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From Hubbard to Heisenberg

• Zero temperature T = 0

• Correlated electrons on the lattice

The starting point is the Hubbard model:

H = −
X

i,j,σ

ti,jc
†
i,σcj,σ + h.c. + U

X

i

ni,↑ni,↓

At half-filling (i.e., Ne = Ns) for U ≫ t, an insulating state exists

For U/t → ∞, by perturbation theory, we obtain the Heisenberg model:

H =
X

i,j

Ji,jSi · Sj +
X

i,j,k,l

(Pi,j,k,l + h.c.) + . . .

• Spin SU(2) symmetric models

Here, I will discuss spin models (frozen charge degrees of freedom)
Spin liquids in the Hubbard model (with also charge fluctuations)
are possible, but much harder to detect
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Some example for the lattice structure

Two-dimensional lattices
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Simple considerations for classical spins

We want to find the lowest-energy spin configuration for classical spins
Consider the case of Bravais lattices (i.e., one site per unit cell)

E [{Si}] =
1

2

X

i

X

r

J(r)Si · Si+r

with the local constraint S2
i = 1

By Fourier transform:

E =
1

2

X

k

J(k)Sk · S−k

Look for solutions with the global constraint:
P

i S
2
i = N −→

P

k Sk · S−k = N

Assume J(k) minimized for k = k0

Take Sk = 0 for all k’s except for k = ±k0

Sk0 =

√
N

2

0

@

1
i

0

1

A S−k0 = S∗
k0

=

√
N

2

0

@

1
−i

0

1

A
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Simple considerations for classical spins

Si =
1√
N

“

Sk0e
ik0ri + h.c.

”

= {cos(k0ri ), sin(k0ri ), 0}

The local constraint is automatically satisfied!

Spiral configuration (in general non-collinear – coplanar)

Example: Classical J1−J2 model on the square lattice

J(k) = 2J1 (cos kx + cos ky ) + 4J2 cos kx cos ky

• For J2/J1 < 1/2, k0 = (π, π)

• For J2/J1 > 1/2, k0 = (π, 0) or (0, π)
The two sublattices are decoupled
(free angle between spins in A and B sublattices)

• For J2/J1 = 1/2, k0 = (π, ky ) or (kx , π)
highly-degenerate ground state:
H = const. +

P

plaquettes
(S1 + S2 + S3 + S4)

2

J
J1

2
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Quantum fluctuations

In order to include the quantum fluctuations, perform a 1/S expansion

H =
X

i,j

Ji,jSi · Sj

• Let us denote by θj = k0 · rj
• Make a rotation around the z axis

8

<

:

S̃x
j = cos θjS

x
j + sin θjS

y
j

S̃
y
j = − sin θjS

x
j + cos θjS

y
j

S̃z
j = Sz

j

• Perform the Holstein-Primakoff transformations:

8

>

>

<

>

>

:

S̃x
j = S − a

†
j aj

S̃
y
j ≃

q

S
2

“

a
†
j + aj

”

S̃z
j ≃ i

q

S
2

“

a
†
j − aj

”
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Quantum fluctuations

At the leading order in 1/S , we obtain:

Hsw = Ecl +
S

2

X

k



Aka
†
kak +

Bk

2

“

a
†
ka

†
−k + a−kak

”

ff

Where:

Ecl =
1

2
NS

2
Jk0



Ak = Jk + 1
2
(Jk+k0 + Jk−k0) − 2Jk0

Bk = 1
2
(Jk+k0 + Jk−k0) − Jk

By performing a Bogoliubov transformation:

Hsw = Ecl +
P

k ωk(α
†
kαk + 1

2
)

• Zero-point quantum fluctuations
• Leading-order corrections to the magnetization 〈S̃x

j 〉 = S−〈a†
j aj〉
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“Renormalization” of the classical state

The classical ground state is “dressed” by quantum fluctuations

~NNN

• The lattice breaks up into sublattices
• Each sublattice keeps an

extensive magnetization

• Spontaneously broken SU(2) symmetry
Goldstone theorem
Gapless spin waves (S = 1)

Anderson, Phys. Rev. 86, 694 (1952)

Bernu, Lhuillier, and Pierre, Phys. Rev. Lett. 69, 2590 (1992)

Bernu, Lecheminant, Lhuillier, and Pierre, Phys. Rev. B 50, 10048 (1994)
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Absence of magnetic order in the strongly frustrated regime

H =
X

〈i,j〉

Si · Sj + α
X

〈〈i,j〉〉

Si · Sj

J
J1

2

Chandra and Doucot, Phys. Rev. B 38, 9335 (1988)

Neel order Collinear order

Spin singlet

0 0.5 1
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Mechanisms to destroy the long-range order

We have to stay away from the classical limit

• Small value of the spin S , e.g., S = 1/2 or S = 1

• Frustration of the super-exchange interactions
(not all terms of the energy can be optimized simultaneously)

?

