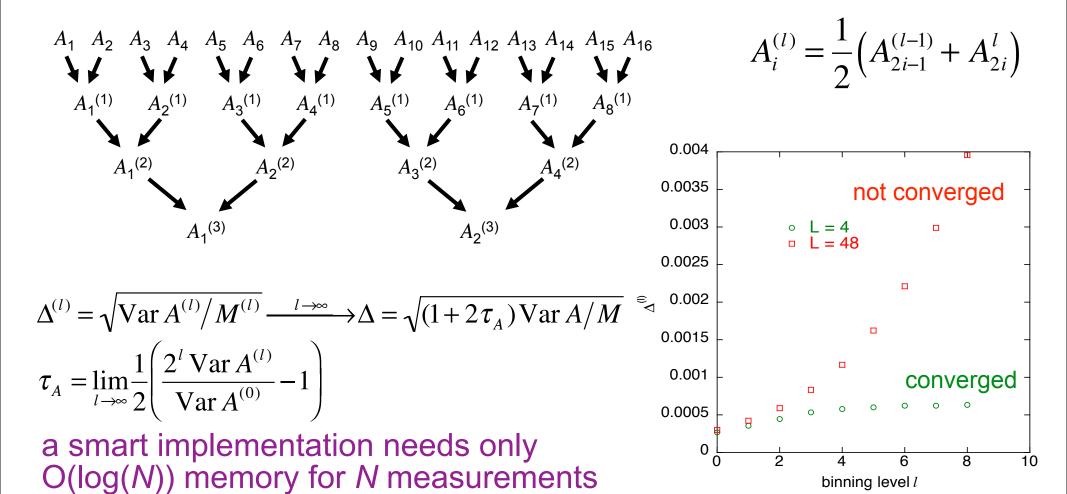
$$\Delta A = \sqrt{\frac{\operatorname{Var} A}{M}} \left(1 + 2\tau_A \right)$$

The autocorrelation time is defined by

$$\tau_{A} = \frac{\sum_{t=1}^{\infty} \left(\left\langle A_{i+t} A_{i} \right\rangle - \left\langle A \right\rangle^{2} \right)}{\operatorname{Var} A}$$

Binning analysis

 Take averages of consecutive measurements: averages become less correlated and naive error estimates converge to real error



January 29, 2009 Matthias Troyer Section 1997

Seeing convergence in ALPS

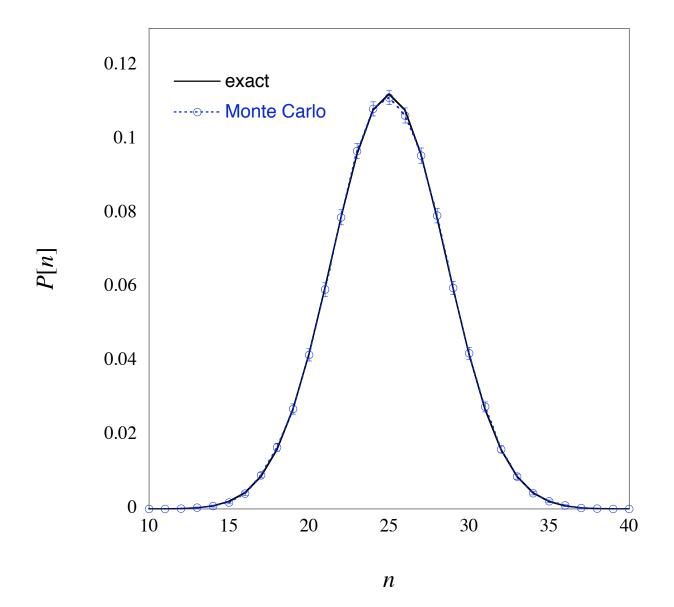
- Look at the ALPS output in the first hands-on session
- 48 x 48 Ising model at the critical point
 - local updates:

Name	Count	Mean	Error	Tau	Method
Susceptibility	52529	401.08	11.3 not converged	99.1	binning

cluster updates:

Name	Count	Mean	Error	Tau	Method
Susceptibility	113433	421.642	1.57	0.821	binning

Dogs and fleas: binning analysis



Matthias Troyer | 3

Correlated quantities

• How do we calculate the errors of functions of correlated measurements?

- specific heat
- Binder cumulant ratio

$$c_V = \frac{\left\langle E^2 \right\rangle - \left\langle E \right\rangle^2}{T^2}$$

$$U = \frac{\left\langle m^4 \right\rangle}{\left\langle m^2 \right\rangle^2}$$

- The naïve way of assuming uncorrelated errors is wrong!
- It is not even enough to calculate all crosscorrelations due to nonlinearities except if the errors are tiny!

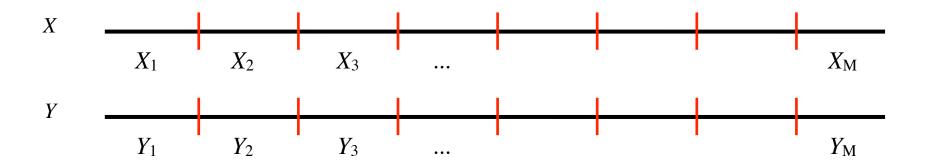
January 29, 2009 Matthias Troyer Matthias Troyer

Simplest idea: split the time series and evaluate for each segment

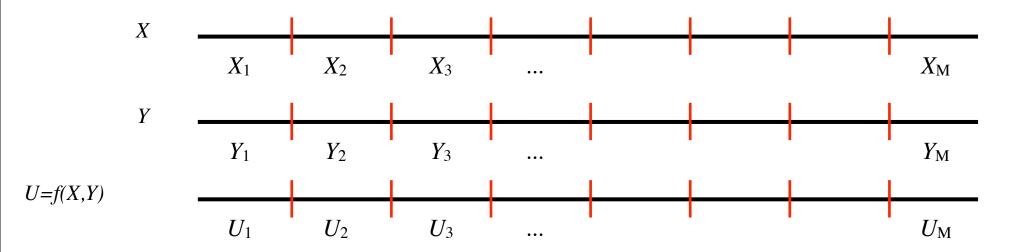
X

Y

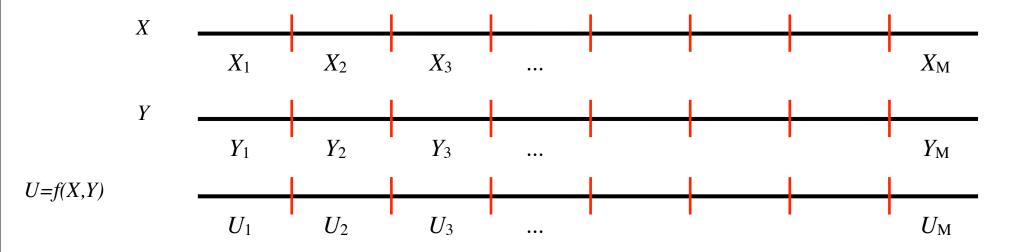
Simplest idea: split the time series and evaluate for each segment



Simplest idea: split the time series and evaluate for each segment



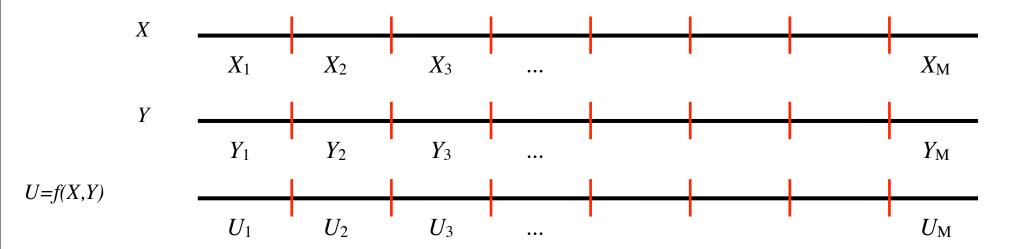
Simplest idea: split the time series and evaluate for each segment



$$\langle U \rangle \approx \overline{U} = \frac{1}{M} \sum_{i=1}^{M} U_i$$

$$\Delta U \approx \sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M} (U_i - \overline{U})^2}$$

Simplest idea: split the time series and evaluate for each segment



$$\langle U \rangle \approx \overline{U} = \frac{1}{M} \sum_{i=1}^{M} U_i$$

$$\Delta U \approx \sqrt{\frac{1}{M(M-1)} \sum_{i=1}^{M} (U_i - \overline{U})^2}$$

Problem: can be unstable and noisy for nonlinear functions such as X/Y

Jackknife-analysis

Evaluate the function on all and all but one segment

$$U_{0} = f\left(\frac{1}{M}\sum_{i=1}^{M}X_{i}, \frac{1}{M}\sum_{i=1}^{M}Y_{i}\right)$$

$$U_{1} = f\left(\frac{1}{M-1} \sum_{i=2}^{M} X_{i}, \frac{1}{M-1} \sum_{i=2}^{M} Y_{i}\right)$$

$$U_{j} = f\left(\frac{1}{M-1} \sum_{\substack{i=1 \ i \neq j}}^{M} X_{i}, \frac{1}{M-1} \sum_{\substack{i=1 \ i \neq j}}^{M} Y_{i}\right)$$

Jackknife-analysis

Evaluate the function on all and all but one segment

$$U_{0} = f\left(\frac{1}{M}\sum_{i=1}^{M}X_{i}, \frac{1}{M}\sum_{i=1}^{M}Y_{i}\right)$$

$$U_{1} = f\left(\frac{1}{M-1}\sum_{i=2}^{M}X_{i}, \frac{1}{M-1}\sum_{i=2}^{M}Y_{i}\right)$$

$$\vdots$$

$$U_{j} = f\left(\frac{1}{M-1}\sum_{i=1}^{M}X_{i}, \frac{1}{M-1}\sum_{i=1}^{M}Y_{i}\right)$$

$$\langle U \rangle \approx U_0 - (M - 1)(\overline{U} - U_0)$$

$$\overline{U} = \frac{1}{M} \sum_{i=1}^{M} U_i$$

$$\Delta U \approx \sqrt{\frac{M-1}{M} \sum_{i=1}^{M} (U_i - \overline{U})^2}$$

ALPS Alea library in C++

- The ALPS class library implements reliable error analysis
 - Adding a measurement:

```
alps::RealObservable mag;
...
mag << new_value;</pre>
```

Evaluating measurements

```
std::cout << mag.mean() << " +/- " << mag.error();
std::cout "Autocorrelation time: " << mag.tau();</pre>
```

- Correlated quantities?
 - Such as in Binder cumulant ratios $\langle m^4 \rangle / \langle m^2 \rangle^2$
 - ALPS library uses jackknife analysis to get correct errors

```
alps::RealObsEvaluator binder = mag4/(mag2*mag2);
std::cout << binder.mean() << " +/- " << binder.error();</pre>
```

ALPS Alea library in Python

- The ALPS class library implements reliable error analysis
 - Adding a measurement:

```
mag = pyalps.pyalea.RealObservable('Magnetization');
...
mag << new_value;</pre>
```

Evaluating measurements

```
print mag.mean, " +/- ", mag.error;
print "Autocorrelation time: ", mag.tau;
```

- Correlated quantities?
 - Such as in Binder cumulant ratios $\langle m^4 \rangle / \langle m^2 \rangle^2$
 - ALPS library uses jackknife analysis to get correct errors of functions of data, after reading data from file

```
print mag4/(mag2*mag2)
```

DPHYS

The Swendsen-Wang algorithm

Matthias Troyer

Autocorrelation effects

The Metropolis algorithm creates a Markov chain

$$c_1 \rightarrow c_2 \rightarrow \dots \rightarrow c_i \rightarrow c_{i+1} \rightarrow \dots$$

successive configurations are correlated, leading to an increased statistical error

$$\Delta A = \sqrt{\left\langle \left(\overline{A} - \left\langle A \right\rangle\right)^2 \right\rangle} = \sqrt{\frac{\operatorname{Var} A}{M}} (1 + 2\tau_A)$$

Critical slowing down at second order phase transition

$$\tau \propto L^2$$

• Exponential tunneling problem at first order phase transition $\tau \propto \exp(L^{d-1})$

From local to cluster updates

Energy of configurations in Ising model

 \blacksquare – *J* if parallel:

+ J if anti-parallel:

- Probability for flip
 - Anti-parallel: flipping lowers energy, always accepted

Parallel:

$$(\uparrow)\uparrow \longrightarrow \downarrow \uparrow$$

no change with probability

$$1 - \exp(-2\beta J)$$

!!!

From local to cluster updates

- Energy of configurations in Ising model
 - -J if parallel: $\uparrow \uparrow \downarrow \downarrow$
 - + J if anti-parallel:
- Probability for flip
 - Anti-parallel: flipping lowers energy, always accepted

Parallel:

$$(\uparrow) \uparrow \longrightarrow \downarrow \uparrow$$

no change with probability

$$1 - \exp(-2\beta J)$$
 !!!

Alternative: flip both!

$$P = \exp(-2J/T)$$

$$P = 1 - \exp(-2J/T)$$

Swendsen-Wang Cluster-Updates

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

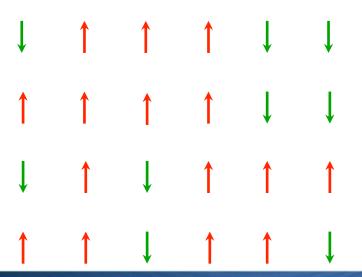
$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

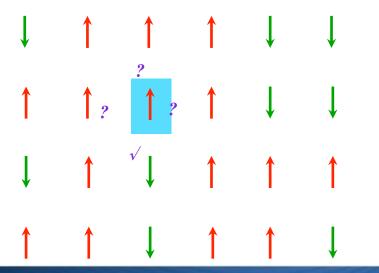
- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$



- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$



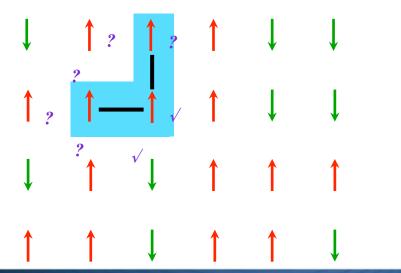
Shall we flip neighbor?

Matthias Troyer January 29, 2009

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$

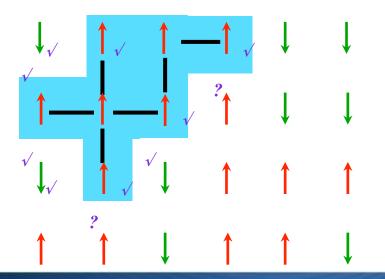


Shall we flip neighbor?

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$

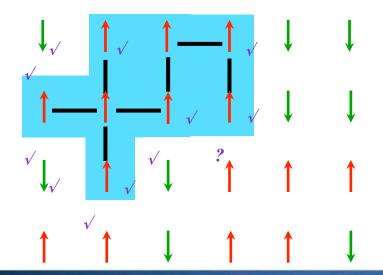


Shall we flip neighbor?

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$

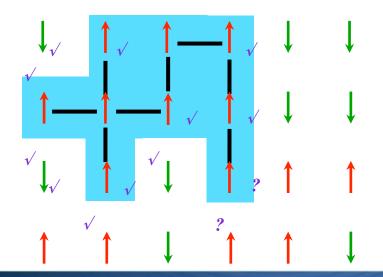


Shall we flip neighbor?

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with
 - Otherwise: also flip neighbor!

$$P = \exp(-2\beta J)$$

• Repeat for all flipped spins => cluster updates $P = 1 - \exp(-2\beta J)$

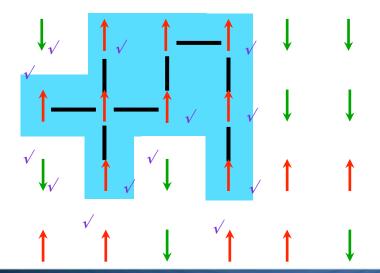


Shall we flip neighbor?

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

$$P = \exp(-2\beta J)$$

- Otherwise: also flip neighbor!
- Repeat for all flipped spins => cluster updates $P = 1 \exp(-2\beta J)$



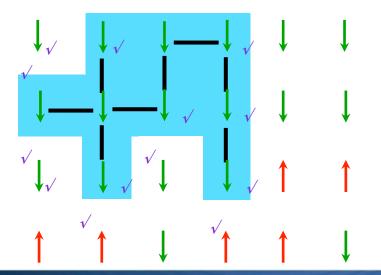
Shall we flip neighbor?

- No critical slowing down (Swendsen and Wang, 1987) !!!
- Ask for each spin: "do we want to flip it against its neighbor?"
 - antiparallel: yes
 - parallel: costs energy
 - Accept with

 $P = \exp(-2\beta J)$

Otherwise: also flip neighbor!

• Repeat for all flipped spins => cluster updates $P = 1 - \exp(-2\beta J)$



Done building cluster

Flip all spins in cluster

DPHYS

6. Quantum Monte Carlo

Matthias Troyer

Not as easy as classical Monte Carlo

$$Z = \sum_{c} e^{-E_c/k_B T}$$

- Calculating the eigenvalues E_c is equivalent to solving the problem
- Need to find a mapping of the quantum partition function to a classical problem

$$Z = \operatorname{Tr} e^{-\beta H} \equiv \sum_{c} p_{c}$$

• "Negative sign" problem if some $p_c < 0$

- Feynman (1953) lays foundation for quantum Monte Carlo
- Map quantum system to classical world lines

THE

PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

Second Series, Vol. 91, No. 6

SEPTEMBER 15, 1953

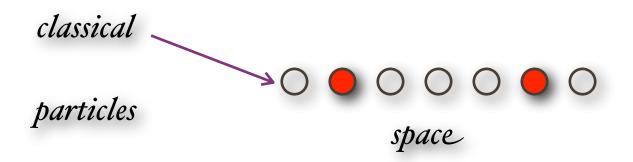
Atomic Theory of the a Transition in Helium

R. P. FEYNMAN

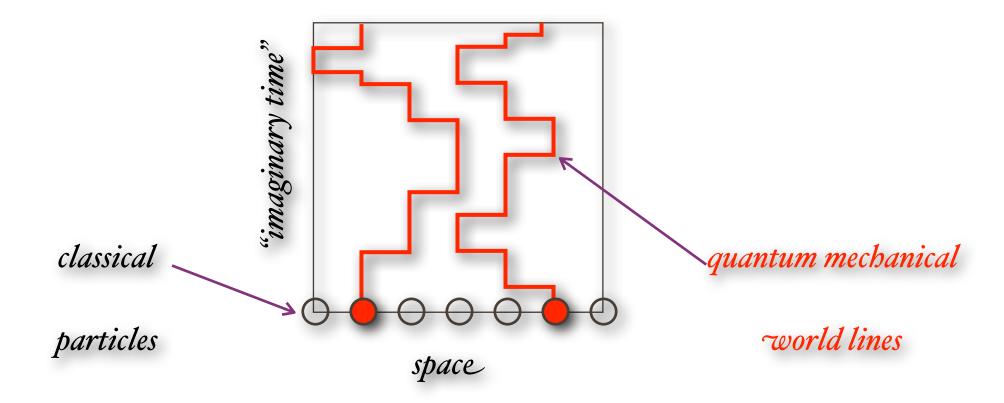
California Institute of Technology, Pasadena, California

(Received May 15, 1953)

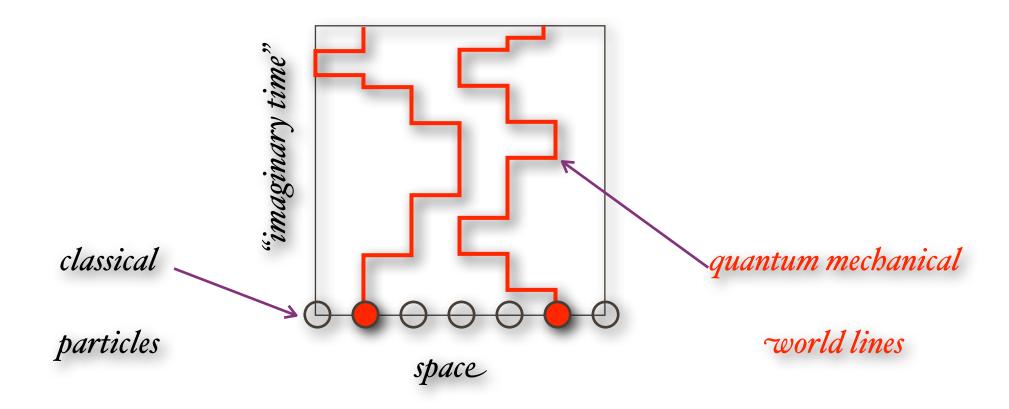
- Feynman (1953) lays foundation for quantum Monte Carlo
- Map quantum system to classical world lines



- Feynman (1953) lays foundation for quantum Monte Carlo
- Map quantum system to classical world lines



- Feynman (1953) lays foundation for quantum Monte Carlo
- Map quantum system to classical world lines



Use Metropolis algorithm to update world lines

Institute for Theoretical Physics

Diagrammatic QMC

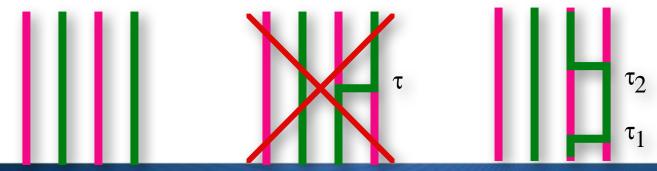
- Split the Hamiltonian into diagonal term H₀ and perturbation V
- Then perform time-dependent perturbation theory

$$H = H_0 + V, \quad H_0 = \sum_{\langle i,j \rangle} J_{ij}^z S_i^z S_j^z - \sum_i h S_i^z, \quad V = \sum_{\langle i,j \rangle} J_{ij}^{xy} (S_i^x S_j^x + S_i^y S_j^y)$$

$$Z = \operatorname{Tr}(e^{-\beta H}) = \operatorname{Tr}(e^{-\beta H_0} \operatorname{Te}^{-\int_0^\beta d\tau V(\tau)})$$

$$Z = \text{Tr}(e^{-\beta H_0} (1 - \int_0^\beta d\tau V(\tau) + \int_0^\beta d\tau_1 \int_{\tau_1}^\beta d\tau_2 V(\tau_1) V(\tau_2) + ...))$$

Each term is represented by a diagram (world line configuration)



Stochastic Series Expansion

based on high temperature expansion, developed by Sandvik

$$Z = \operatorname{Tr}(e^{-\beta H}) = \sum_{n=0}^{\infty} (-\beta)^n \operatorname{Tr}(H^n)$$

$$= \sum_{n=0}^{\infty} \frac{\beta^n}{n!} \sum_{|\alpha\rangle} \sum_{(b_1, \dots, b_n)} \langle \alpha | \prod_{i=1}^n (-H_{b_i}) | \alpha \rangle$$
with $H = \sum_i H_i$

$$H_{b_1}$$

Similar world line representation but without times assigned

The Suzuki-Trotter Decomposition

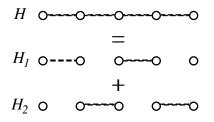
- Generic mapping of a quantum spin system to Ising model
 - basis of most discrete time QMC algorithms
 - not limited to special models
- Split Hamiltonian into two easily diagonalized pieces