• Low spatial dimensionality
In D = 1 there is no magnetic order, given the Mermin-Wagner theorem
(not possible to break a continuous symmetry in D=1, even at T = 0)
D = 2 is the “best” choice

• [Large continuous rotation symmetry group, e.g., SU(2), SU(N) or Sp(2N)]

Arovas and Auerbach, Phys. Rev. B 38, 316 (1988); Arovas and Auerbach, Phys. Rev. Lett. 61, 617 (1988)

Read and Sachdev, Phys. Rev. Lett. 66, 1773 (1991); Read and Sachdev, Nucl. Phys. B316, 609 (1989)
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A SL is a state without long-range magnetic order

A spin liquid is a state without magnetic order
the structure factor S(q) does not diverge, whatever the q is

S(q) =
1

N
〈Ψ0|

˛

˛

˛

˛

˛

X

j

Sje
iqrj

˛

˛

˛

˛

˛

2

|Ψ0〉 =
1

N

X

j,k

〈Ψ0|Sj · Sk |Ψ0〉e iq(rj−rk )

S(q) =



O(1) for all q’s → short-range correlations
S(q0) ∝ N forq = q0 → long-range order

• Can be checked by using Neutron scattering

• Mermin-Wagner theorem implies that any 2D Heisenberg model at T > 0 is a SL
according to this definition

Federico Becca (CNR and SISSA) Quantum Spin Liquids LOTHERM 12 / 26



A SL is a state without long-range magnetic order

∆>0

E

J1−J2 Heisenberg model on the hexagonal lattice
Fouet, Sindzingre, and Lhuillier, Eur. Phys. J. B 20, 241 (2001)

Properties:

• Short-range spin-spin correlations

• Spontaneous breakdown of some lattice symmetries → ground-state degeneracy

• Gapped S = 1 excitations (“magnons” or “triplons”)
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Valence-bond crystals, examples in 2D from numerical calculations

J1−J2 model
Fouet, Sindzingre, and Lhuillier, EPJB (2001)

Shastry-Sutherland lattice
Koga and Kawakami, PRL (2000)

J1−J2−J3 model
Mambrini, Lauchli, Poilblanc, and Mila, PRB (2006)

Heisenberg model on the Checkerboard
lattice
Fouet, Mambrini, Sindzingre, and Lhuillier, PRB (2003)

Heisenberg model with a 4-spin ring
exchange
Lauchli, Domenge, Lhuillier, Sindzingre, and Troyer, PRL (2005)

+ others...
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Spin liquid: a second definition

A spin liquid is a state without any spontaneously broken (local) symmetry

• This definition rules out magnetically ordered states that break spin SU(2) symmetry
(also NEMATIC states)

• This definition rules out valence-bond crystals that break some lattice symmetries

Remark I: “local” means that there is a physical order parameter
that can be measured by some local probe

Remark II: within this definition we also rule out CHIRAL SLs
that break time-reversal symmetries
Wen, Wilczek, and Zee, Phys. Rev. B 39, 11413 (1989)
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Quantum paramagnets

There are few examples of magnetic insulators without any broken symmetry

SrCu2(BO3)2

Kageyama et al., Phys. Rev. Lett. 82, 3168 (1999)

CaV4O9

Taniguchi et al., J. Phys. Soc. Jpn. 64, 2758 (1995)

E

∆>0

Non-degenerate
ground state

Properties:

• No broken symmetries

• Even number of spin-1/2 in the unit cell

• Adiabatically connected to the (trivial) limit of decoupled blocks

• No phase transition between T = 0 and T = ∞
→ “simple” quantum paramagnet at T = 0
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Quantum paramagnets:excitation spectrum

λ=0

λ<<J

k

∆ES=1(k)

( )↓↑−↑↓=
2

1

J

k

∆ES=1(k)

J ∼λ 

λ
J
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Quantum paramagnets and VBCs are not fractionalized

r

J

λ

V(r)

r

J

2J

J-λJ
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The Lieb-Schultz-Mattis et al. theorem

A system with half-odd-integer spin in the unit cell
cannot have a gap and a unique ground state

Valid in the thermodynamic limit for periodic boundary conditions and
L1 × L2 × · · · LD = odd

• The original theorem by Lieb, Schultz, and Mattis refers to 1D
Lieb, Schultz, Mattis, Ann. Phys. (N.Y.) 16, 407 (1961); see also, Affleck and Lieb, Lett. Math. Phys. 12, 57 (1986)

• Since then, several attempts to generalize it in 2D
Affleck, Phys. Rev. B 37, 5186 (1988); Bonesteel, Phys. Rev. B 40, 8954 (1989);

Oshikawa, Phys. Rev. Lett. 84, 1535 (2000); Hastings, Phys. Rev. B 69, 104431 (2004)

∆>0

∆=0

E

∆>0

Gapped paramagnet

= forbidden at T=0

Case 1) Ground-state degeneracy
a) Valence-bond crystal
b) Resonating-valence bond SL
(gapped but with a topological degeneracy)
Case 2) Gapless spectrum
a) Continuous broken symmetry (magnetic order)
b) Resonating-valence bond SL
(gapless, i.e., critical state)
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Proof of the Lieb-Shultz-Mattis theorem for the Heisenberg chain

• Consider the Heisenberg model on a chain:

H =
N

X

i=1

Si · Si+1

with periodic boundary conditions (SN+1 ≡ S1), even N, and half-odd integer spins

Theorem:

There exists an excited state with an energy that vanishes as N → ∞

• |Ψ0〉 is the ground state of H with energy E0.