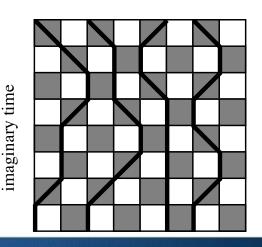
$$H = H_1 + H_2$$

$$e^{-\varepsilon H} = e^{-\varepsilon (H_1 + H_2)} = e^{-\varepsilon H_1} e^{-\varepsilon H_2} + O(\varepsilon^2)$$

Obtain the checkerboard decomposition

$$Z = \operatorname{Tr}[\exp(-\beta H)] = \operatorname{Tr}[e^{-\beta(H_1 + H_2)}]$$
$$= \operatorname{Tr}[e^{-(\beta/M)H_1}e^{-(\beta/M)H_2}]^M + O(\beta^3/M^2)$$





January 29, 2009 Matthias Troyer space direction 53

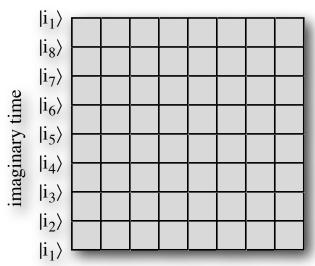
Path integral QMC

Use Trotter-Suzuki or a a simple low-order formula

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

gives a mapping to a (d+1)-dimensional classical model



space direction

partition function of quantum system is sum over classical world lines

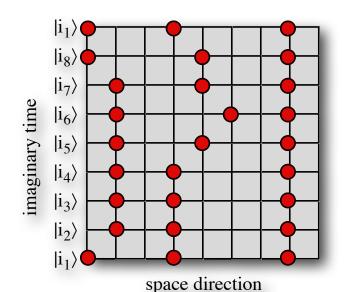
Path integral QMC

Use Trotter-Suzuki or a a simple low-order formula

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

gives a mapping to a (d+1)-dimensional classical model



place particles (spins)

partition function of quantum system is sum over classical world lines

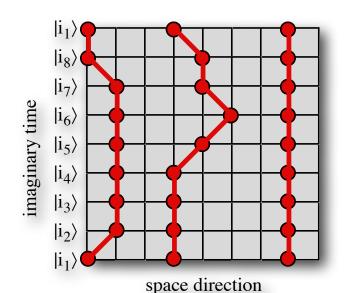
Path integral QMC

Use Trotter-Suzuki or a a simple low-order formula

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

gives a mapping to a (d+1)-dimensional classical model



place particles (spins)

for Hamiltonians conserving particle number (magnetization) we get world lines

partition function of quantum system is sum over classical world lines

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

Examples: particles with nearest neighbor repulsion

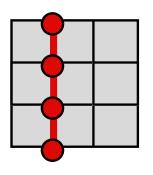
$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j$$

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

Examples: particles with nearest neighbor repulsion

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j$$



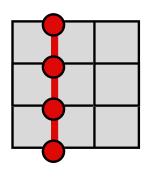
1

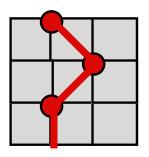
$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

Examples: particles with nearest neighbor repulsion

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j$$





1

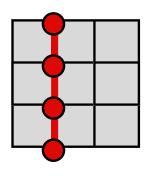
$$(\Delta \tau t)^2$$

$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

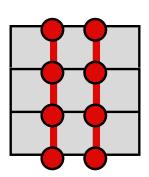
$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

Examples: particles with nearest neighbor repulsion

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j$$







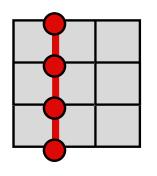
$$(1 - \Delta \tau V)^3$$

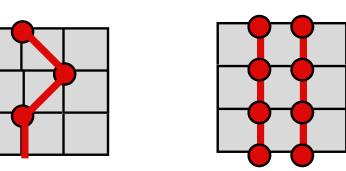
$$Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} e^{-M\Delta \tau H} = \operatorname{Tr} \left(e^{-\Delta \tau H} \right)^{M} = \operatorname{Tr} \left(1 - \Delta \tau H \right)^{M} + O(\beta \Delta \tau)$$

$$= \sum_{\{(i_{1} \dots i_{M})\}} \langle i_{1} | 1 - \Delta \tau H | i_{2} \rangle \langle i_{2} | 1 - \Delta \tau H | i_{3} \rangle \cdots \langle i_{M} | 1 - \Delta \tau H | i_{1} \rangle$$

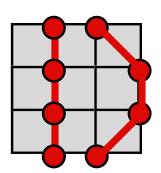
Examples: particles with nearest neighbor repulsion

$$H = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) + V \sum_{\langle i,j \rangle} n_i n_j$$





$$(1 - \Delta \tau V)^3$$



$$(\Delta \tau t)^2$$

Matthia€ Troyer

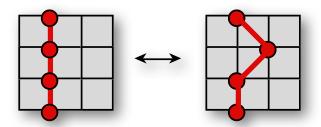
- just move the world lines locally
 - probabilities given by matrix element of Hamiltonian
 - example: tight binding model

$$H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_{i+1}^{} + c_{i+1}^{} c_i^{} \right)$$

- just move the world lines locally
 - probabilities given by matrix element of Hamiltonian
 - example: tight binding model

$$H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_{i+1}^{} + c_{i+1}^{\dagger} c_i^{} \right)$$

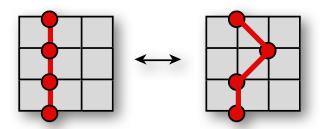
introduce or remove two kinks:



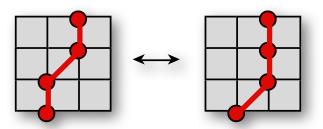
- just move the world lines locally
 - probabilities given by matrix element of Hamiltonian
 - example: tight binding model

$$H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_{i+1}^{} + c_{i+1}^{} c_i^{} \right)$$

introduce or remove two kinks:



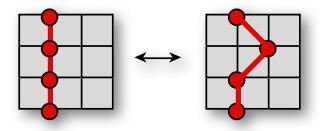
shift a kink:



- just move the world lines locally
 - probabilities given by matrix element of Hamiltonian
 - example: tight binding model

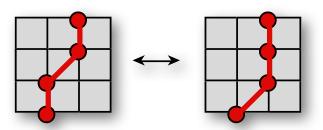
$$H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_{i+1}^{} + c_{i+1}^{\dagger} c_i^{} \right)$$

introduce or remove two kinks:



$$P=1$$
 $P=(\Delta \tau t)^2$

shift a kink:

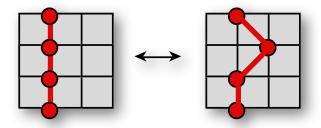


$$P = \Delta \tau t$$

- just move the world lines locally
 - probabilities given by matrix element of Hamiltonian
 - example: tight binding model

$$H = -t \sum_{\langle i,j \rangle} \left(c_i^{\dagger} c_{i+1}^{} + c_{i+1}^{\dagger} c_i^{} \right)$$

introduce or remove two kinks:

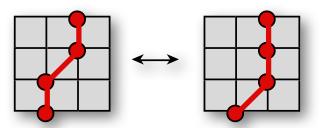


$$P=1$$
 $P=(\Delta \tau t)^2$

$$P_{\rightarrow} = \min[1, (\Delta \tau t)^2]$$

$$P_{\leftarrow} = \min[1,1/(\Delta \tau t)^2]$$

shift a kink:

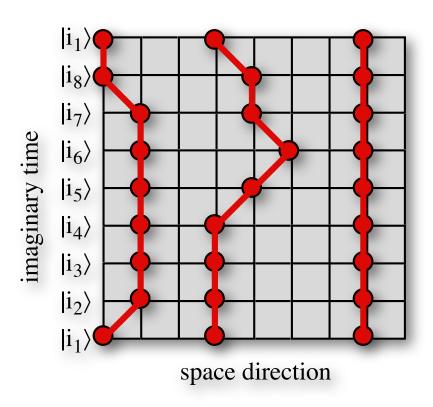


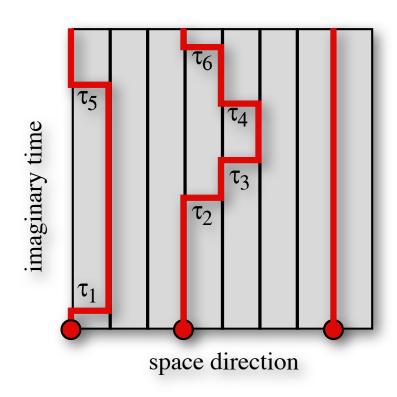
$$P = \Delta \tau t$$

$$P_{\rightarrow} = P_{\leftarrow} = 1$$

The continuous time limit

the limit Δτ→0 can be taken in the algorithm [Prokof'ev et al., Pis'ma v Zh.Eks. Teor. Fiz. 64, 853 (1996)]





- discrete time: store configuration at all time steps
- continuous time: store times at which configuration changes

Continuous time algorithms just sample time-dependent perturbation expansion

$$Z = \operatorname{Tr}\left(e^{-\beta H_0} \mathcal{T} e^{-\int_0^\beta d\tau \mathcal{V}(\tau)}\right)$$

Examples: particles with nearest neighbor repulsion

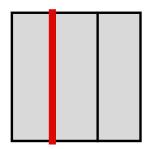
$$H_0 = V \sum_{\langle i,j \rangle} n_i n_j \qquad \qquad \mathcal{V} = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i)$$

 Continuous time algorithms just sample time-dependent perturbation expansion

$$Z = \operatorname{Tr}\left(e^{-\beta H_0} \mathcal{T} e^{-\int_0^\beta d\tau \mathcal{V}(\tau)}\right)$$

Examples: particles with nearest neighbor repulsion

$$H_0 = V \sum_{\langle i,j \rangle} n_i n_j \qquad \qquad \mathcal{V} = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i)$$



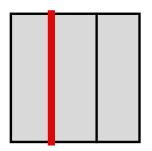
1

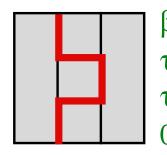
Continuous time algorithms just sample time-dependent perturbation expansion

$$Z = \operatorname{Tr}\left(e^{-\beta H_0} \mathcal{T} e^{-\int_0^\beta d\tau \mathcal{V}(\tau)}\right)$$

Examples: particles with nearest neighbor repulsion

$$H_0 = V \sum_{\langle i,j \rangle} n_i n_j$$





 $t^2 d au_1 d au_2$

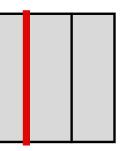
 $\mathcal{V} = -t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i)$

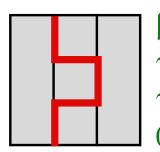
Continuous time algorithms just sample time-dependent perturbation expansion

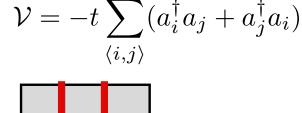
$$Z = \operatorname{Tr}\left(e^{-\beta H_0} \mathcal{T} e^{-\int_0^\beta d\tau \mathcal{V}(\tau)}\right)$$

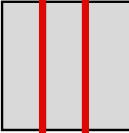
Examples: particles with nearest neighbor repulsion

$$H_0 = V \sum_{\langle i,j \rangle} n_i n_j$$









1

 $t^2 d\tau_1 d\tau_2$

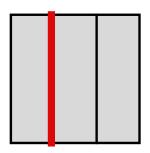
 $e^{-\beta V}$

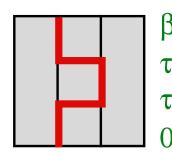
Continuous time algorithms just sample time-dependent perturbation expansion

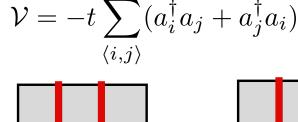
$$Z = \operatorname{Tr}\left(e^{-\beta H_0} \mathcal{T} e^{-\int_0^\beta d\tau \mathcal{V}(\tau)}\right)$$

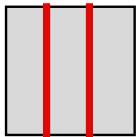
Examples: particles with nearest neighbor repulsion

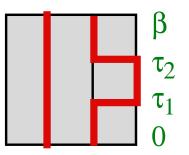
$$H_0 = V \sum_{\langle i,j \rangle} n_i n_j$$











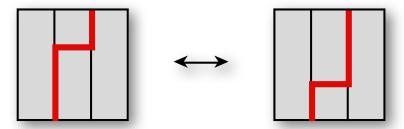
 $t^2 d au_1 d au_2$

$$e^{-\beta V}$$

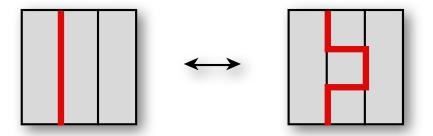
$$e^{-\beta V} \qquad e^{-\tau_1 V} e^{-(\beta - \tau_2)V} t^2 d\tau_1 d\tau_2$$

Matthia Troyer January 29, 2009

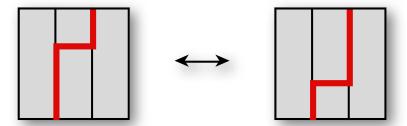
Shift a kink to any new position:



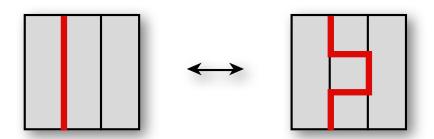
Insert a pair of kinks:



Shift a kink to any new position:

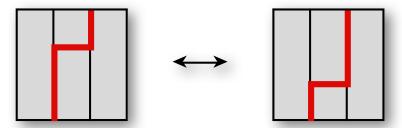


Insert a pair of kinks:



$$P = 1$$
 $P = (\Delta \tau t)^2 \rightarrow 0$

Shift a kink to any new position:



Insert a pair of kinks:



$$P = 1$$

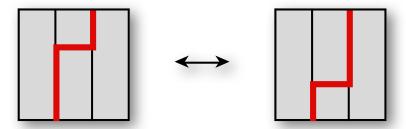
$$P = \left(\Delta \tau t\right)^2 \to 0$$

vanishing

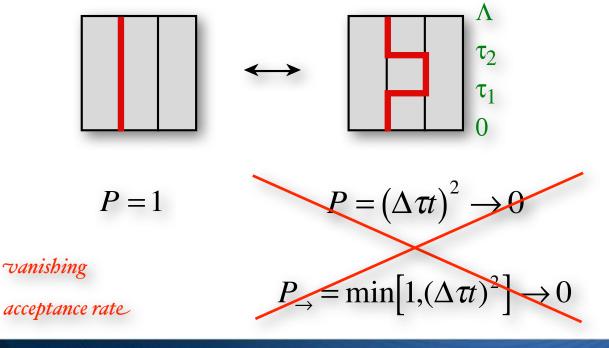
acceptance rate

$$P_{\rightarrow} = \min[1,(\Delta \tau t)^2] \rightarrow 0$$

Shift a kink to any new position:



Insert a pair of kinks:



solution:

integrate over all possible

insertions in an interval

$$P = \int_{0}^{\Lambda} \int_{\tau_{1}}^{\Lambda} t^{2} d\tau_{2} d\tau_{1} = \frac{\Lambda^{2} t^{2}}{2} \neq 0$$

$$P_{\rightarrow} = \min[1, \Lambda^2 t^2 / 2] \neq 0$$

Matthi**5**9 Troyer

January 29, 2009

Advantages of continuous time

- No need to extrapolate in time step
 - a single simulation is sufficient
 - no additional errors from extrapolation
- Less memory and CPU time required
 - Instead of a time step Δτ << t we only have to store changes in the configuration happening at mean distances ≈ t
 - Speedup of $1/\Delta \tau \approx 10$
- Conceptual advantage
 - we directly sample a diagrammatic perturbation expansion

January 29, 2009 Matthias Troyer | Matthias Troyer | 60

DPHYS

61

7. The loop algorithm

Matthias Troyer

DPHYS

Department of Physics Institute for Theoretical Physics

Problems with local updates

Institute for Theoretical Physics

Problems with local updates

- Local updates cannot change global topological properties
 - number of world lines (particles, magnetization) conserved
 - winding conserved
 - braiding conserved
 - cannot sample grand-canonical ensemble

Problems with local updates

- Local updates cannot change global topological properties
 - number of world lines (particles, magnetization) conserved
 - winding conserved
 - braiding conserved
 - cannot sample grand-canonical ensemble
- Critical slowing down at second order phase transitions
 - solved by cluster updates

Problems with local updates

- Local updates cannot change global topological properties
 - number of world lines (particles, magnetization) conserved
 - winding conserved
 - braiding conserved
 - cannot sample grand-canonical ensemble
- Critical slowing down at second order phase transitions
 - solved by cluster updates
- Tunneling problem at first order phase transitions

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates

$$C_i \rightarrow (C_i,G) \rightarrow G \rightarrow (C_{i+1},G) \rightarrow C_{i+1}$$

Detailed balance is satisfied

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates

$$C_i \xrightarrow{} (C_i,G) \to G \to (C_{i+1},G) \to C_{i+1}$$
 1. Pick a graph $GP[G] = \frac{V(G)}{W(C)}$

Detailed balance is satisfied

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates2. Discard configuration

$$C_i \to (C_i,G) \to G \to (C_{i+1},G) \to C_{i+1}$$
 1. Pick a graph $GP[G] = \frac{V(G)}{W(C)}$

Detailed balance is satisfied

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates 2. Discard configuration

$$C_i \xrightarrow{} (C_i,G) \xrightarrow{} G \xrightarrow{} (C_{i+1},G) \xrightarrow{} C_{i+1}$$
1. Pick a graph $GP[G] = \frac{V(G)}{W(C)}$
3. Pick any allowed new configuration

- Detailed balance is satisfied

Matthias Troyer January 29, 2009

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates 2. Discard configuration 4. Discard graph

$$C_i \xrightarrow{} (C_i,G) \xrightarrow{\downarrow} G \xrightarrow{} (C_{i+1},G) \xrightarrow{\downarrow} C_{i+1}$$
1. Pick a graph $GP[G] = \frac{V(G)}{W(C)}$
3. Pick any allowed new configuration

- Detailed balance is satisfied

Matthias Troyer January 29, 2009

Extend the phase space to configurations + graphs (C,G)

$$Z = \sum_{C} W(C) = \sum_{C} \sum_{G} W(C,G) \text{ with } W(C) = \sum_{G} W(C,G)$$

Choose graph weights independent of configuration

$$W(C,G) = \Delta(C,G)V(G)$$
 where $\Delta(C,G) = \begin{cases} 1 & \text{graph } G \text{ allowed for } C \\ 0 & \text{otherwise} \end{cases}$

Perform updates 2. Discard configuration 4. Discard graph

$$C_i \xrightarrow{} (C_i,G) \xrightarrow{\downarrow} G \xrightarrow{} (C_{i+1},G) \xrightarrow{\downarrow} C_{i+1}$$
1. Pick a graph $GP[G] = \frac{V(G)}{W(C)}$
3. Pick any allowed new configuration

- Detailed balance is satisfied

$$\frac{P[(C_i,G) \to (C_{i+1},G)]}{P[(C_{i+1},G) \to (C_i,G)]} = \frac{1/N_C}{1/N_C} = 1 = \frac{\Delta(C_{i+1},G)V(G)}{\Delta(C_i,G)V(G)} = \frac{P[(C_{i+1},G)]}{P[(C_i,G)]}$$

Matthias Troyer January 29, 2009

Cluster algorithms: Ising model

• We need to find $\Delta(C,G)$ and V(G) to fulfill $W(C) = \sum_{G} W(C,G) = \sum_{G} \Delta(C,G)V(G)$

$\Delta(C,G)$	0-0	0 0	W(C)
$\uparrow\uparrow$, $\downarrow\downarrow$	1	1	$e^{+\beta J}$
$\uparrow\downarrow$, $\downarrow\uparrow$	0	1	$e^{-eta J}$
W(G)	$e^{+eta J}$ - $e^{-eta J}$	$e^{-eta J}$	

- $\hbox{ This means for: } \qquad C_i \quad \rightarrow \quad (C_i,G) \quad \rightarrow \quad G$
 - Parallel spins: pick connected graph o-o with $P(\text{ o-o }) = \frac{e^{+\beta J} + e^{-\beta J}}{e^{+\beta J}} = 1 e^{-2\beta J}$
 - Antiparallel spins: always pick open graph o o
- And for: $G \rightarrow (C_{i+1},G) \rightarrow C_{i+1}$
 - Configuration must be allowed ⇒ connected spins must be parallel ⇒ connected spins flipped as one cluster

PHYSICAL REVIEW LETTERS

VOLUME 70 15 FEBRUARY 1993 NUMBER 7

Cluster Algorithm for Vertex Models

Hans Gerd Evertz, (1), (a) Gideon Lana, (2), (b) and Mihai Marcu (2), (c)

(1) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306

(2) School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, 69978 Tel Aviv, Israel

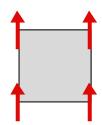
(Received 17 November 1992)

We present a new type of cluster algorithm that strongly reduces critical slowing down in simulations of vertex models. Since the clusters are closed paths of bonds, we call it the *loop algorithm*. The basic steps in constructing a cluster are the breakup and the freezing of vertices. We concentrate on the case of the F model, which is a subset of the six-vertex model exhibiting a Kosterlitz-Thouless transition. The loop algorithm is also applicable to simulations of other vertex models and of one-and two-dimensional quantum spin systems.

PACS numbers: 02.70.-c, 05.50.+q, 68.35.Rh, 75.10.Jm

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

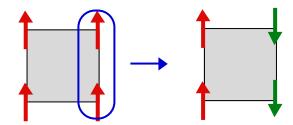
- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

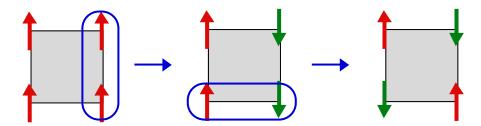
- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

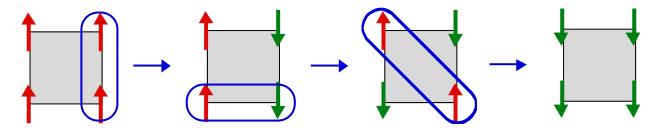
- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

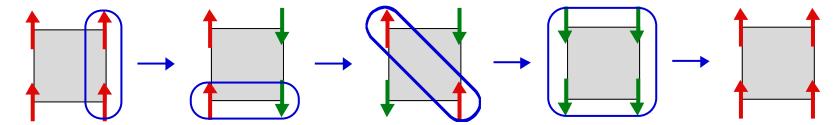
- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

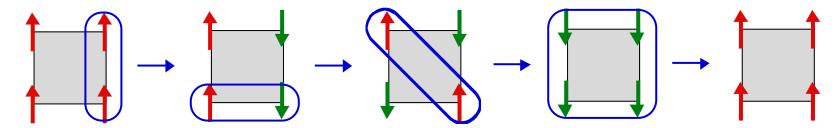
- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

- Swendsen-Wang cluster algorithm for the Ising model
 - two choices on each bond: connected (flip both spins) or disconnected

- all connected spins are flipped together
- Loop algorithm is a generalization to quantum systems
 - world lines may not be broken
 - always 2 or 4 spins must be flipped together



four different connection types

Hamiltonian of spin-1/2 models

Consider a 2-site quantum spin-1/2 model

$$H_{XXZ} = J_{xz} (S_1^x S_2^x + S_1^y S_2^y) + J_z S_1^z S_2^z - h (S_1^z + S_2^z)$$

$$= \frac{J_{xz}}{2} (S_1^+ S_2^- + S_1^- S_2^+) + J_z S_1^z S_2^z - h (S_1^z + S_2^z)$$

• Heisenberg model if $J_{xy} = J_z = J$

$$H = J\vec{S}_1\vec{S}_2 - h(S_1^z + S_2^z)$$

Hamiltonian matrix in 2-site basis

$$\{ |\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle \}$$

$$H_{XXZ} = \begin{pmatrix} \frac{J_z}{4} + h & 0 & 0 & 0\\ 0 & -\frac{J_z}{4} & \frac{J_{xy}}{2} & 0\\ 0 & \frac{J_{xy}}{2} & -\frac{J_z}{4} & 0\\ 0 & 0 & 0 & \frac{J_z}{4} - h \end{pmatrix}$$

Cluster building rules: XY-like antiferromagnet

$$H_{XXZ} = \frac{J_{xz}}{2} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_i^- S_j^+) + J_z \sum_{\langle i,j \rangle} S_i^z S_j^z$$

with
$$0 \le J_z \le J_{xy}$$

$$W(C) = \sum_{G} W(C,G) = \sum_{G} \Delta(C,G)V(G)$$

$\Delta(C,G)$				W(C)
	1	1	_	$1+\left(J_{z}/4\right) d\tau$
	1	_	0	$1\text{-}(J_z/4)\ d\tau$
	_	1	1	$(J_{xy}/2) d\tau$
V(G)	$1-(J_z/4)\ d\tau$	$(J_z/2) d\tau$	$(J_{xy}J_z)/2 d\tau$	

- How do we deal with the vanishing $d\tau$ terms in continuous time?
- First example: the exchange process

Possible graph connections:

Graph weights:

$$\frac{J_z}{2}d\tau$$

$$\frac{J_{xy}-J_z}{2}dx$$

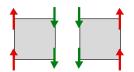
Probability to pick graph: (divide weight by sum)

$$\frac{J_z}{J_{xy}}$$

$$\frac{J_{xy} - J_z}{J_{xy}}$$

- The infinitesimal $d\tau$ terms cancel out
 - Randomly pick one of the graphs (with appropriate probabilities)

- How do we deal with the vanishing $d\tau$ terms in continuous time?
- Second example: the "decay" process



Possible graph connections:

Graph weights:

$$1 - \frac{J_z}{4} d\tau$$

$$\frac{J_z}{2}d\tau$$

Probability to pick graph: (divide weight by sum)

$$1-\frac{J_z}{2}d\tau$$

$$\frac{J_z}{2}d\tau$$

- The infinitesimal $d\tau$ terms remain
- Infinitesimal acceptance rate at infinitely many time steps?

- We have to tackle the problem of vanishing probabilities
 - Example: Heisenberg antiferromagnet

$$P_{\parallel} = 1 - \frac{J}{2} \Delta \tau \to 1$$

$$P_{=} = \frac{J}{2} \Delta \tau \to 0$$

Interpret the connection as a "decay process" where the loop jumps

- We have to tackle the problem of vanishing probabilities
 - Example: Heisenberg antiferromagnet

$$P_{\parallel} = 1 - \frac{J}{2} \Delta \tau \to 1$$

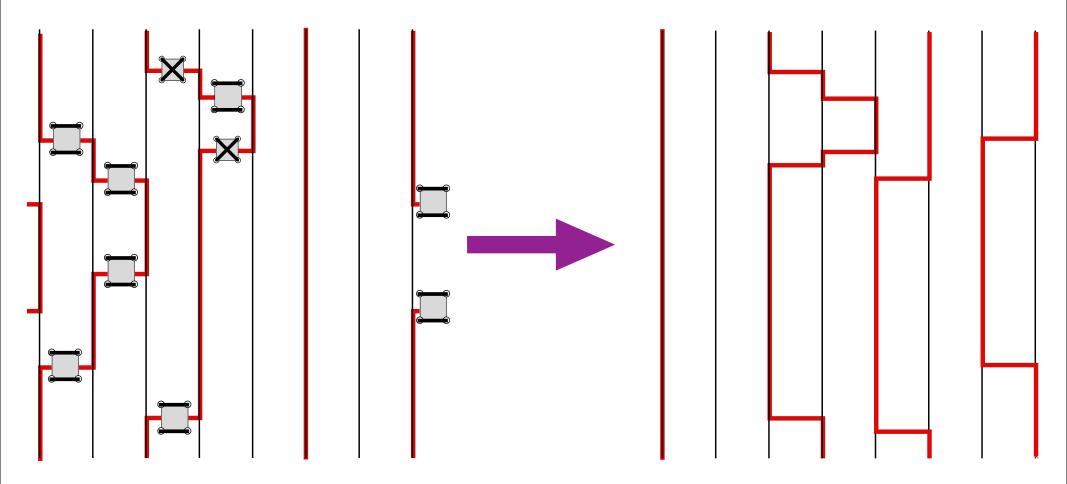
$$P_{=} = \frac{J}{2}\Delta\tau \to 0$$

Interpret the connection as a "decay process" where the loop jumps

$$P_{=} = \frac{J}{2}d\tau$$
decay constant $\lambda = \frac{J}{2}$
mean distance $d = \frac{2}{J}$

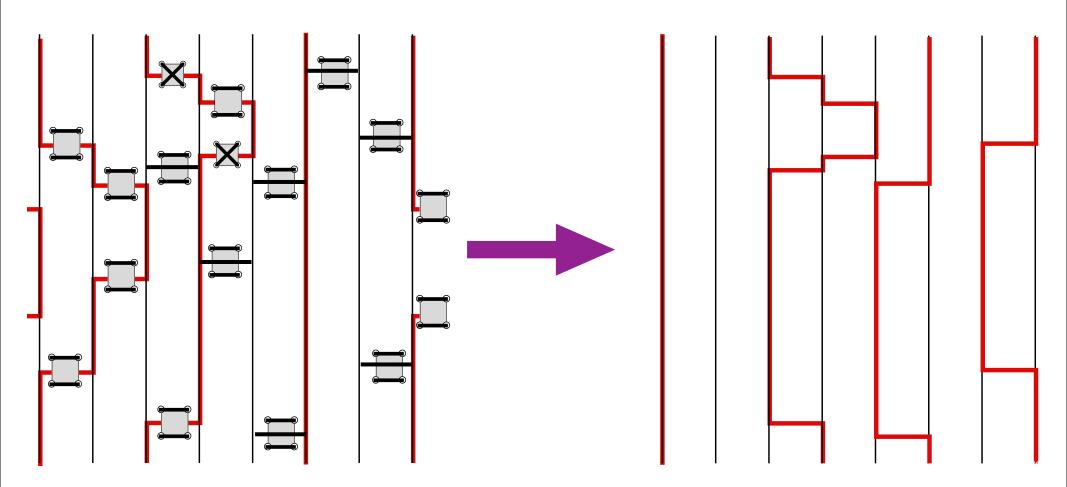
Loop-cluster updates

1. Connect spins according to loop-custer building rules



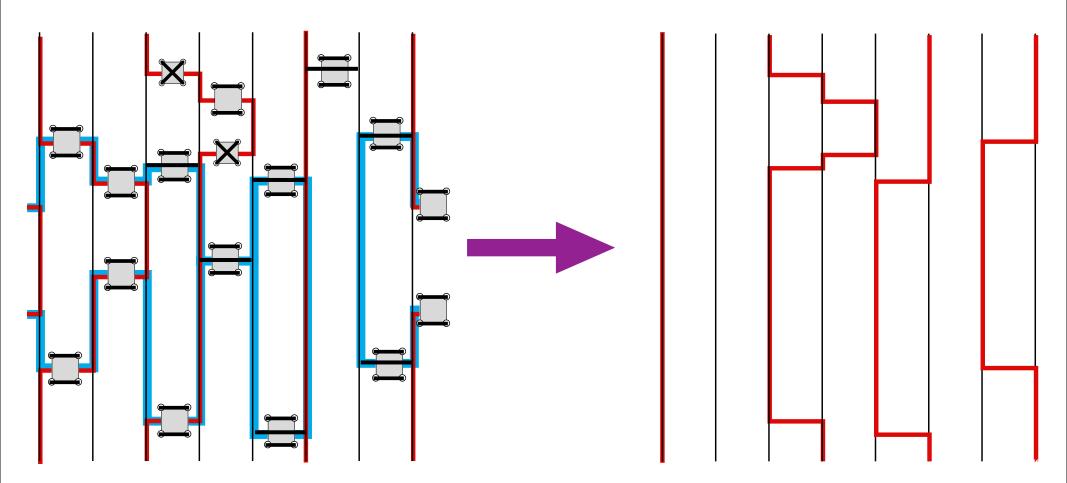
Loop-cluster updates

1. Connect spins according to loop-custer building rules



Loop-cluster updates

- 1. Connect spins according to loop-custer building rules
- 2. Build and flip loop-cluster



Heisenberg antiferromagnet

$$H_{ ext{Heisenberg}} = J \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j$$

$$W(C) = \sum_{G} W(C,G) = \sum_{G} \Delta(C,G)V(G)$$

$\Delta(C,G)$			W(C)
	1	1	$1+(J/4)\ d\tau$
	1	0	1 - $(J/4) d\tau$
	0	1	$(J/2) d\tau$
V(G)	$1-(J/4) d\tau$	$(J/2) d\tau$	

- Connected spins form a cluster and have to be flipped together
- Very simple and deterministic for Heisenberg model

January 29, 2009 Matthias Troyer Toylor Troyer Toylor Troyer

Ising-like ferromagnet

$$H_{XXZ} = -\frac{J_{xz}}{2} \sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_i^- S_j^+) - J_z \sum_{\langle i,j \rangle} S_i^z S_j^z$$

$$W(C) = \sum_{G} W(C,G) = \sum_{G} \Delta(C,G)V(G)$$

with $0 \le J_{xy} \le J_z$

$\Delta(C,G)$				W(C)
	1	0	0	$1\text{-}(J_z/4)\ d\tau$
	1	1	1	$1+(J_z/4)\ d\tau$
	0	1	0	$(J_{xy}/2) d\tau$
V(G)	$1-(J_z/4)\ d\tau$	$(J_{xy}/2) d\tau$	$(J_z$ - $J_{xy})/2 d\tau$	

Now 4-spin freezing graph is needed: connects (freezes) loops

75

Ising ferromagnet

$$H_{\text{Ising}} = -J \sum_{\langle i,j \rangle} S_i^z S_j^z = -\frac{J}{4} \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$

$$W(C) = \sum_{G} W(C,G) = \sum_{G} \Delta(C,G)V(G)$$

$\Delta(C,G)$			W(C)
	1	0	1 - $(J/4) d\tau$
	1	1	$1+(J/4) d\tau$
	0	0	0
V(G)	$1-(J/4) d\tau$	$(J/2) d\tau$	

Two spins are frozen if there is any freezing graph along the world line

$$P_{\text{no freezing}} = \lim_{M \to \infty} (1 - (\beta/M)J/2)^{M} = \exp(-\beta J/2) = \exp(-2\beta J_{classical})$$

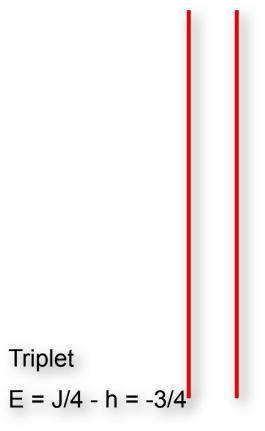
We recover the Swendsen Wang algorithm: probability for no freezing

DPHYS

8. The worm algorithm 76 Matthias Troyer

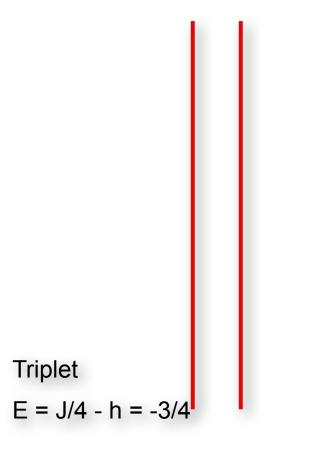
- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1 $H = J\vec{S_1}\vec{S_2} h(S_1^z + S_2^z)$

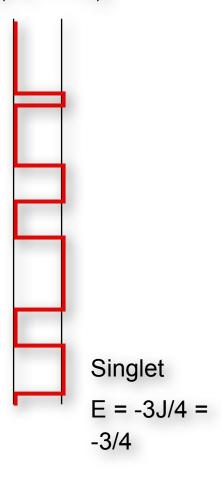
- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1 $H = J\vec{S_1}\vec{S_2} h(S_1^z + S_2^z)$



- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1 $H = J\vec{S_1}\vec{S_2} h(S_1^z + S_2^z)$

$$H = J\vec{S}_{1}\vec{S}_{2} - h(S_{1}^{z} + S_{2}^{z})$$

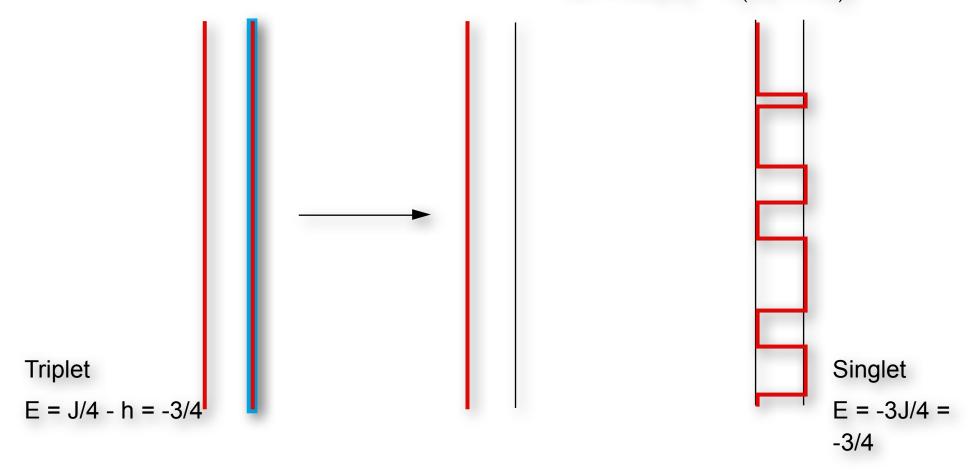




Matthias Troyer January 29, 2009

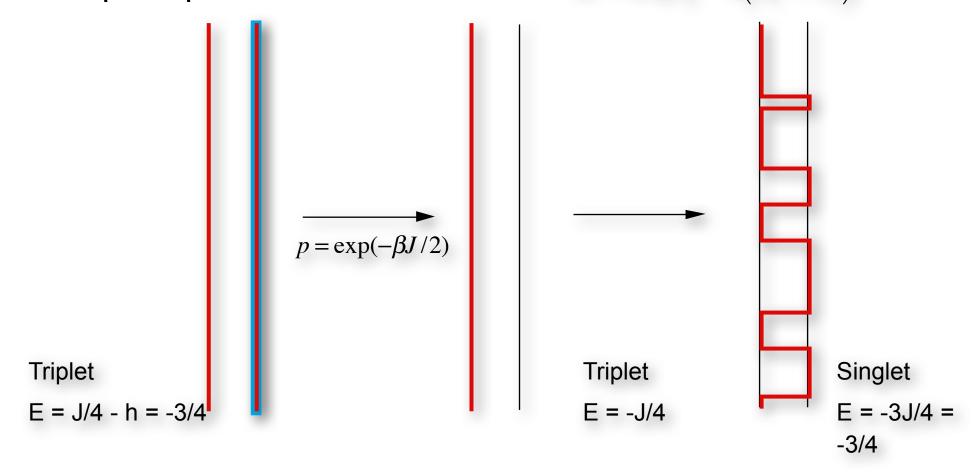
- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1

$$H = J\vec{S}_{1}\vec{S}_{2} - h(S_{1}^{z} + S_{2}^{z})$$

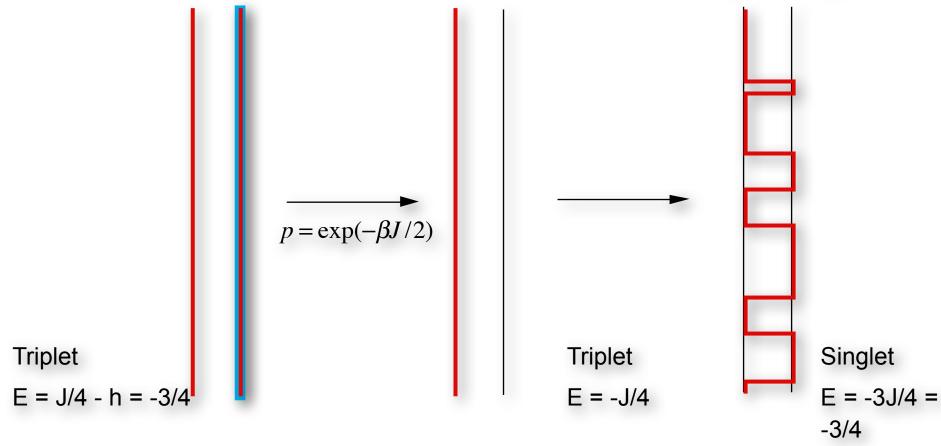


- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1

$$H = J\vec{S}_{1}\vec{S}_{2} - h(S_{1}^{z} + S_{2}^{z})$$



- Loop cluster algorithm requires spin inversion symmetry
 - Magnetic field implemented by a-posteriori acceptance rate
- Example: spin dimer at J = h = 1 $H = J\vec{S_1}\vec{S_2} h(S_1^z + S_2^z)$



Exponential slowdown due to high energy intermediate state

High-T expansion of the Ising model

$$Z = \sum_{s_1...s_N} \prod_{\langle ij \rangle} e^{Ks_i s_j} = \sum_{s_1...s_N} \prod_{\langle ij \rangle} \left[\cosh(K) \left(1 + \tanh(K) s_i s_j \right) \right]$$

i.e.

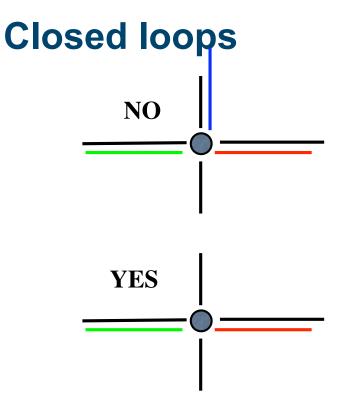
$$Z = \cosh(K)^{2N} \sum_{s_1...s_N} \prod_{bonds} \sum_{n_b=0}^{1} \left[\tanh(K) \right]^{n_b} s_i^{n_b} s_j^{n_b} \right] \propto \sum_{\{n_b\}} \tanh(K)^{\sum n_b} \sum_{s_1...s_N} \prod_{bonds} s_i^{n_b} s_j^{n_b}$$

 $n_b = 0, 1$: **power** associated to bond $\langle ij \rangle$

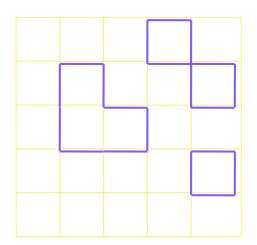
$$\sum_{s_1...s_N} \prod_{\langle ij \rangle} s_i^n s_j^n \equiv \prod_i \sum_{s_i} s_i^{p_i}, \quad p_i \quad \text{total power associated to site i}$$

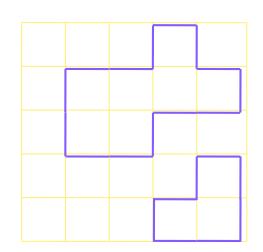
For a spin-1/2 system one has $\sum_{s} s^{p} = 2$ if p is even, zero otherwise

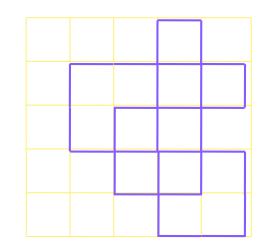
Hence,
$$Z = 2^N \sum_{\{n_b\}} \left[\tanh(K) \right]^{\sum n_b}$$
 (closed loops)



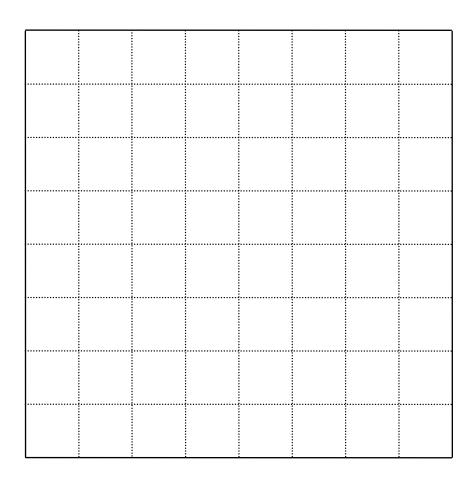
- Nonzero weight only if total even number of bond powers, thus all labeled bonds form closed loops
- Open-ended loops require one additional spin operator for each end: give correlation function measurements







Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

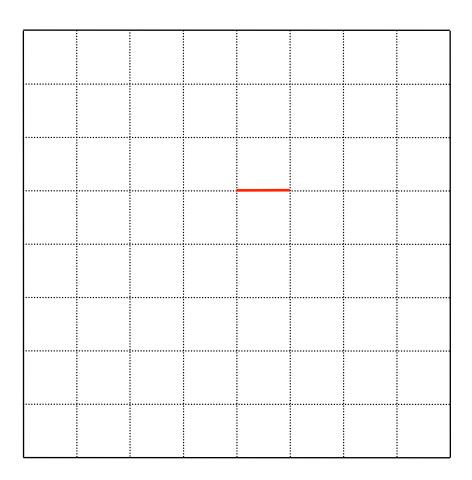
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

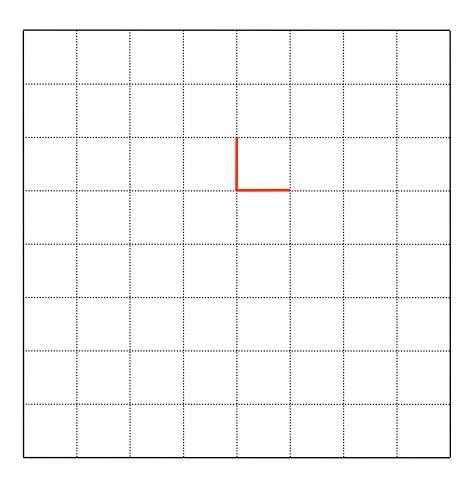
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

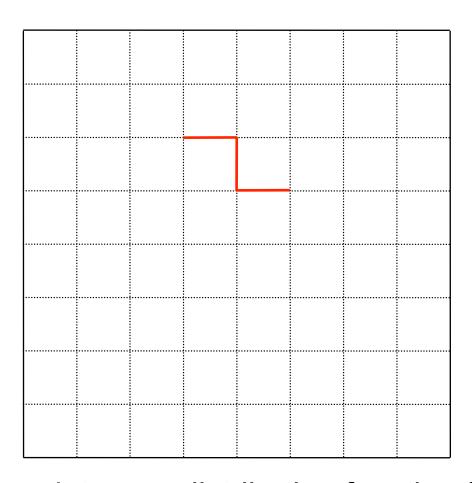
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