• Assume that |Ψ0〉 is a singlet (“almost” always the case)

• Consider the twist operator O = exp{ 2πi
N

PN

j=1 jSz
j }

• Denote |Ψ1〉 = O|Ψ0〉
Then:

(1) 〈Ψ1|Ψ0〉 = 0
(2) limN→∞[〈Ψ1|H|Ψ1〉 − E0] = 0
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Proof of the Lieb-Shultz-Mattis theorem in 1D

Consider the translation operator T :

T SjT −1 = Sj+1 T SNT −1 = S1

[H, T ] = 0 T |Ψ0〉 = e
ik0 |Ψ0〉

〈Ψ0|Ψ1〉 = 〈Ψ0|O|Ψ0〉 = 〈Ψ0|T OT −1|Ψ0〉
T OT −1 = O exp (2πiSz

1 ) exp
`

− 2πi
N

Sz
tot

´

Then, exp
`

− 2πi
N

Sz
tot

´

|Ψ0〉 = |Ψ0〉, since |Ψ0〉 is a singlet.

exp (2πiS
z
1 ) =



+1 S = 0, 1, 2, · · ·
−1 S = 1/2, 3/2, 5/2, · · ·

• Therefore, for half-odd integer spin: 〈Ψ0|Ψ1〉 = −〈Ψ0|Ψ1〉

〈Ψ1|H|Ψ1〉 = E0 + 〈Ψ0|{cos( 2π

N
) − 1}PN

j=1(S
x
j Sx

j+1 + S
y
j S

y
j+1)|Ψ0〉

〈Ψ0|(Sx
j Sx

j+1 + S
y
j S

y
j+1)|Ψ0〉 ≤ S2

• We obtain an upper-bound for the energy: 〈Ψ1|H|Ψ1〉 − E0 ≤ 2π
2JS2

N
+ O(N−3)
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The short-range RVB picture

• Anderson’s idea: the short-range resonating-valence bond (RVB) state:
Anderson, Mater. Res. Bull. 8, 153 (1973)

Linear superposition of many (an exponential number) of valence-bond configurations

=+ + … Spatially uniform state

• Spin excitations? No dimer order → we may have deconfined spinons

• Spinon fractionalization and topological degeneracy

Distinct ground states that are not connected by any local operator

Wen, Phys. Rev. B 44, 2664 (1991); Oshikawa and Senthil, Phys. Rev. Lett. 96, 060601 (2006)
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Spin liquid: a third definition

A spin liquid is a state without any spontaneously broken (local) symmetry,
with a half-odd-integer spin in the unit cell

• This definition rules out magnetically ordered states that break spin SU(2) symmetry
(also NEMATIC states)

• This definition rules out valence-bond crystals that break some lattice symmetries

• This definition rules out quantum paramagnets that have an even number of spin-half
per unit cell

A spin liquid sustains fractional (spin-1/2) excitations
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What is fractionalization?

• Majumdar-Ghosh chain (1D): H = J
P

i Si · Si+1 + J
2

P

i Si · Si+2

• The exact ground state is known (two-fold degenerate), perfect dimerization

The “initial” S = 1 excitation can
decay into two spatially
separated spin-1/2 excitations
(spinons)

Finite-energy state with an isolated
spinon (the other is far apart)
domain wall between two
dimerization patterns

• A spinon is a neutral spin-1/2 excitation, “one-half” of a S = 1 spin flip.
(it has the same spin as the electron, but no charge)

• Spinons can only be created by pairs in finite systems
The question is to understand whether they can propagate at large distances,
as two elementary particles
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Inelastic neutron scattering: spinon continuum

The inelastic neutron scattering is a probe for the dynamical structure factor

S(q, ω) =

Z

dt〈Ψ0|S−
−q(t)S

+
q (0)|Ψ0〉e−iωt

• The elementary excitations are spin-1 magnons:
S(q, ω) has a single-particle pole at ω = ω(q)

• The spin-flip decays into two spin-1/2 excitations
S(q, ω) exhibits a two-particle continuum
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Inelastic neutron scattering: spinon continuum

Neutron scattering on Cs2CuCl4
Coldea, Tennant, Tsvelik, and Tylczynski, Phys. Rev. Lett. 86, 1335 (2001)

Almost decoupled layers

Strongly-anisotropic triangular lattice

J ′ ≃ 0.33J: quasi-1D
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