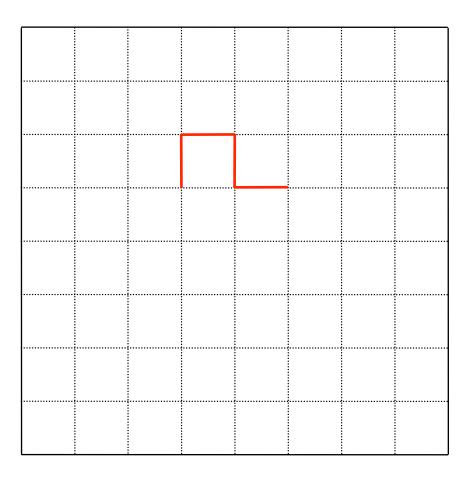
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

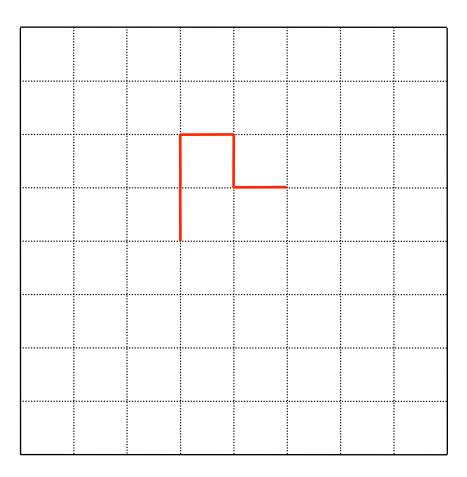
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

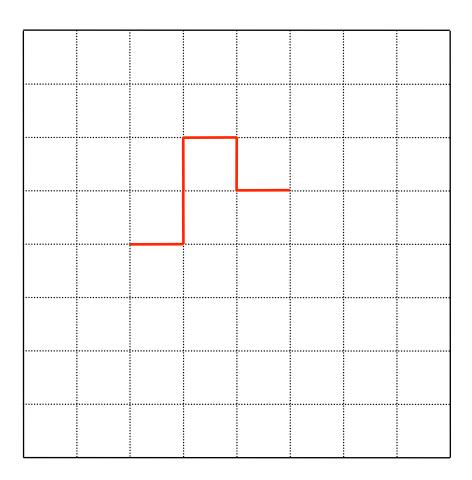
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

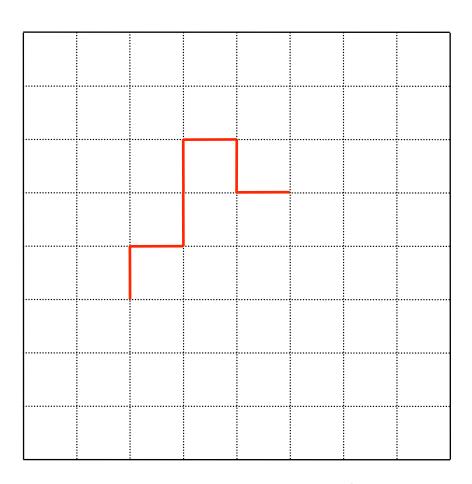
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

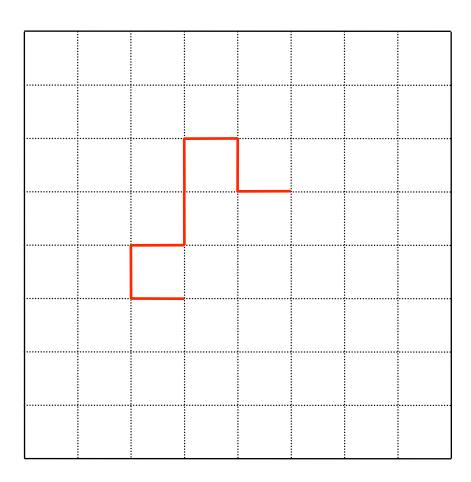
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

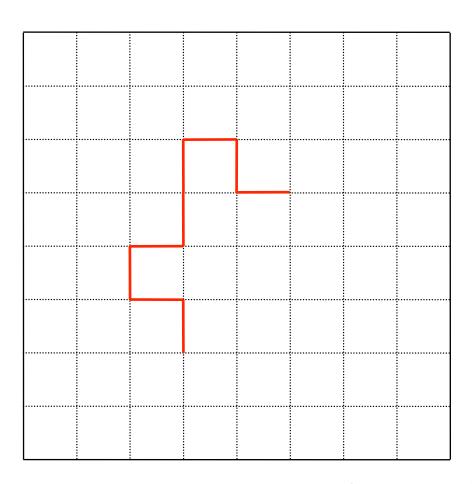
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

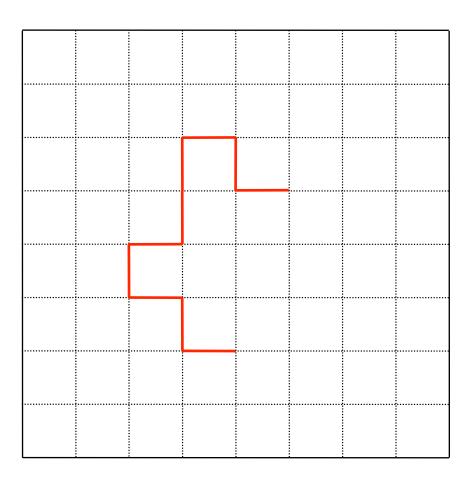
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

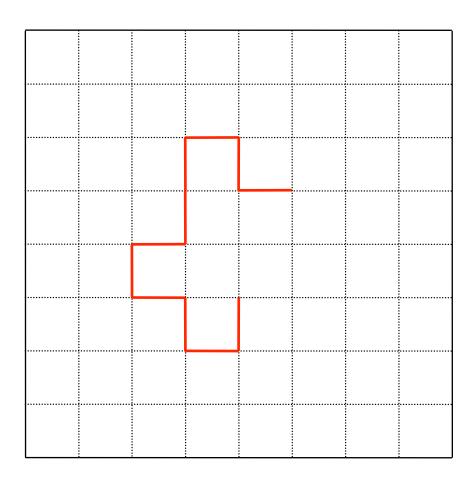
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

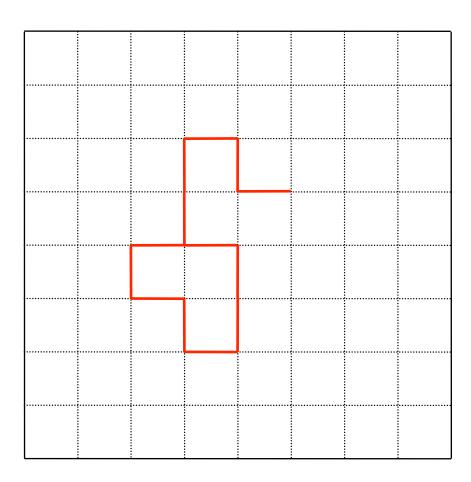
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

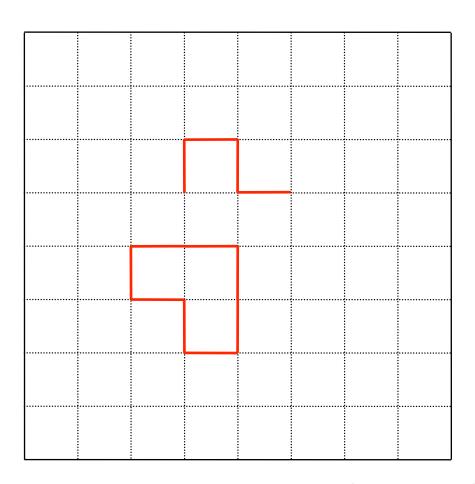
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

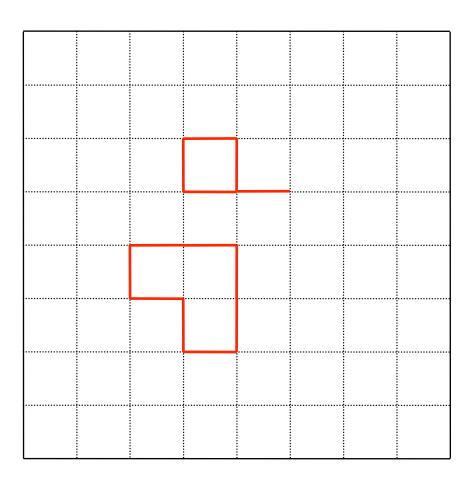
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

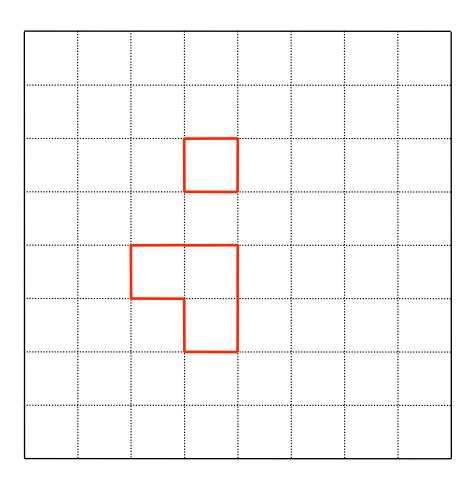
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

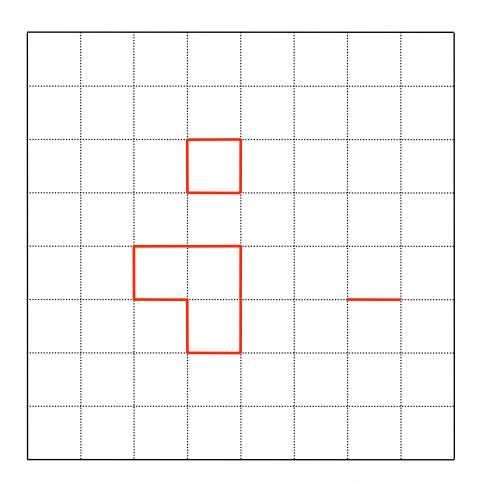
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

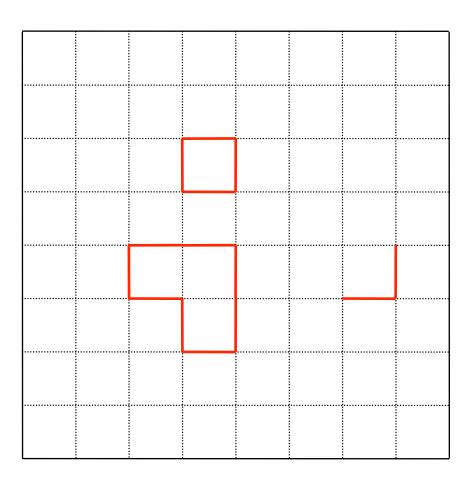
No critical slowing down faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

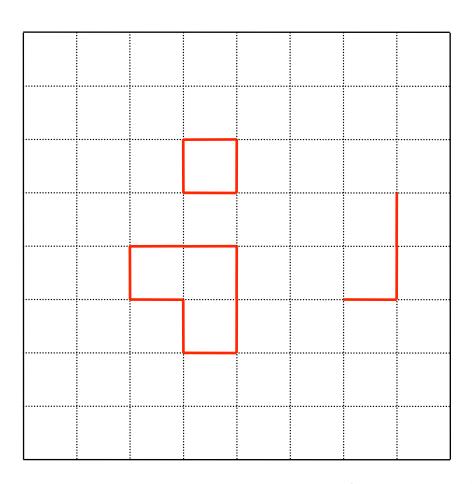
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

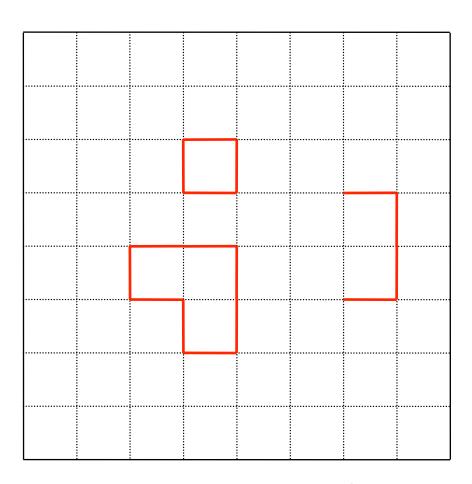
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

Partition function sector

No critical slowing down

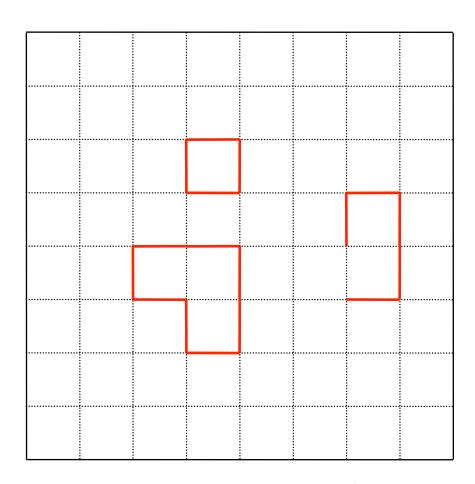
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

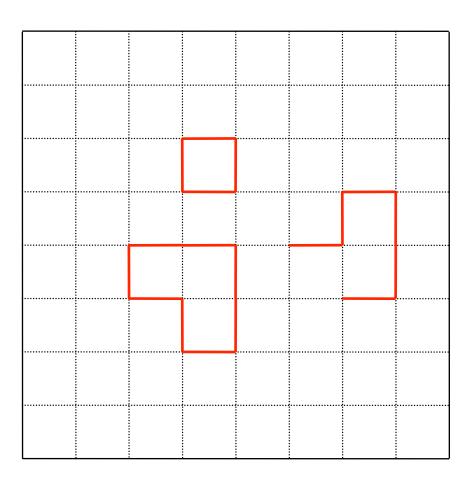
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

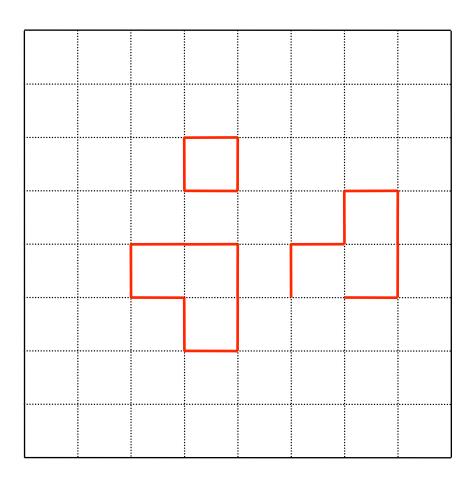
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

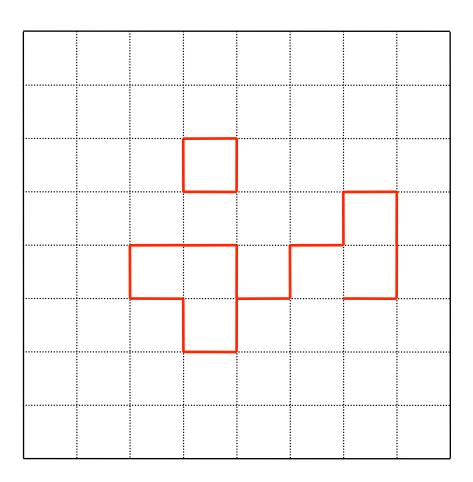
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

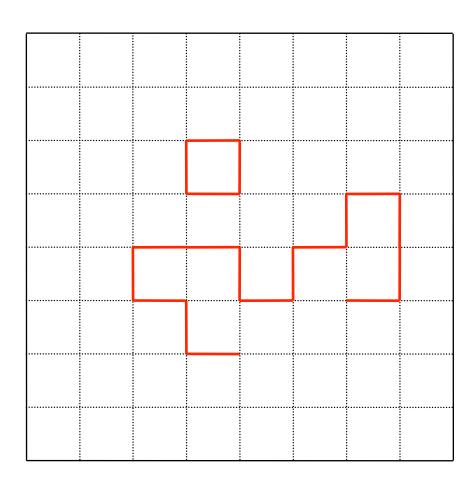
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

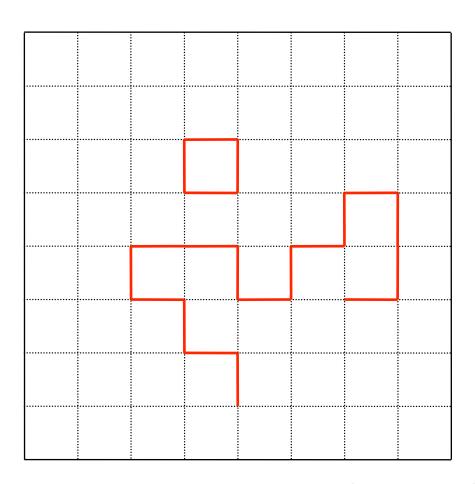
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

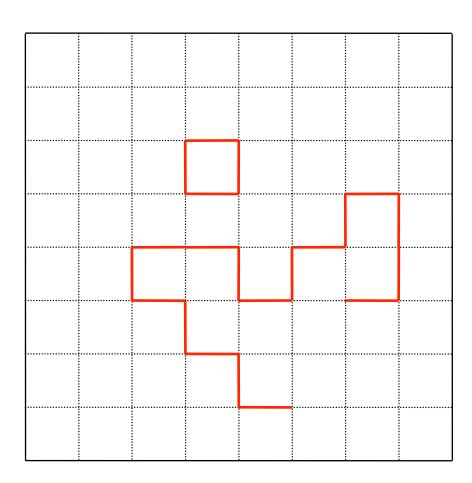
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

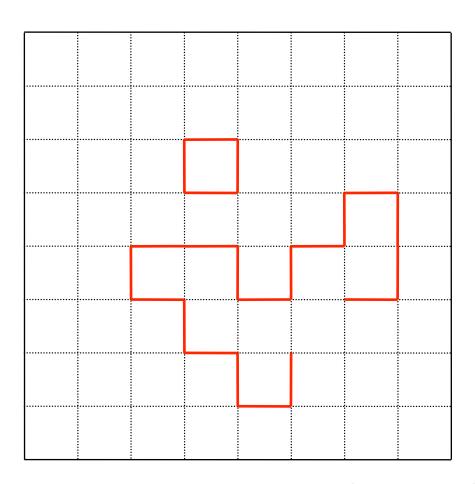
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

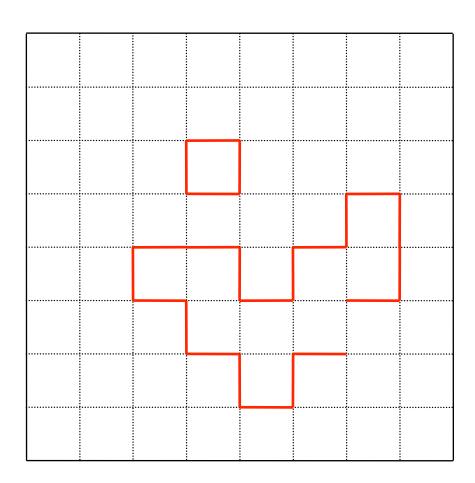
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

No critical slowing down

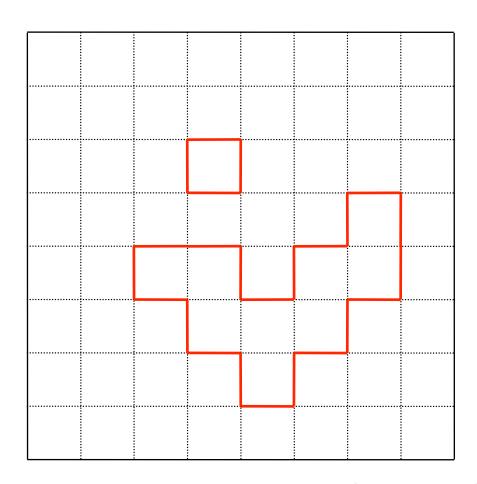
faster than cluster updates

Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

Ordered state: macroscopic entangled loops

Prokof'ev and Svistunov, PRL (2001)



Correlator sector

1

Partition function sector

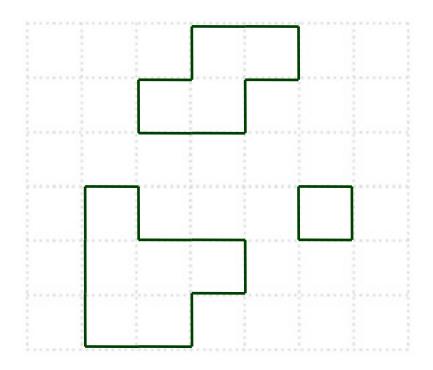
No critical slowing down

faster than cluster updates

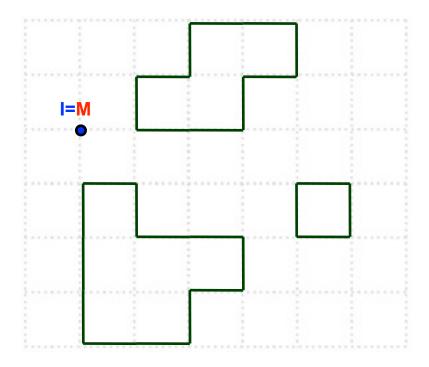
Correlator = distribution function for the ends

Normal state: small loops, short distance between ends

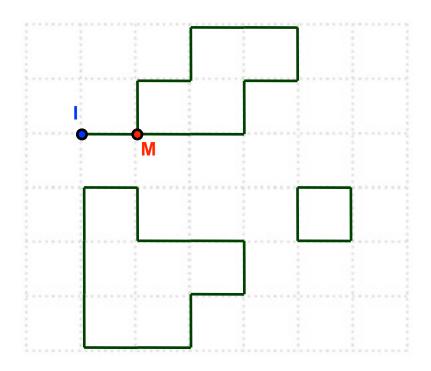
Ordered state: macroscopic entangled loops



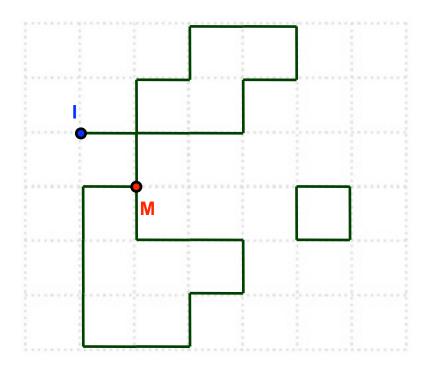
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



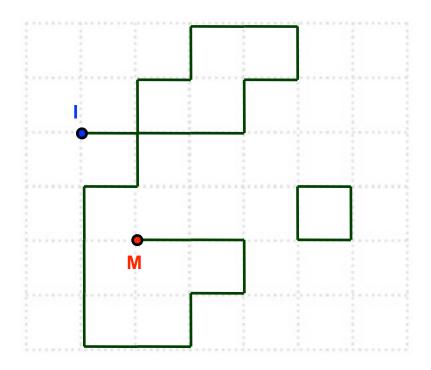
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



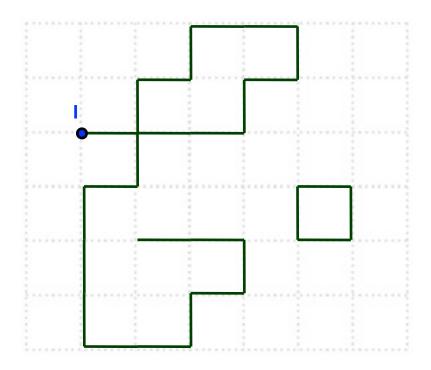
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



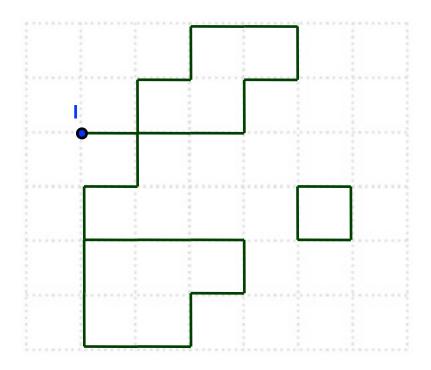
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



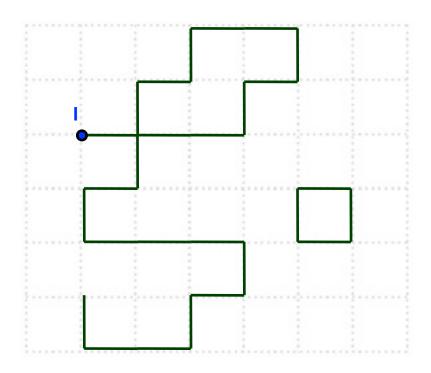
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min $[1, \tanh(J/T)]$ for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



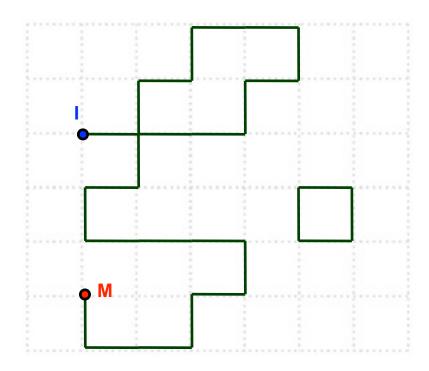
- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates



- If I=M, select a new site for both at random
- Otherwise move I or M in a random direction, with acceptance rates
 - min [1,tanh(J/T)] for n=0 -> n=1
 - min $[1,1/\tanh(J/T)]$ for n=0 -> n=1
- Easier to implement than local updates but faster than cluster updates

Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i)$$
 $H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$

- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet

Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i)$$
 $H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$

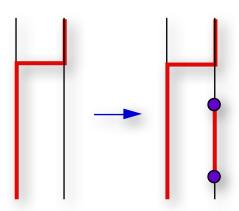
- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet

Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i)$$
 $H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$

- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet

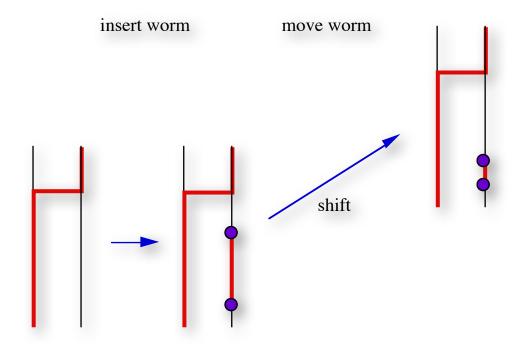
insert worm



Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i)$$
 $H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$

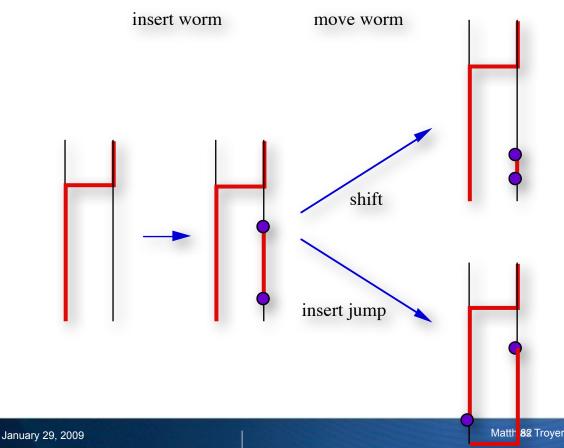
- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet



Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i)$$
 $H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$

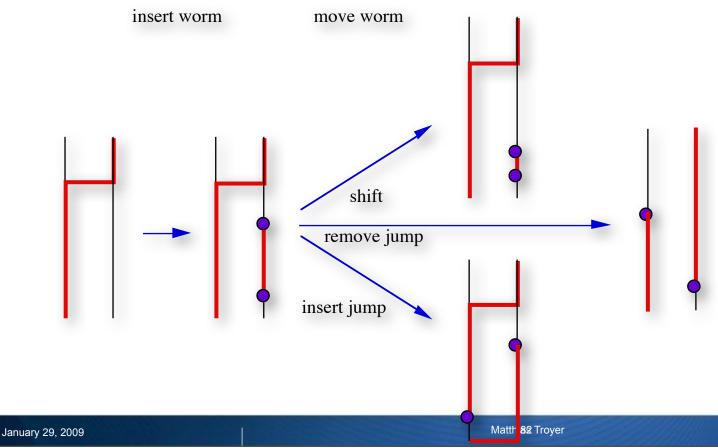
- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet



Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i) \qquad H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$$

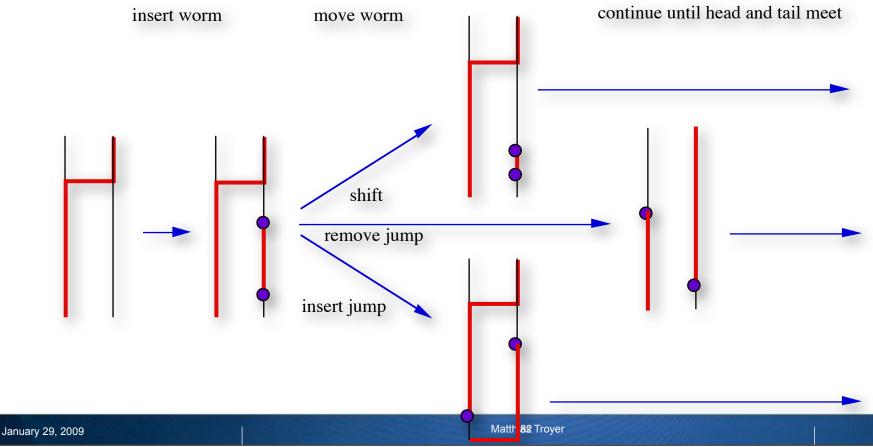
- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet



Break a world line by inserting a pair of creation/annihilation operators

$$H \leftarrow H + \eta \sum (c_i^{\dagger} + c_i) \qquad H \leftarrow H + \eta \sum (S_i^{+} + S_i^{-})$$

- move these operators ("Ira" and "Masha") using local moves
- until Ira and Masha meet

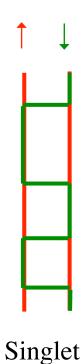


Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1

Triplet

$$E = J/4 - h = -3/4$$

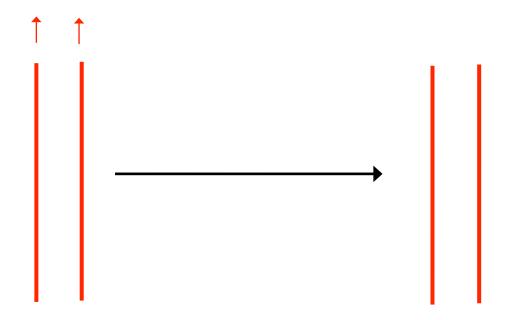


$$E = -3J/4 = -3/4$$

Matthias Troyer January 29, 2009

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

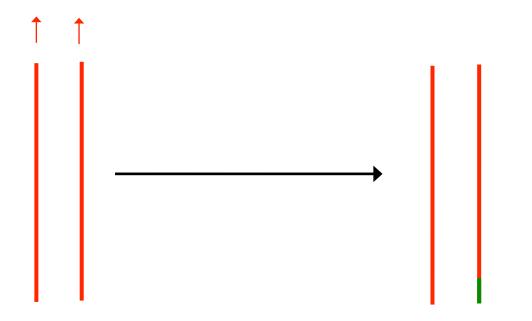
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet

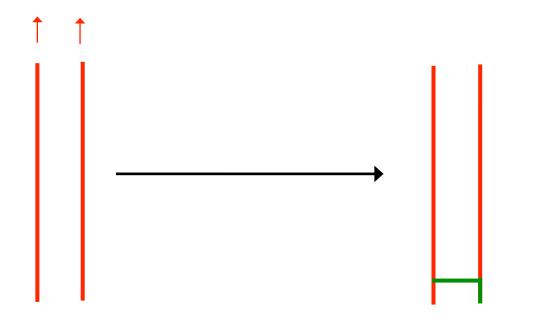
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

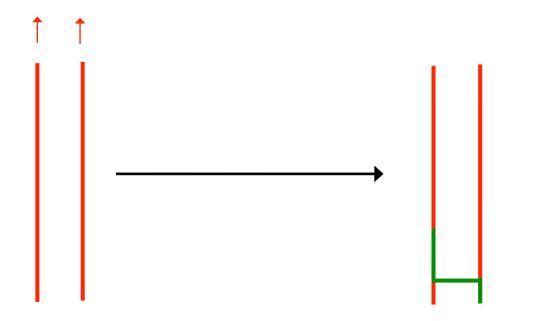
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

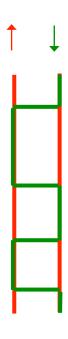
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

$$E = J/4 - h = -3/4$$

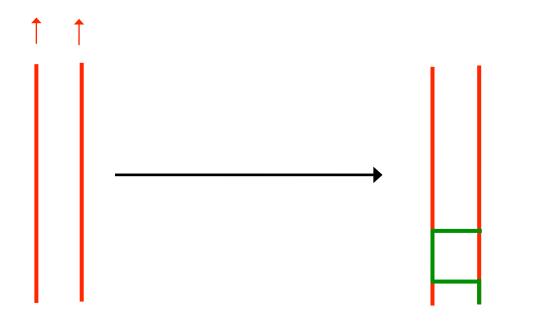


Singlet

$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

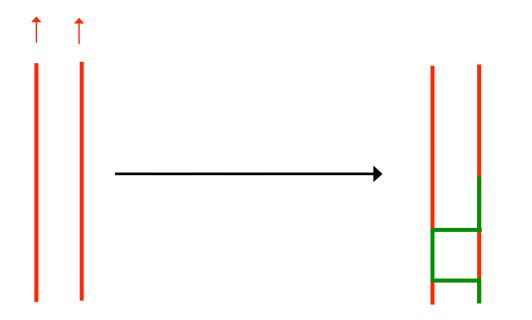
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

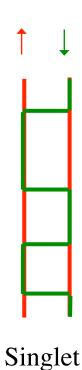
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet

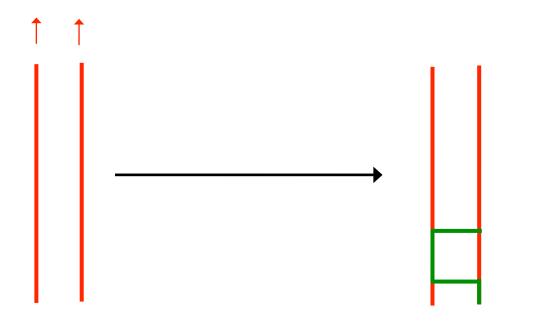
$$E = J/4 - h = -3/4$$



$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

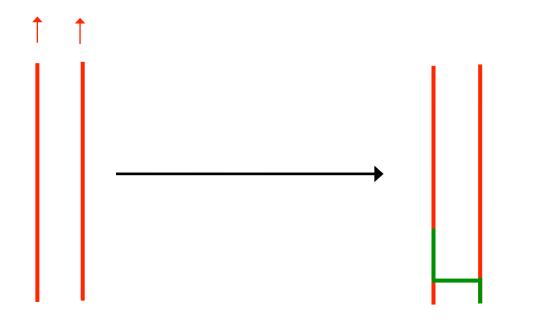
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

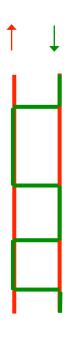
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

$$E = J/4 - h = -3/4$$

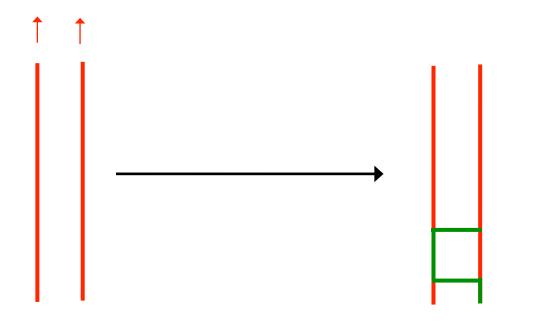


Singlet

$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

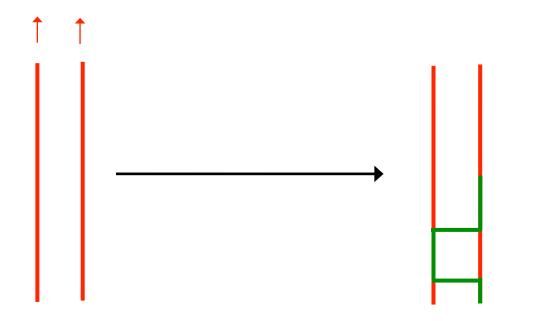
$$E = J/4 - h = -3/4$$

Singlet

$$E = -3J/4 = -3/4$$

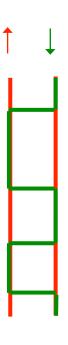
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet

$$E = J/4 - h = -3/4$$

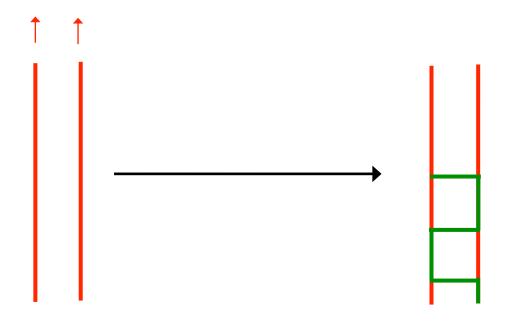


Singlet

$$E = -3J/4 = -3/4$$

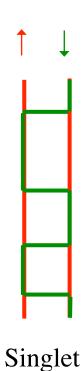
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet

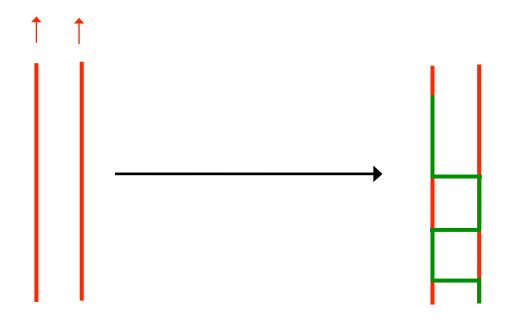
$$E = J/4 - h = -3/4$$



$$E = -3J/4 = -3/4$$

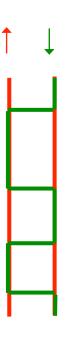
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet

$$E = J/4 - h = -3/4$$

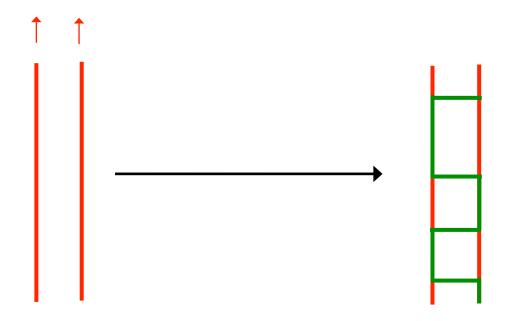


Singlet

$$E = -3J/4 = -3/4$$

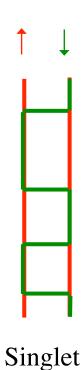
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

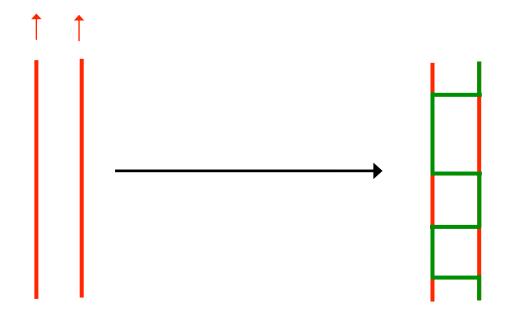
$$E = J/4 - h = -3/4$$



$$E = -3J/4 = -3/4$$

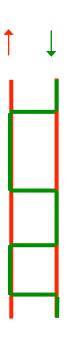
Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h = 1



Triplet

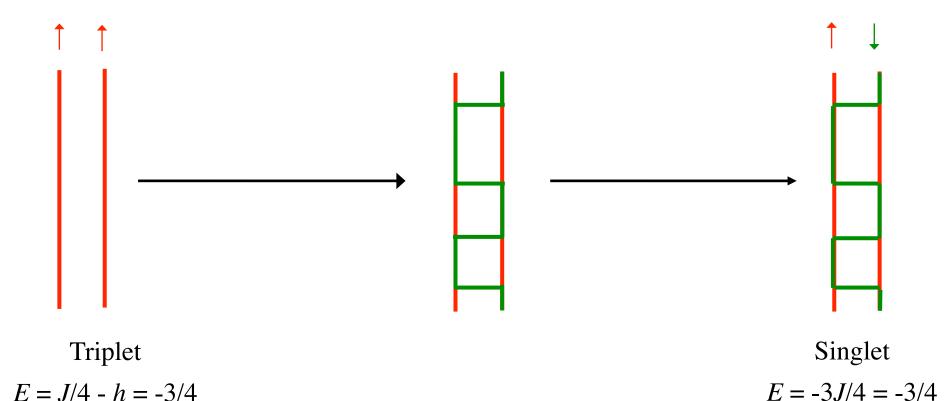
$$E = J/4 - h = -3/4$$



$$E = -3J/4 = -3/4$$

Worm algorithm in a magnetic field

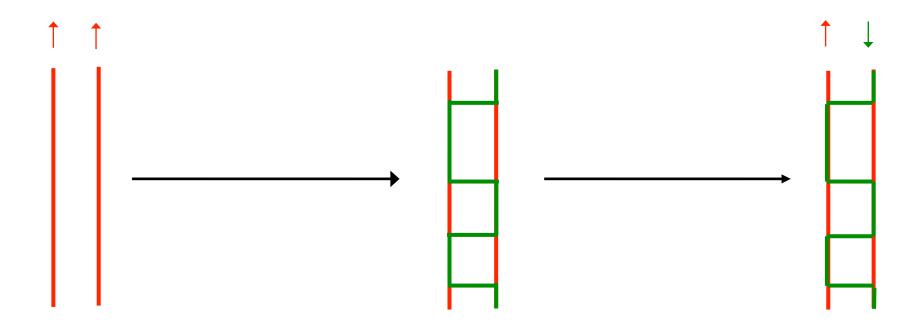
- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Institute for Theoretical Physics

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet E = J/4 - h = -3/4

No high energy intermediate state

E = -3J/4 = -3/4

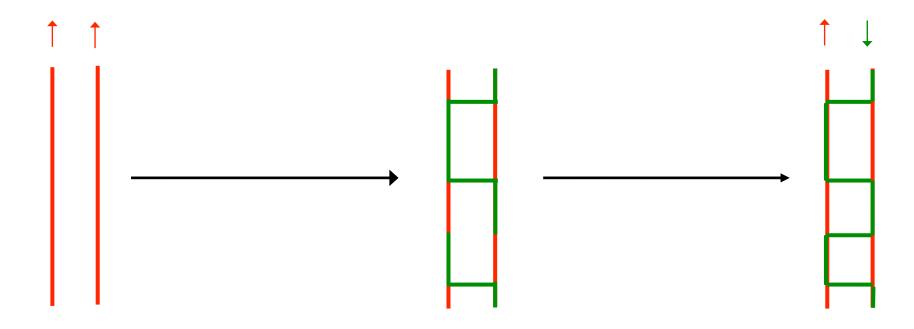
Singlet

Efficient update in presence of a magnetic field

Institute for Theoretical Physics

Worm algorithm in a magnetic field

- Worm algorithm performs a random walk
 - Change of configuration done in small steps
- Example: spin dimer at J = h =1



Triplet E = J/4 - h = -3/4

No high energy intermediate state

E = -3J/4 = -3/4

Singlet

Efficient update in presence of a magnetic field

An earlier attempt

PHYSICAL REVIEW B

VOLUME 27, NUMBER 1

1 JANUARY 1983

Monte Carlo studies of one-dimensional quantum Heisenberg and XY models

John J. Cullen and D. P. Landau

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602

(Received 20 August 1982)

- Prokof'ev et al '98
 - detailed balance at each step of random walk
- Cullen and Landau '83
 - unbiased random walk
 - less efficient since the physics does not enter worm construction

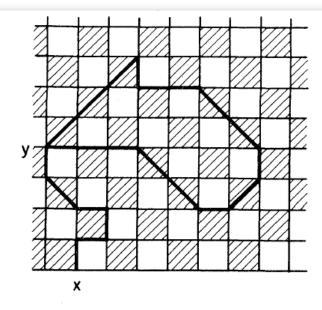


FIG. 5. String of spins generated until it intersects itself, the tail being discarded.

DPHYS

9. Overview of modern QMC algorithms

Matthias Troyer

Institute for Theoretical Physics

Wordern Monte Carlo algorithms

Which system sizes can be studied?

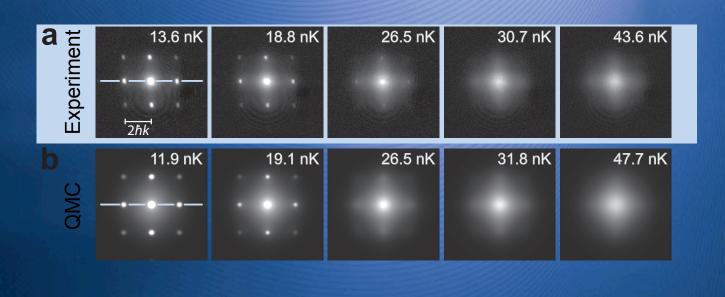
temperature	local updates	modern algorithms
3D Tc	16'000 spins	16'000'000 spins
0.1 J	200 spins	1'000'000 spins
0.005 J		50'000 spins
3D Tc	32 bosons	1'000'000 bosons
0.1 t	32 bosons	10'000 bosons

When to use which algorithm?

- Stochastic Series Expansion (SSE) is simpler to implement
- Continuous-time path integrals needs lower orders
- Use SSE for local actions with not too large diagonal terms

	SSE	Path Integrals
Loop algorithm	Spin models	Spin models with dissipation
Worm algorithm/ Directed loops	Spin models in magnetic field	Bose-Hubbard models

10. Simulating optical lattice experiments



Matthias Troyer

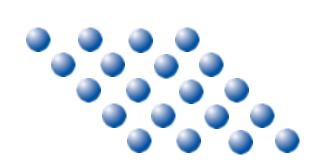
Feynman's quantum simulator

We are able to control single quantum systems

Single Atoms and lons

Photons

 New challenges: control, engineer and understand complex quantum system



R. P. Feynman's Vision

A Quantum Simulator to study the quantum dynamics of another system.

R.P. Feyman, Int. J. Theo. Phys. (1982) R.P. Feynman, Found. Phys (1986)

Quantum simulators

Strongly correlated materials:

strong correlation effects in many-electron systems

Condensed matter models:

Simple models which capture the relevant mechanism

Quantum simulators

Strongly correlated materials:

strong correlation effects in many-electron systems

no exact solutions approximations, impurities,

. . .

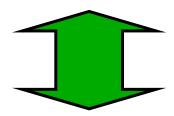
Condensed matter models:

Simple models which capture the relevant mechanism

Quantum simulators

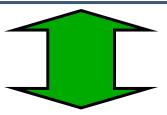
Strongly correlated materials:

strong correlation effects in many-electron systems



Quantum simulators:

Controlled, "simple" systems testing models and verifying concepts



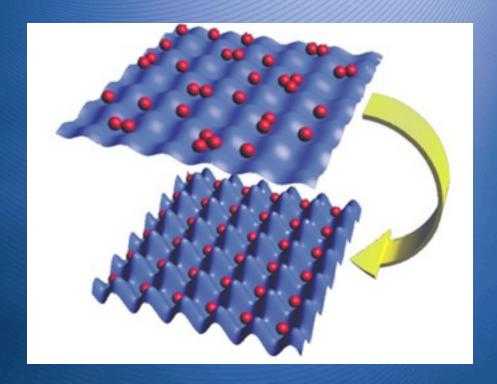
Condensed matter models:

Simple models which capture the relevant mechanism

Matthias Troyer

DPHYS

Ultracold atomic gases as quantum simulators

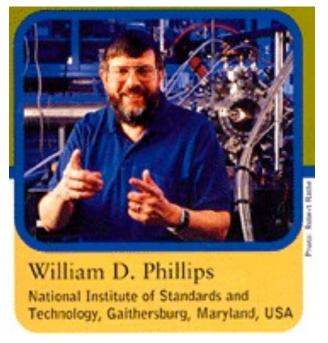


1997 Nobel Prize in Physics

Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

share 1997 Nobel Prize for the development of methods to cool and trap atoms with laser right.





Matthias Troyer

2001 Nobel Prize in Physics

Carl Wieman, Eric Cornell and Wolfgang Ketterle

share 2001 Nobel Prize for the achievement of BEC in dilute gases of alkali atoms and for the early fundamental studies of the properties of the condensates.

Matthias Troyer 93

Our Starting Point – Ultracold Quantum Gases

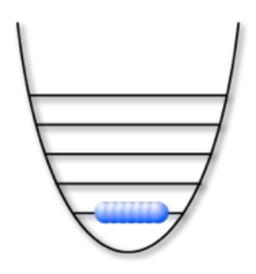
Parameters:

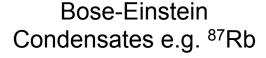
Densities: 10¹⁵ cm⁻³

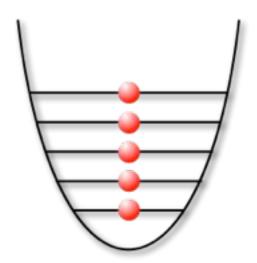
Temperatures: Nano Kelvin

Atom Numbers 10⁶

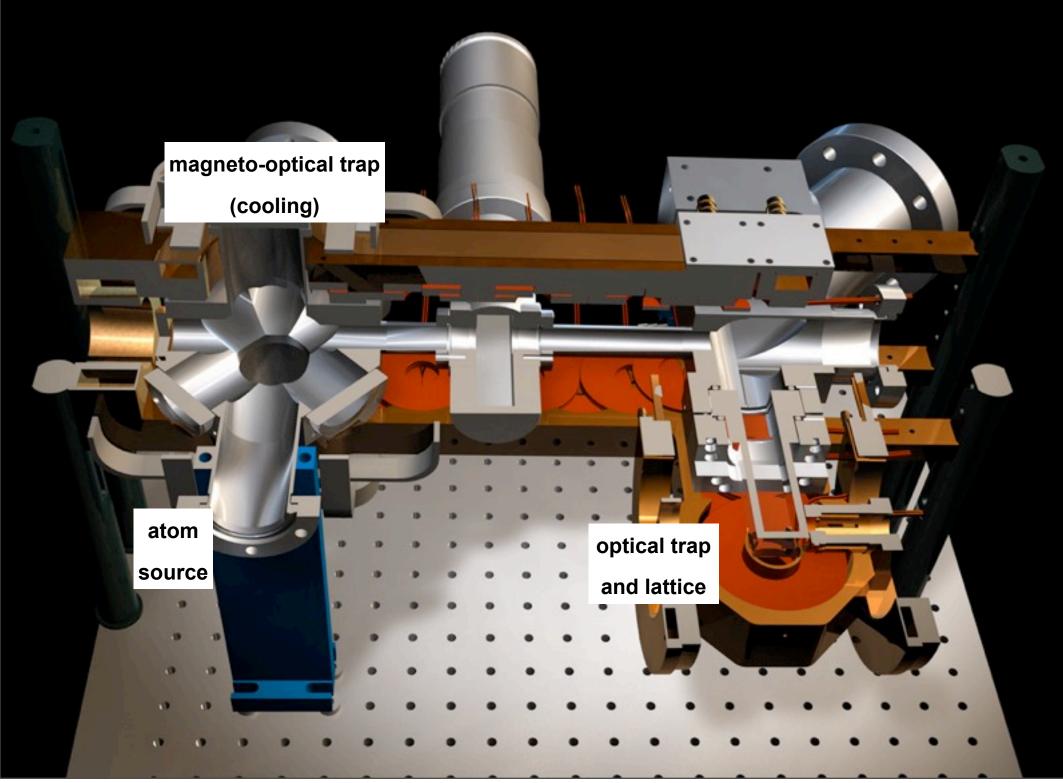
Ground States at T=0



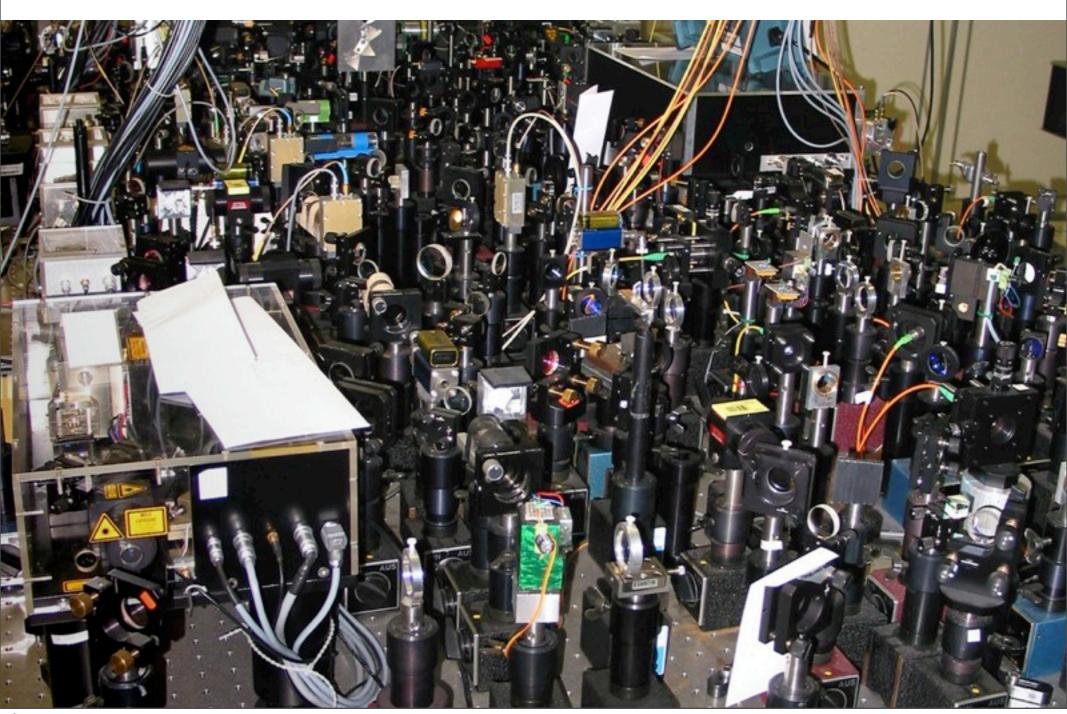


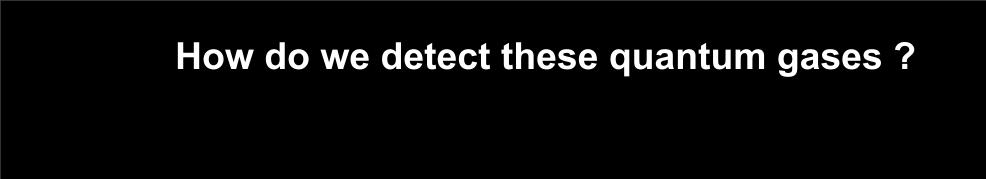


Degenerate Fermi Gases e.g. ⁴⁰K



And a lot of optics and electronics!





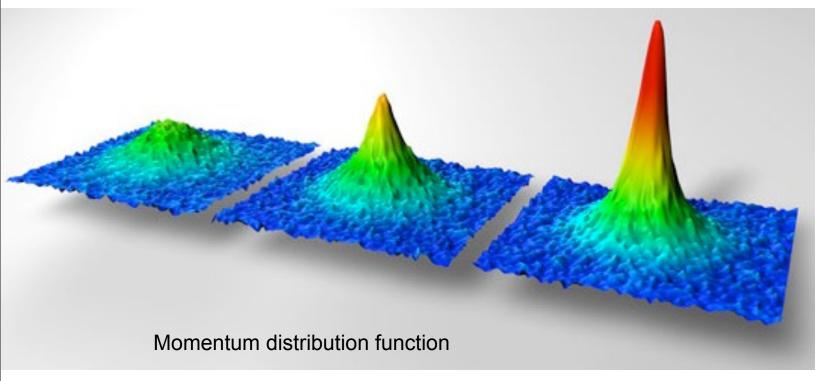
How do we detect these quantum gases? release the atoms

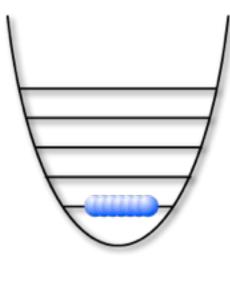
How do we detect these quantum gases? release the atoms faster atoms fly farther

How do we detect these quantum gases? release the atoms faster atoms fly farther the image reflects the momentum distribution

Bose-Einstein condensation in cold atomic gases

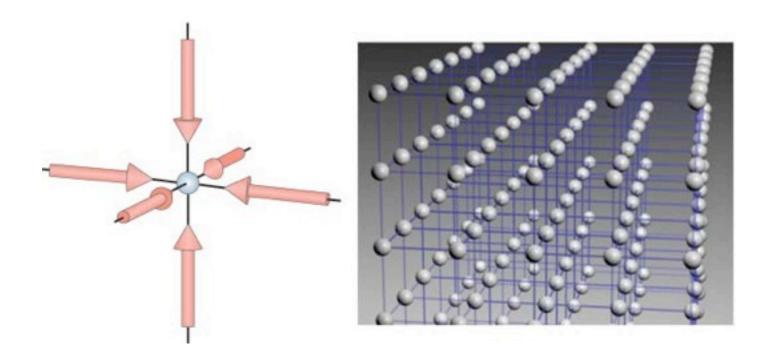
- At close to zero temperatures, a macroscopic fraction of all atoms in a Bose gas occupy the same quantum state
- A diverging occupation of the zero momentum state





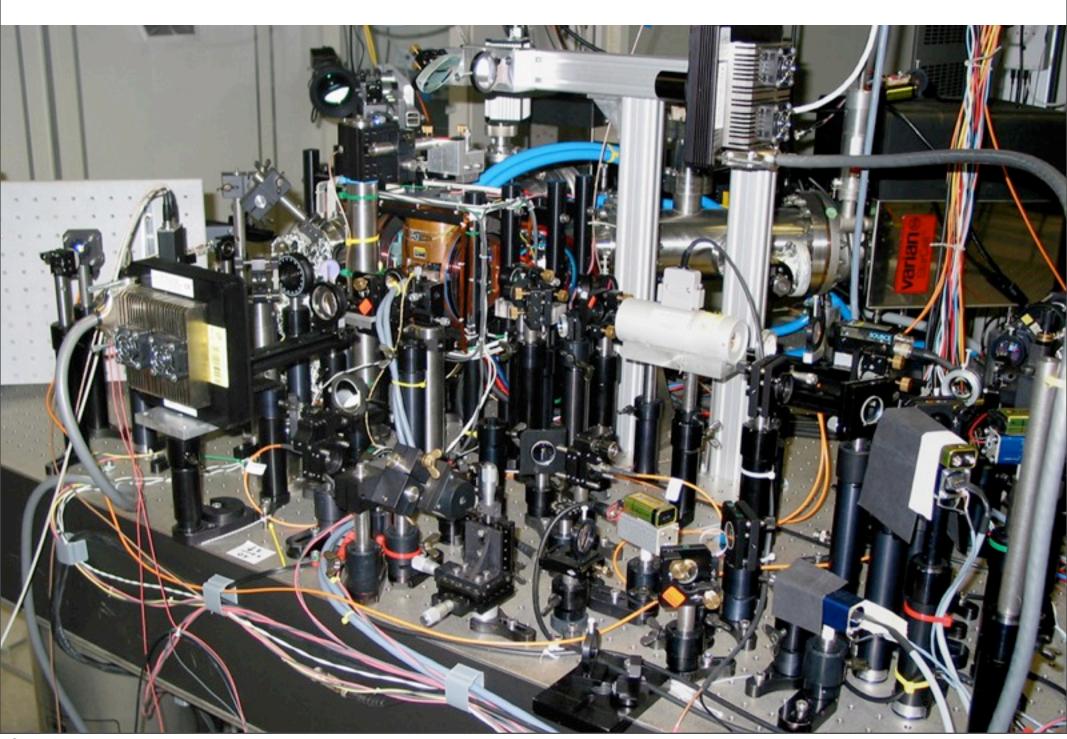
Optical lattices

formed by standing waves from three pairs of laser beams



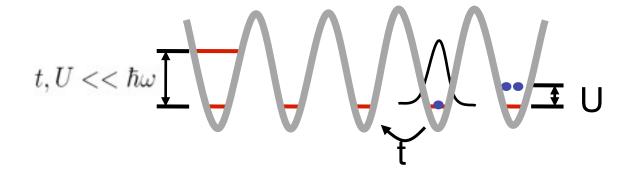
realize quantum lattice models of fermions or bosons

Table 2



Saturday, January 21, 12

Optical lattices and the Hubbard model



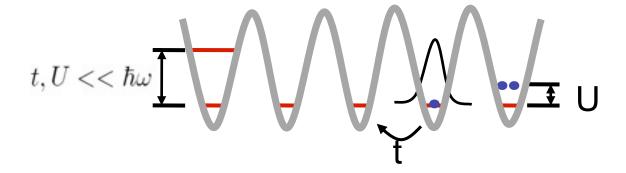
Optical lattices and the Hubbard model

- Lasers couple to the dipole moment of the atoms
 - atoms prefer to sit at the amplitude maxima (AC Stark effect)
 - a periodic potential with periodicity half of the wave length
 - obtain a Hubbard model for the lowest band



Optical lattices and the Hubbard model

- Lasers couple to the dipole moment of the atoms
 - atoms prefer to sit at the amplitude maxima (AC Stark effect)
 - a periodic potential with periodicity half of the wave length
 - obtain a Hubbard model for the lowest band

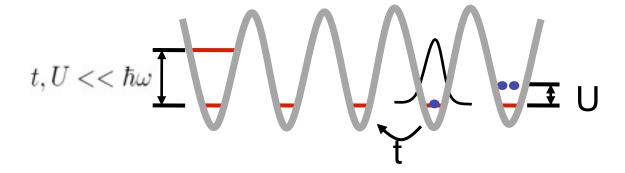


- Tunable and controlled
 - Laser amplitude determines U and t
 - Spatially varying couplings using optical superlattices

Institute for Theoretical Physics

Optical lattices and the Hubbard model

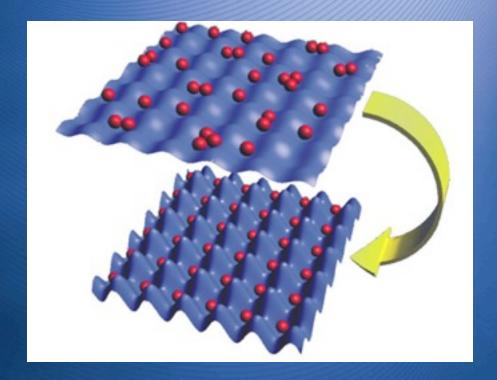
- Lasers couple to the dipole moment of the atoms
 - atoms prefer to sit at the amplitude maxima (AC Stark effect)
 - a periodic potential with periodicity half of the wave length
 - obtain a Hubbard model for the lowest band



- Tunable and controlled
 - Laser amplitude determines U and t
 - Spatially varying couplings using optical superlattices
- Flexible
 - fermionic or bosonic atoms or mixtures are possible

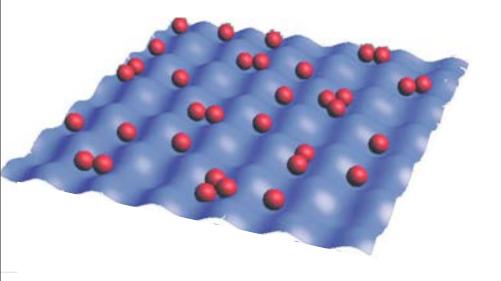
DPHYS

Validating a quantum simulator: does it really work?

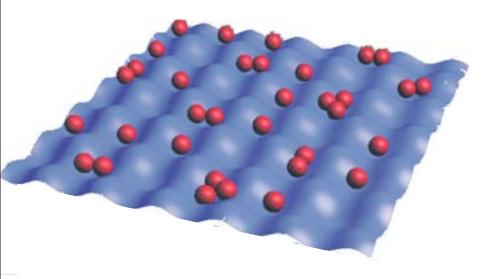


Matthias Troyer

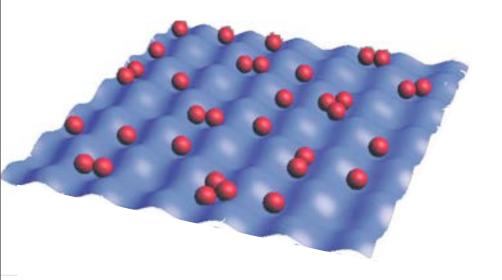
$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -V_0 e^{-2r^2/w^2(z)} \sin^2(kz) \qquad g = \frac{4\pi\hbar^2 a_s}{m}$$



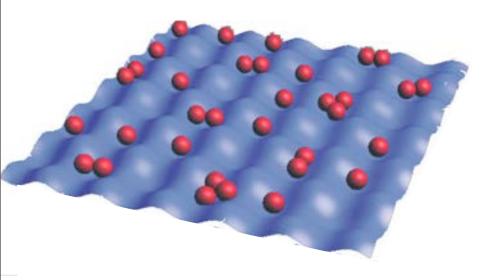
$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -V_0 e^{-2r^2/w^2(z)} \sin^2(kz) \qquad g = \frac{4\pi \hbar^2 a_s}{m}$$



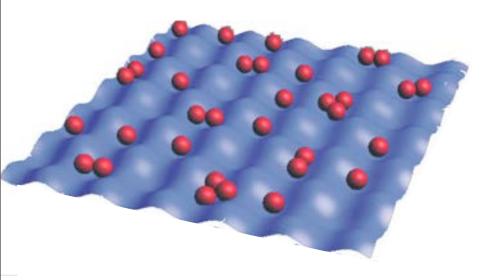
$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -V_0 e^{-2r^2/w^2(z)} \sin^2(kz) \qquad g = \frac{4\pi \hbar^2 a_s}{m}$$



$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -\frac{V_0}{V_0} e^{-2r^2/w^2(z)} \sin^2(kz) \qquad g = \frac{4\pi\hbar^2 a_s}{m}$$

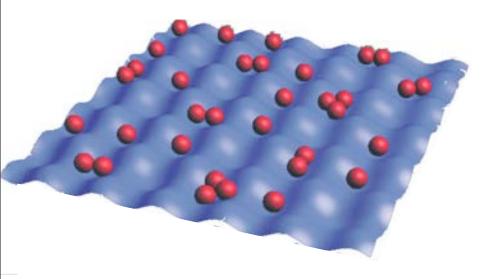


$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -\frac{V_0 e^{-2r^2/w^2(z)} \sin^2(kz)}{g} = \frac{4\pi \hbar^2 a_s}{m}$$



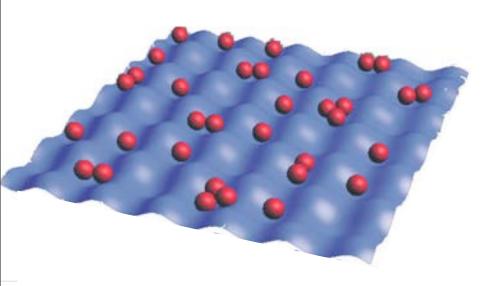
$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -\frac{V_0 e^{-2r^2/\mathbf{w}^2(z)} \sin^2(\mathbf{k}z)}{g}$$
$$g = \frac{4\pi \hbar^2 a_s}{m}$$

Matthias Troyer



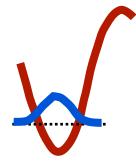
The ab-initio microscopic model

$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -\frac{V_0 e^{-2r^2/w^2(z)} \sin^2(kz)}{\sin^2(kz)} \qquad g = \frac{4\pi\hbar^2 a_s}{m}$$



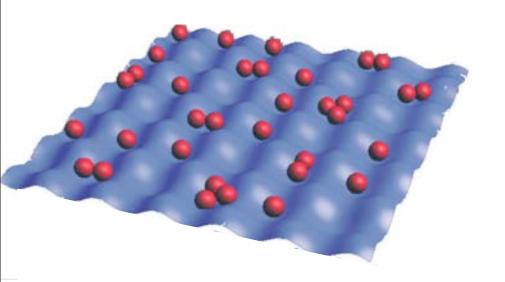
$$\psi(\vec{r}) = \sum_{i} w(\vec{r} - \vec{r}_i)b_i$$

express the bosonic field operator in terms of Wannier functions



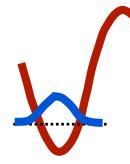
The ab-initio microscopic model

$$H = \int d^3r \psi^{\dagger}(\vec{r}) \left(-\frac{\hbar^2}{2m} \Delta + V_{\text{opt}}(\vec{r}) \right) \psi(\vec{r}) + \frac{g}{2} \int d^3r \psi^{\dagger}(\vec{r}) \psi^{\dagger}(\vec{r}) \psi(\vec{r}) \psi(\vec{r})$$
$$V_{\text{opt}}(r,z) = -V_0 e^{-2r^2/w^2(z)} \sin^2(kz) \qquad g = \frac{4\pi\hbar^2 a_s}{m}$$



$$\psi(\vec{r}) = \sum_{i} w(\vec{r} - \vec{r}_i)b_i$$

express the bosonic field operator in terms of Wannier functions



$$H = -\mathbf{t} \sum_{\langle ij \rangle} \left(b_i^{\dagger} b_j + \text{h.c.} \right) + \mathbf{U} \sum_i n_i (n_i - 1)/2 - \mu \sum_i n_i + \mathbf{V} \sum_i r_i^2 n_i$$

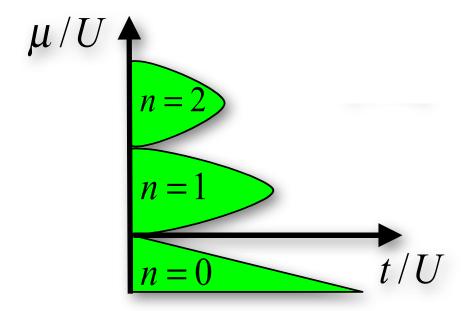
Limitations of the Hubbard model

- Only valid in deep lattices where one band is enough.
- Shallow lattices require alternative approaches
- Corrections to naïve calculations of U are hard
 - H. P. Büchler Phys. Rev. Lett. 104, 090402 (2010)
- Equilibration is an open issue in the experiments

Fisher et al, PRB 1989

Use bosonic atoms for validation

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + U \sum_i n_i (n_i - 1)/2 - \mu \sum_i n_i$$



January 29, 2009 Matthiâ® Troyer 106

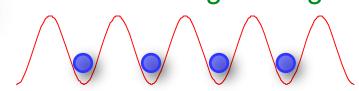
Fisher et al, PRB 1989

Use bosonic atoms for validation

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + U \sum_i n_i (n_i - 1)/2 - \mu \sum_i n_i$$

 μ/U n=2 n=1 n=0 t/U

Large *U*: incompressible Mott-insulator at Integer filling

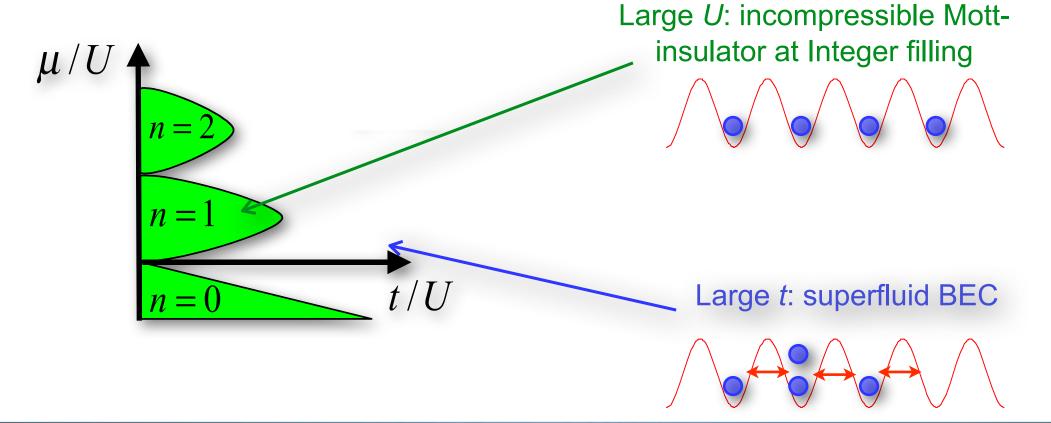


January 29, 2009 Matthi2§ Troyer 106

Fisher et al, PRB 1989

Use bosonic atoms for validation

$$H = -t \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + U \sum_i n_i (n_i - 1)/2 - \mu \sum_i n_i$$



January 29, 2009 Matthi2§ Troyer 106

Fisher et al, PRB 1989

Use bosonic atoms for validation

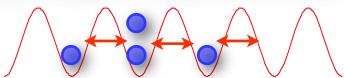
$$H = -t \sum_{\langle i,j \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + U \sum_i n_i (n_i - 1)/2 - \mu \sum_i n_i$$

 μ/U n=2 n=1 t/Uins t/U

Large *U*: incompressible Mott-insulator at Integer filling

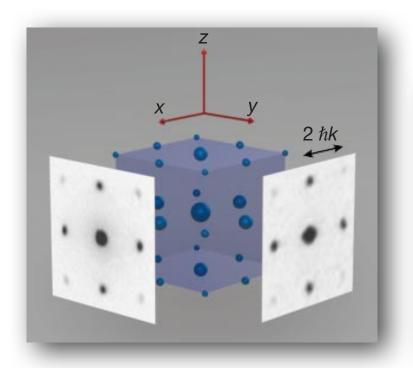
Quantum phase transition varying U/t

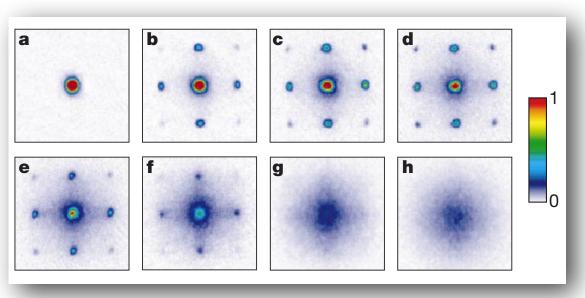
Large t: superfluid BEC



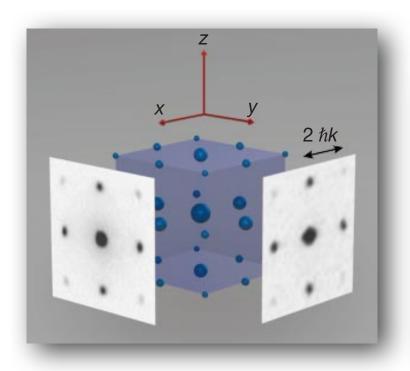
January 29, 2009 Matthi2§ Troyer 106

- Quantum phase transition as lattice depth is increased
 - Greiner et al, Nature (2002)
 - measuring the momentum distribution function in time-of-flight images

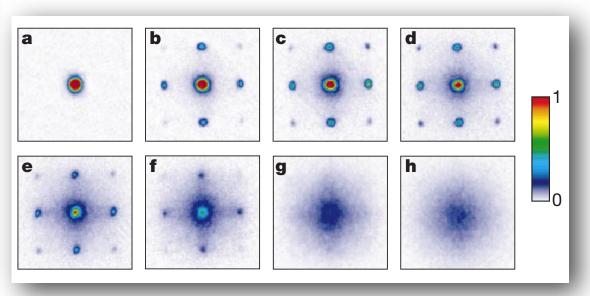




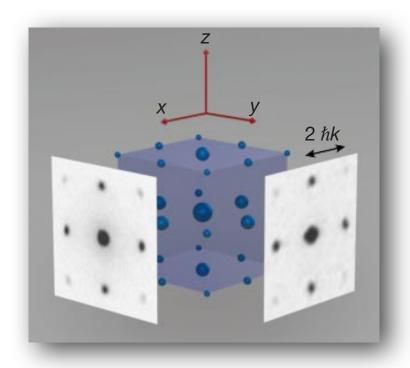
- Quantum phase transition as lattice depth is increased
 - Greiner et al, Nature (2002)
 - measuring the momentum distribution function in time-of-flight images



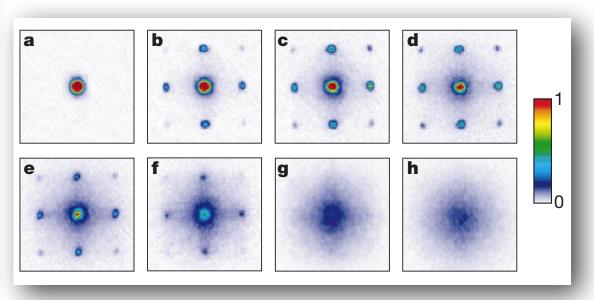
small *U/t*: condensate



- Quantum phase transition as lattice depth is increased
 - Greiner et al, Nature (2002)
 - measuring the momentum distribution function in time-of-flight images

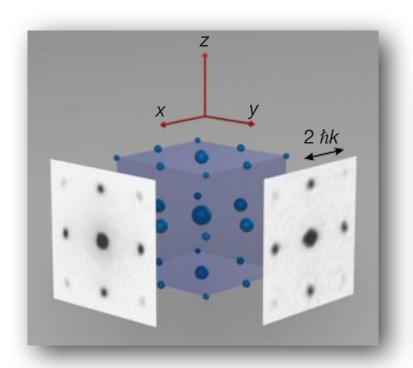


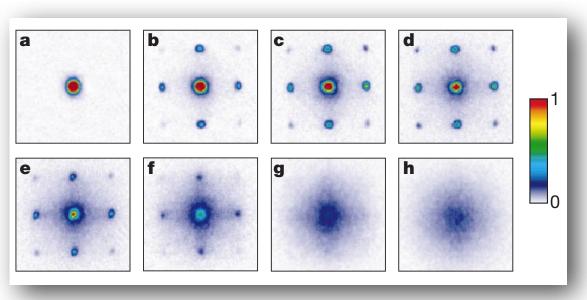
small *U/t*: condensate



large *Ult*: Mott insulator

- Quantum phase transition as lattice depth is increased
 - Greiner et al, Nature (2002)
 - measuring the momentum distribution function in time-of-flight images





large *U/t*: Mott insulator

Can this be made more quantitative?

Department of Physics Institute for Theoretical Physics

Validation by Quantum Monte Carlo simulations

Validation by Quantum Monte Carlo simulations

- Approximation-free QMC simulations
 - worm algorithm, Prokof'ev, Svistunov and Tupitsyn, (1998)
 - up to 500,000 atoms, 220 x 220 x 200 ≈ 10 million sites
 - a single simulation takes only 10 hours on one CPU core

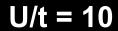
Validation by Quantum Monte Carlo simulations

- Approximation-free QMC simulations
 - worm algorithm, Prokof'ev, Svistunov and Tupitsyn, (1998)
 - up to 500,000 atoms, 220 x 220 x 200 ≈ 10 million sites
 - a single simulation takes only 10 hours on one CPU core
- We can model all important details of the experiment
 - accurate microscopic model
 - same system size, particle numbers
 - temperature and entropy matched to experiment
 - measure quantities as observed in experiment

Department of Physics Institute for Theoretical Physics

QMC "images" of the boson cloud

$$U/t = 10$$

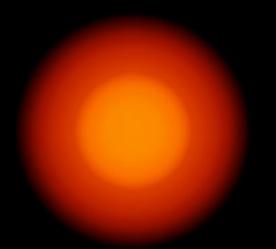


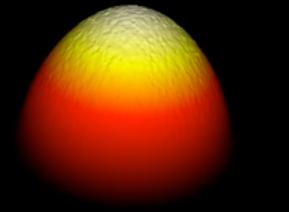
$$U/t = 25$$

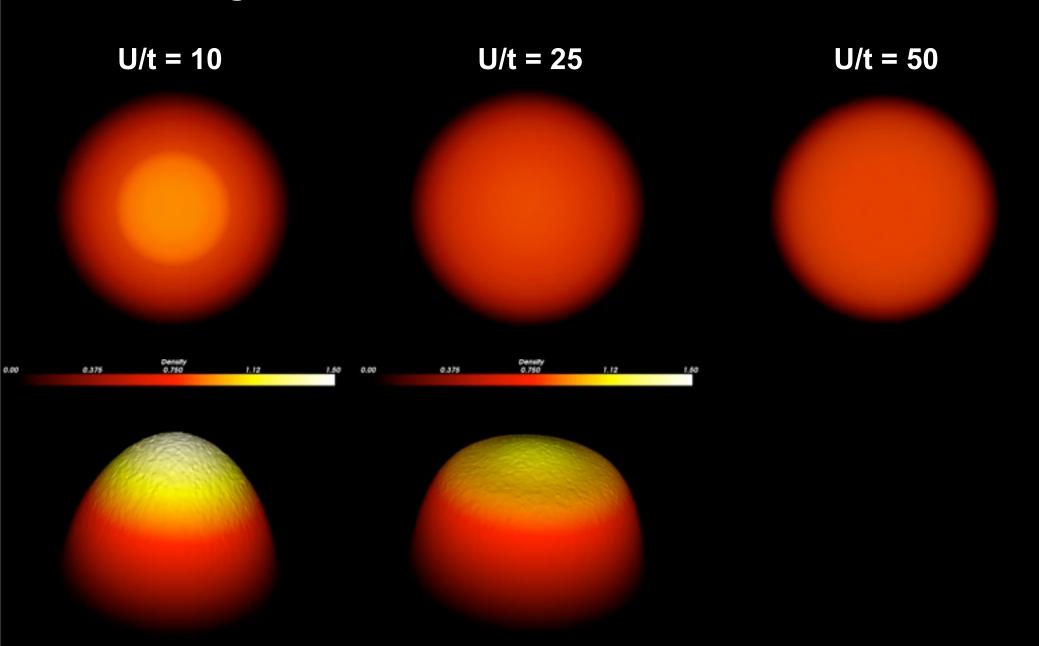


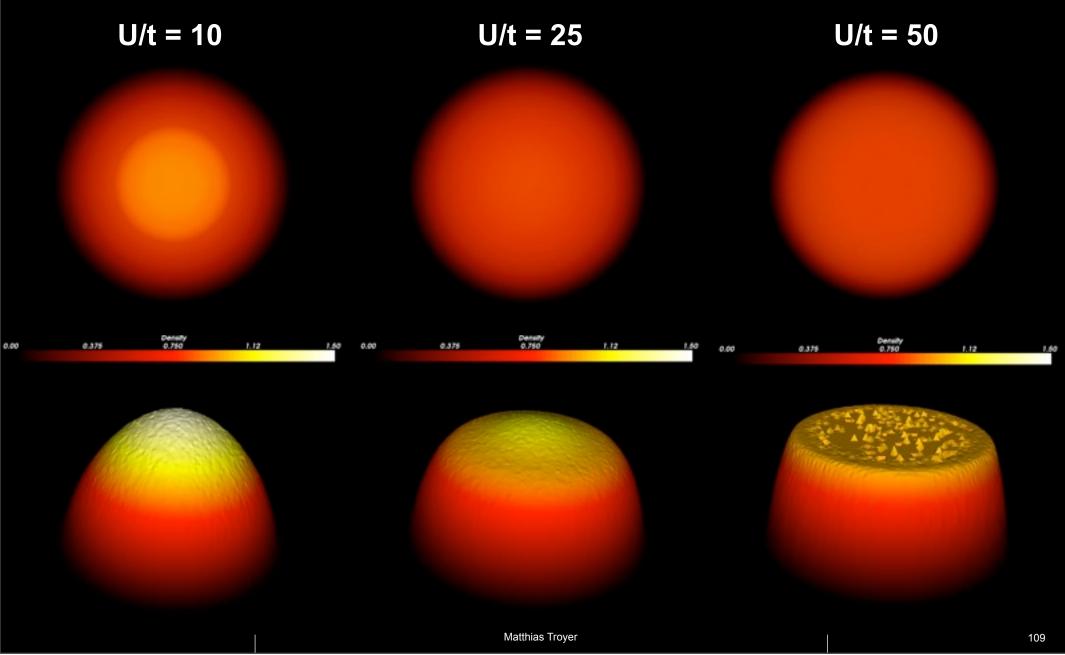
$$U/t = 25$$

$$U/t = 50$$





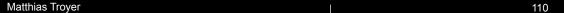




Department of Physics Institute for Theoretical Physics

Image after expansion – momentum distribution

3D image



110

Image after expansion – momentum distribution

3D image

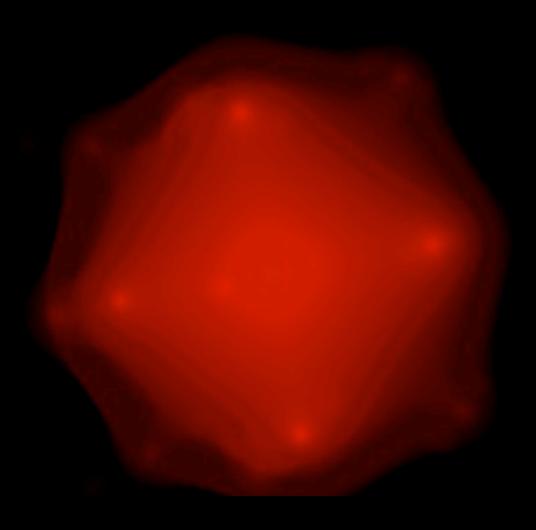
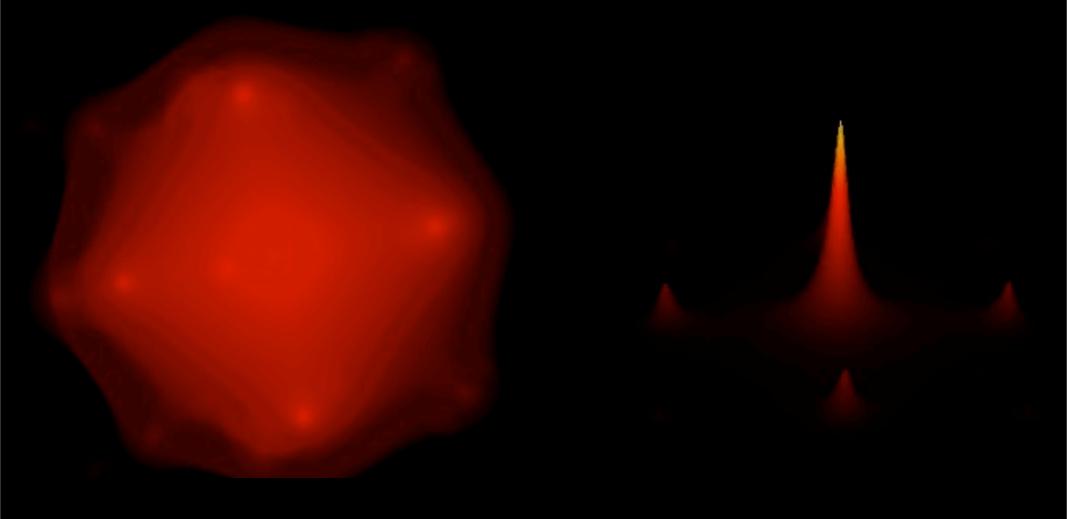


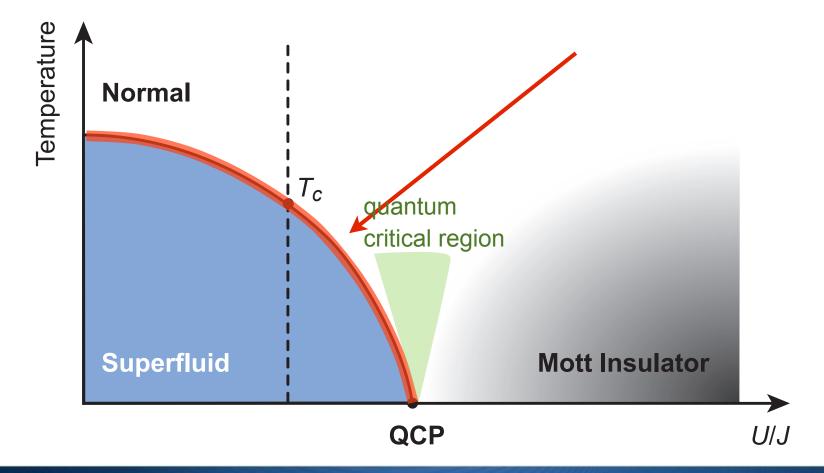
Image after expansion – momentum distribution

3D image Crosssection



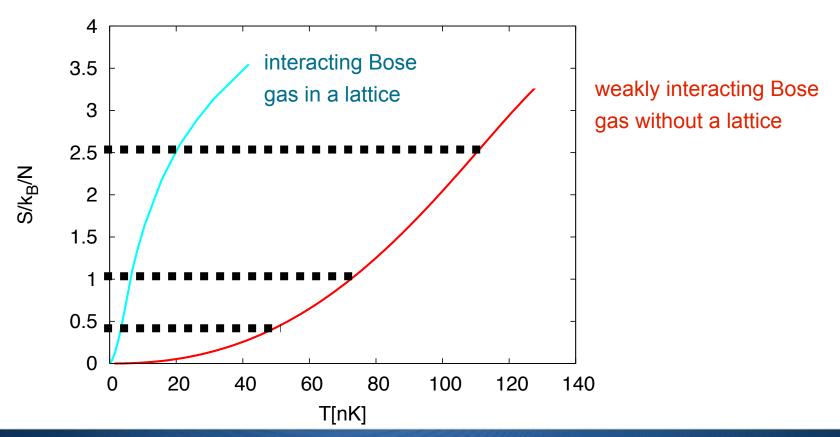
Quantitative validation: the phase diagram

- Bosons in a 3D optical lattice at filling n = 1
- Measure suppression of T_c close to the Mott insulator
- Particle number required to achieve n = 1 obtained from QMC



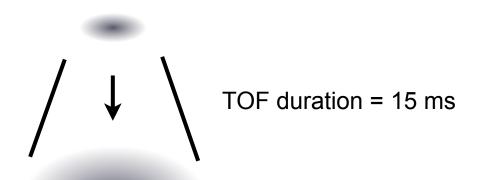
Use QMC simulations for thermometry

- Experiments work (ideally) at constant entropy!
 - Measure the momentum distribution before loading the gas into the lattice
 - Get its temperature and entropy fitting to a dilute Bose gas
 - Use QMC simulations to find the temperature for that entropy once loaded into an optical lattice (non-trivial simulations!)

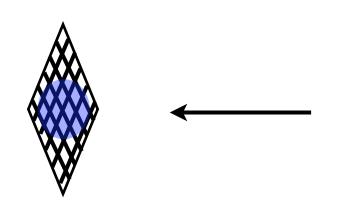


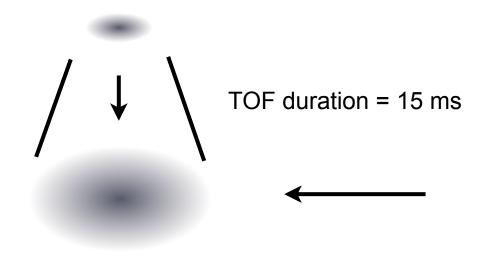
CCD camera

CCD camera



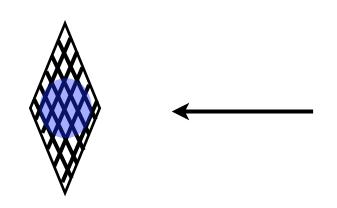
CCD camera

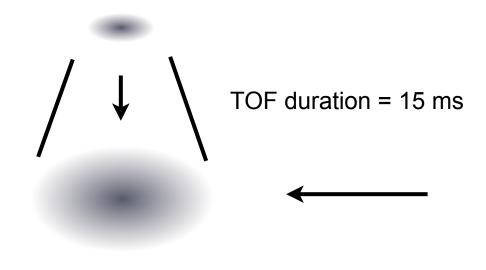




faster atoms fly farther records the momentum distribution

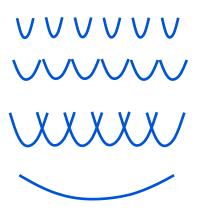
CCD camera





pixel size: 4.4 micron further broadening by optical elements

faster atoms fly farther records the momentum distribution



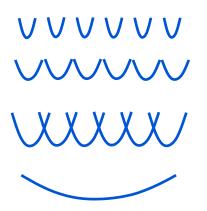
$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

$$w_{\nu}(r,t) = \langle r | e^{-i\frac{\hat{p}^2 t}{2m\hbar}} | w_{\nu}(t) \rangle$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$

$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$



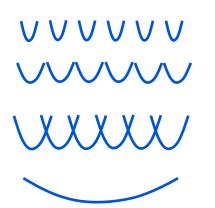
$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

$$w_{\nu}(r,t) = \langle r | e^{-i\frac{\hat{p}^2 t}{2m\hbar}} | w_{\nu}(t) \rangle$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$

$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$



$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

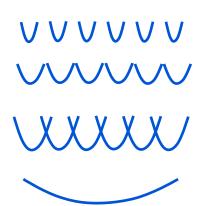
contribution from all sites

$$w_{\nu}(r,t) = \langle r | e^{-i\frac{\hat{p}^2 t}{2m\hbar}} | w_{\nu}(t) \rangle$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$

$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$

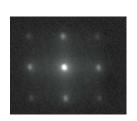


$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

contribution from all sites

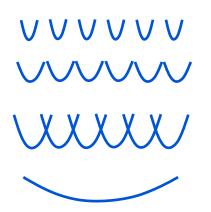
$$w_{
u}(r,t)=\langle r|e^{-irac{\hat{p}^2t}{2m\hbar}}|w_{
u}(t)
angle \quad {
m ballistic\ expansion}$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$



$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$



$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

contribution from all sites

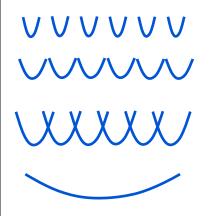
$$w_{\nu}(r,t) = \langle r|e^{-i\frac{\hat{p}^2t}{2m\hbar}}|w_{\nu}(t)\rangle \quad \text{ballistic expansion}$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$

$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

Gaussian approximation for Wannier function

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$



$$\hat{\Psi}(r,t) = \sum_{\nu} w_{\nu}(r,t)\hat{a}_{\nu}$$

contribution from all sites

$$w_{\nu}(r,t) = \langle r|e^{-i\frac{\hat{p}^2t}{2m\hbar}}|w_{\nu}(t)\rangle \quad \text{ballistic expansion}$$

$$w_{\nu}(r,t) = \int \frac{d^3k}{(2\pi)^3} e^{-i\frac{\hbar k^2 t}{2m} + ik \cdot (r - r_{\nu})} \tilde{w}(k)$$

$$\tilde{w}(k) \sim e^{-\frac{a_0^2 k^2}{2}}$$

Gaussian approximation for Wannier function

$$n(r,t) = \sum_{\mu,\nu} w_{\mu}^*(r,t) w_{\nu}(r,t) \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle$$

density matrix from QMC

Time of flight (TOF) images

Do we really measure n(k) in experiment?

F. Gerbier et al, PRL (2008)

$$n(\mathbf{r},t) \sim e^{-i\frac{\mathbf{K}(\mathbf{r}_{\mu}-\mathbf{r}_{\nu})}{1+\delta^{2}}-i\frac{m(r_{\nu}^{2}-r_{\mu}^{2})}{2\hbar t(1+\delta^{2})}-\frac{a_{0}K^{2}}{1+\delta^{2}}} \times e^{\frac{\delta\mathbf{K}(\mathbf{r}_{\mu}+\mathbf{r}_{\nu})}{1+\delta^{2}}-\frac{m\delta(\mathbf{r}_{\mu}^{2}+\mathbf{r}_{\nu}^{2})}{2\hbar t(1+\delta^{2})}}\langle \hat{a}_{\mu}^{\dagger}\hat{a}_{\nu}\rangle.$$

a₀: width of the initial Gaussian Wannier function

$$\mathbf{K} = \frac{m\mathbf{r}}{\hbar t},$$
 "quasi-momentum"
$$\delta = \frac{ma_0^2}{\hbar t} = 2\frac{m\lambda^2}{8\hbar t} \left(\frac{a_0}{\lambda/2}\right)^2 \approx 5.10^{-4}$$

$$K_y = \frac{r_y m}{\hbar t} + gmt$$

taking gravity semi-classically into account

Time of flight (TOF) images

Do we really measure n(k) in experiment?

F. Gerbier et al, PRL (2008)

$$n(\mathbf{r},t) \sim e^{-i\frac{\mathbf{K}(\mathbf{r}_{\mu}-\mathbf{r}_{\nu})}{1+\delta^{2}}} e^{-i\frac{m(r_{\nu}^{2}-r_{\mu}^{2})}{2\hbar t(1+\delta^{2})}} e^{-\frac{a_{0}K^{2}}{1+\delta^{2}}} \times e^{\frac{\delta\mathbf{K}(\mathbf{r}_{\mu}+\mathbf{r}_{\nu})}{1+\delta^{2}}} e^{-\frac{m\delta(\mathbf{r}_{\mu}^{2}+\mathbf{r}_{\nu}^{2})}{2\hbar t(1+\delta^{2})}} \langle \hat{a}_{\mu}^{\dagger} \hat{a}_{\nu} \rangle.$$

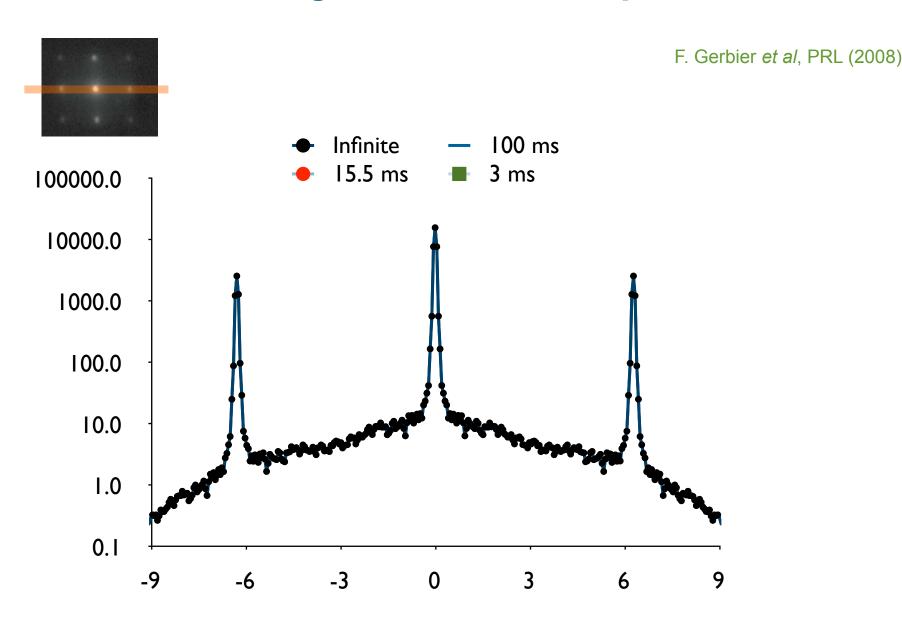
a₀: width of the initial Gaussian Wannier function

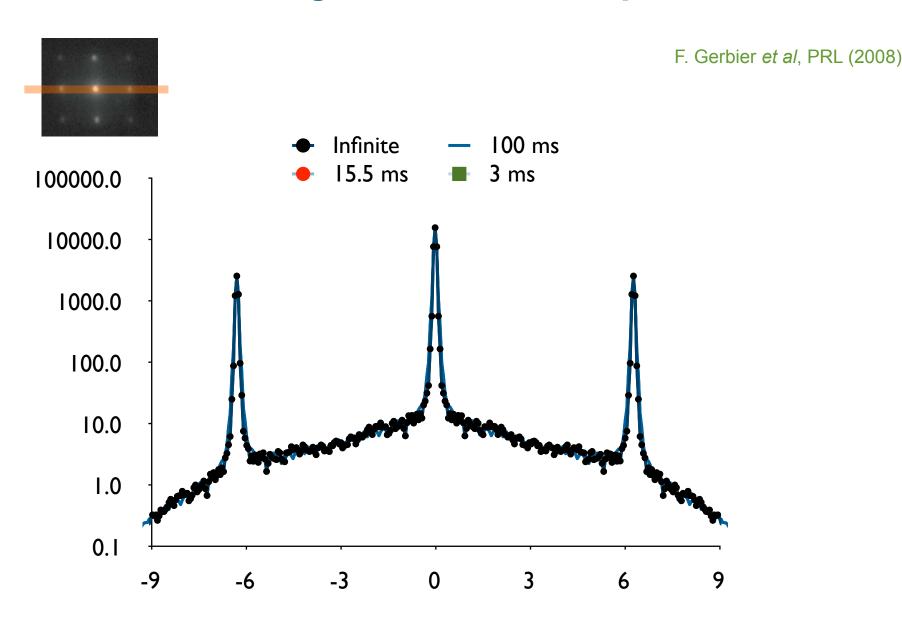
$$\mathbf{K} = \frac{m\mathbf{r}}{\hbar t},$$
 "quasi-momentum"
$$\delta = \frac{ma_0^2}{\hbar t} = 2\frac{m\lambda^2}{8\hbar t} \left(\frac{a_0}{\lambda/2}\right)^2 \approx 5.10^{-4}$$

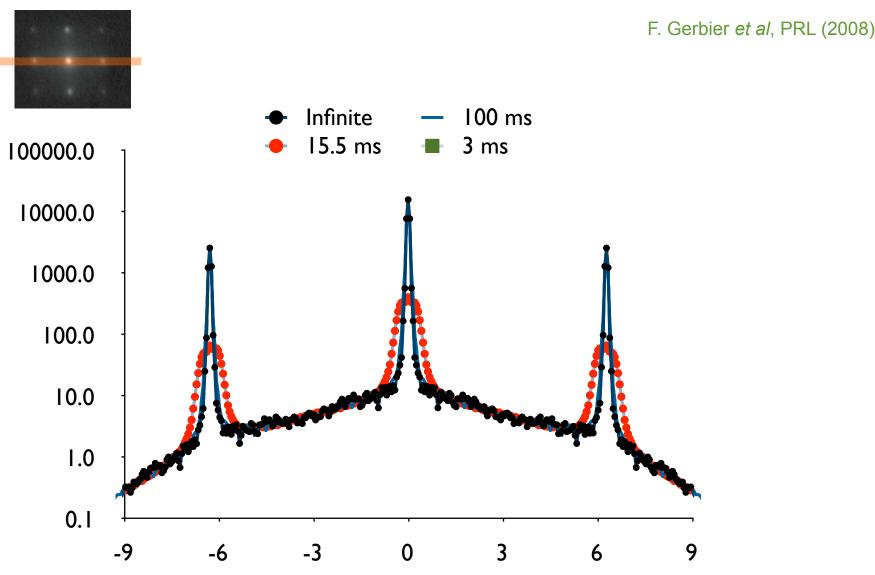
$$K_y = \frac{r_y m}{\hbar t} + gmt$$

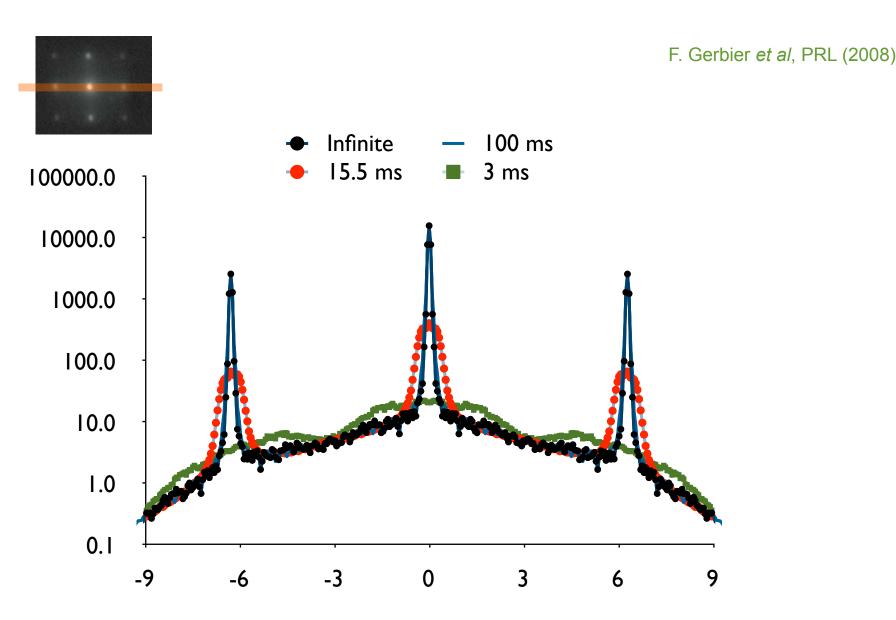
taking gravity semi-classically into account

115

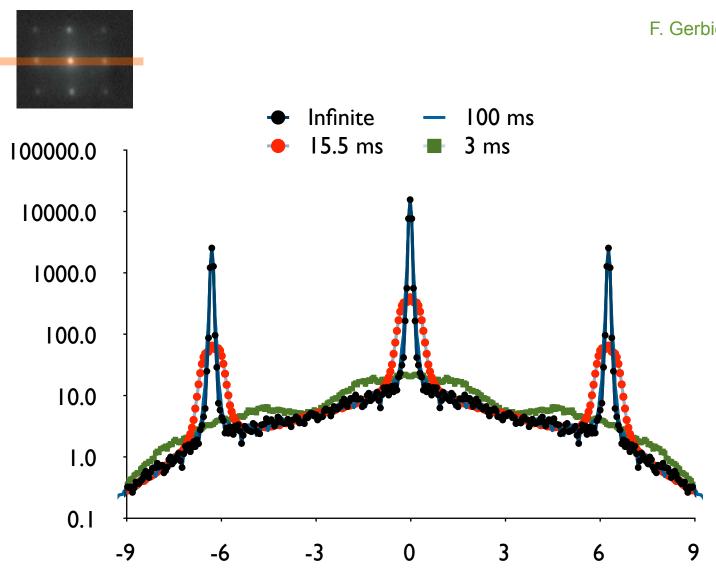








F. Gerbier et al, accepted in PRL



F. Gerbier et al, PRL (2008)

finite time of flight cuts off spatial correlations

broadens peaks

Department of Physics Institute for Theoretical Physics

Validating the quantum simulator

Validating the quantum simulator

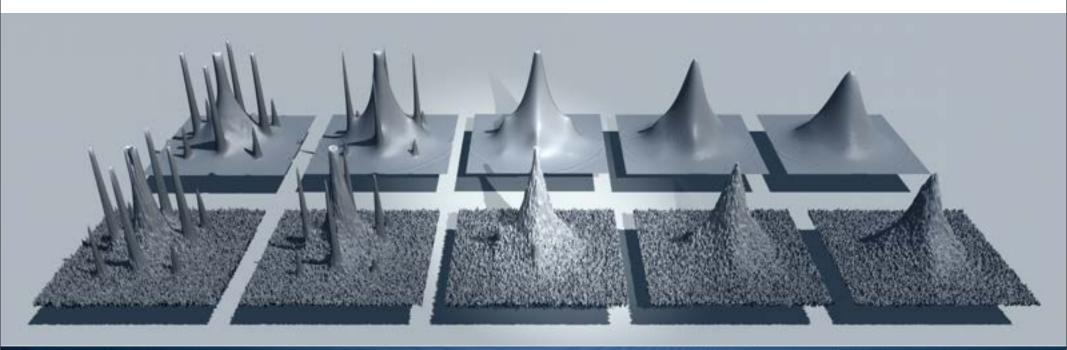
- We model all important details of the experiment
 - Same trap, interactions, particle number, total entropy
 - Calculate what the experiment should see

Validating the quantum simulator

- We model all important details of the experiment
 - Same trap, interactions, particle number, total entropy
 - Calculate what the experiment should see
- The experiment should better reproduce what we get!

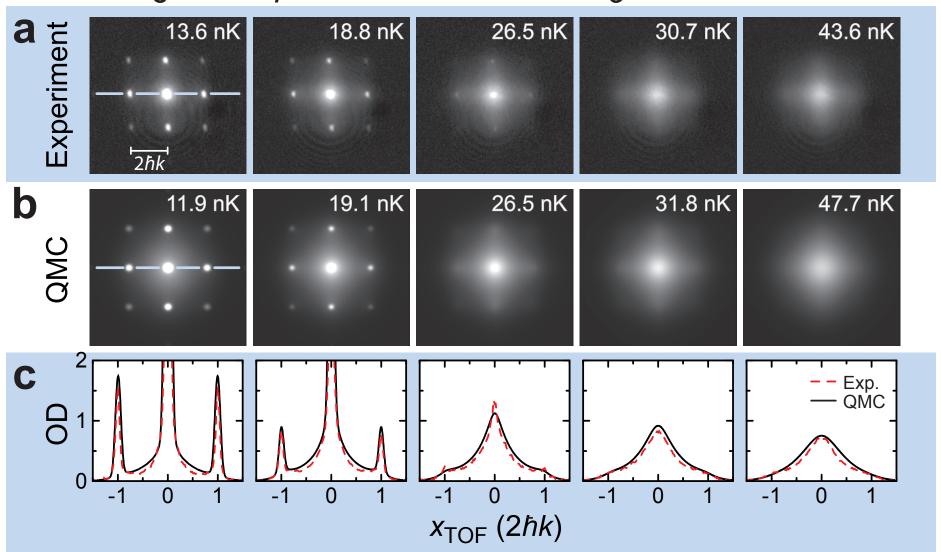
Validating the quantum simulator

- We model all important details of the experiment
 - Same trap, interactions, particle number, total entropy
 - Calculate what the experiment should see
- The experiment should better reproduce what we get!
- and it does: Trotzky, Pollet et al, Nature Phys. 6, 998 (2010).



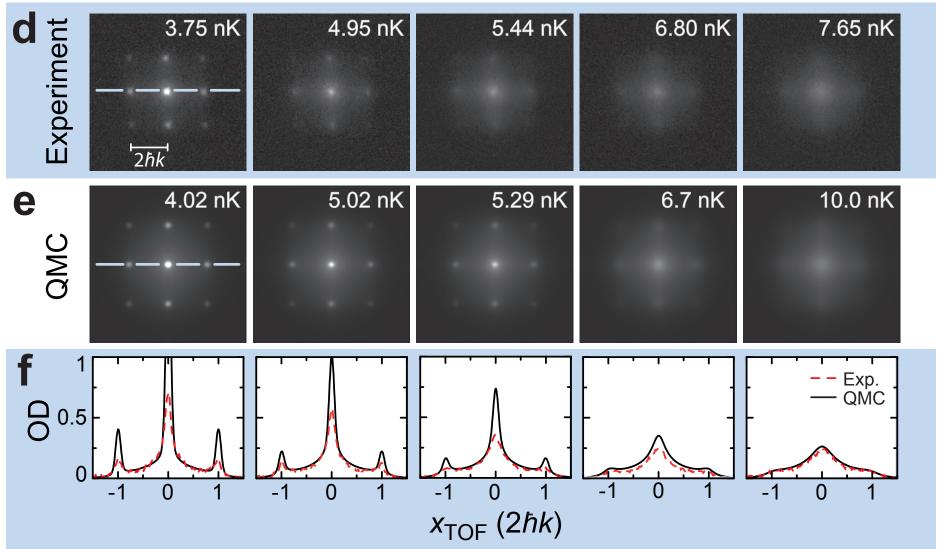
Validation of experiment by QMC: small *U/t*

$$V_0 = 8E_r$$
, $U/J = 8.11$, $T_c = 26.5$ nK

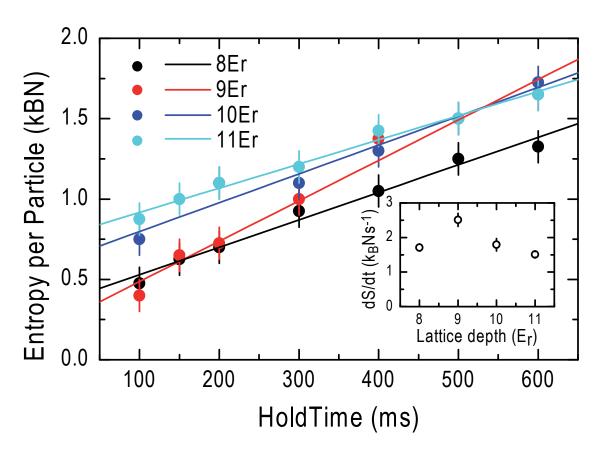


Validation of experiment by QMC: large *U/t*

$$V_0 = 11.75E_r$$
, $U/J = 27.5$, $T_c = 5.31$ nK



Non-adiabaticity: heating from lattice laser

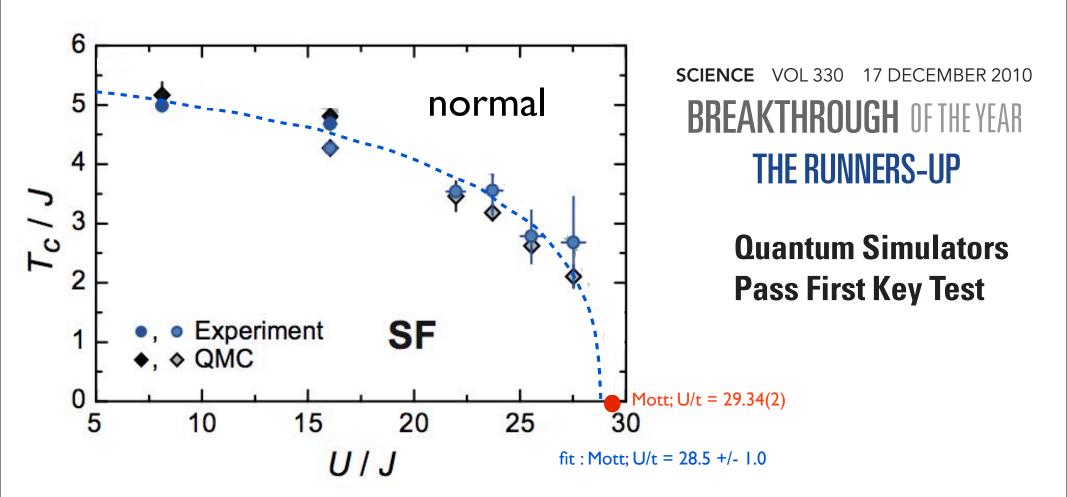


Entropy determined by comparing TOF images to QMC simulations Severe limitation on accessible temperatures in experiments

Theoretically discussed by H. Pichler, A. J. Daley, P. Zoller, PRA (2011)

Matthias Troyer 120

Phase diagram obtained by the quantum simulation



Matthias Troyer 121