LINEAR SPACES

1. DEFINITION AND BASIC PROPERTIES OF LINEAR SPACES
Definition 1.1. A linear space X over a field F' is a set whose elements are called vectors and where two
operations, addition and scalar multiplication, are defined:
(1) addition, denoted by +, such that to every pair z,y € X there correspond a vector x +y € X,
and
(1.1) rty=ytw, r++z)=(@+ty)+z wyzeX;

(X,4) is a group, with neutral element denoted by 0 and inverse denoted by —, x + (—z) =
z—x=0.
(2) scalar multiplication of € X by elements k € F, denoted by kx € X, and

(1.2) k(ax) = (ka)x, Ek(x+vy)=kx+ky, (k+a)x=kx+ ax, x,y € X, k,a€F.
Moreover 1z = x for all z € X, 1 being the unit in F.
It follows from the definition that
0z =0, (—Dz = —uz.

Ezample 1.2. Several spaces of functional analysis have the structure of linear spaces on R (real vector
spaces), C (complex vector spaces):

C (), 2 open set in R™.

H(w), holomorphic functions on w open set of C.

all solutions of a linear ODE or linear PDE.

X ={z=(a1,as2,...),a; € R}.

In the linear spaces we can define several construction and concepts, based only on linearity.
Given S, T C X, define

(1.3) S+T:{x=y+z, y €S, zET}, —S:{x:—y, yES}, kS:{x:k:y, yGS}.
If Z, U are linear spaces over the same field, then

(1.4) Z@U:{@wLZGZuGU}

A subset Y C X is a linear subspace of X if Y is a itself a linear space, i.e.

aYy +bY CY, a,beF.

If S C X, the linear span of S is the intersection of all linear subspaces Y, containing S, i.e. it is the

smallest linear subspace of X containing S. Given the points x1,...,z,, the element
n
;E:Zaia?i, a; € F,
i=1
is called linear combination of {x1,...,x,}.

If X is generated by the linear combination of a finite number of points, we say that it is finite
dimensional, otherwise it is infinite dimensional.

Proposition 1.3. The linear span of S is the the set of all linear combinations of elements of S.

Proof. Clearly the linear span is a vector space which contains S, and it is contained in all subspace Y
containing S. O
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If Y is a linear subspace of X, then
(15) T =aifx; —a9€Y

is an equivalence relation: in fact
(1) z=xsincex —x=0€Y;
(2) r=yimpliesz—yeY,ie. —(z—y)=y—z €Y, ie y=u;
(3) =y, y=zimpliessc—yeY,y—zeY, ie. (z—y)+(y—2)=c—2z€Y,ie =2z

Proposition 1.4. The quotient set X/Y made of the equivalence classes modY is a linear space (quotient
space).

Proof. Denote by [z] the equivalent class of x. Define addition + by [z] 4+ [y] = [z + y] and scalar
multiplication by k[xz] = [kz]. This definition does not depend on the particular representative chosen:
in fact, if 2’ =z, y’ = y, then

2"+ ] = {z: z—x'—y’eY} = {z: z—x—er—l—(m'—x)—i—(y'—y)}
= {z: zfxfyGY} = [z +y],
and similarly for the scalar product
[kx'] = {z: z — ka' EY} = {z: z—kxeY—Fk(m’—x)} = {z: z—k‘xEY} = [kx].

Then it is clear that + is commutative and associative, and the inverse of [z] is [—z] = —[z], and the
scalar product satisfies (1.2). Moreover 1[z] = [1z] = [z] O

For real vector spaces one can define the notion of convezity: if K C X, K is called convex if

(1.6) aK+(1-a)KCK, 0<a<l,
or equivalently az + (1 — a)y € K. An immediate consequence is that if x1,..., 2, C K, then all convex
combinations
n n
(1.7) T = Zaixi, a; > 0, Zai =1,
i=1 i=1
belong to K.
For complex vector spaces, we can extend the definition of K C X convex if
(1.8) aK+(1-a)KCK, a€R, 0<a<l.

or one can introduce the notion of balanced sets: we define K C X balanced if
(1.9) aK C K for all |a| < 1.

If S C X, then the convex hull of S is the intersection of all convex set containing S. It can be
characterized equivalently as the smallest convex set containing S or the set of all convex combination of
elements of S.

Proof. Clearly each convex sets containing S must contain its convex hull. Conversely the convex hull is
a convex set containing S. g

A convex set E C K, K convex, is called extreme set if E # () and if (y + 2)/2 € E, then y,z € F.
Also in finite dimension one can construct convex sets without extreme points.
2. LINEAR MAPS
If X U are two linear spaces, a mapping M : X — U is a linear map iff
(2.1) M(x +y) = Mz + My, M(kz) = kMz.

An isomorphism of linear spaces is a map M which is one to one and onto.
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Proposition 2.1. If M : X — U linear map, K C U convexr, E C K extreme set, then
M~L(E) = {x EX:Me E}
when non empty, is an extreme subset of M~ (K).
Proof. Clearly M~1(K) is a convex set: in fact if M(z), M(y) € K, then
Mz + (1-Ny) =AMz + (1 - A)My € K,

since K is convex.
Let z € M~™}(E), and assume that there exists y, 2 € M~!(K) such that z = (y + 2)/2. Then

Mm:M<y+Z> :}(My-i-l\/[z)’

2 2
so that My, Mz € E, because F is extremal. O

Remark 2.2. In particular, if U = R and denoting the linear operator by /¢, if H C X convex, then the
extreme subset are H.x = maxyem {2, Hpiyn = mingey fx. Thus if (71 (Hyay) # 0, then this is an
extreme subset, and the same for ¢~ Hppiy.

One can find examples of maps so that the image of extremal set are not extremal, also in finite
dimension.
Since we can define

(2.2) (M + N)z = Mz + Nz, (kM)x = kM,

then the set of linear maps of X into U , denoted as L(X,U), is a linear space. If M : X — U,
N :U — W, the composition NM : X — W is

NMz = N(Mz).
This ”product” is distributive, i.e. if P: X +— U, Q : Z — X are linear maps,
N(M+P)z = NMz + NPz, (M+P)Qz =MQz+ PQu.

If we have a third linear space Z ans a linear operator P : W +— Z, then by associativity of composition
of maps
(PN)Mz = P(NM)z.
A map M : X + U is invertible if it maps X one to one and onto U, its inverse is denoted by M~!
and
M 'M=TIcL(X,X), MM '=T1¢cL(UU).
The nullspace Ny of M is the set

(2.3) NM:{zeX:Mx:o},
the range Rynp is
(2.4) RM:{uEU:H:UGX,Mx:u}.

Clearly both are linear subspaces, and M : X — U is invertible iff Ny = {0}, Rm = U. Moreover,
M : X/Nn — Ry is one to one and onto.

Composition of invertible maps is invertible, but the opposite is false in general, see exercises.

We now consider maps of X into itself, i.,e. M € L(X, X). We can define in this case the j-th power
M/, with null space N; = Npy;. Clearly N; C Nji1, because if M7z = 0 then

Mty = M(MYz) = MO = 0.
Let Y be a linear subspace of X, and assume that Y is invariant for M,
MY CY.
Then the operator L : X/Y +— X/Y defined by
L{z] = [Mx]
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is a linear operator. In fact, if x1 = xo, then 3 =21 +y, y € Y, and

Mz, = Mo
because Y is invariant. The linearity follows easily. Similar definitions can be naturally done in the case
(2.5) L:X/Y1— X/Ys, Llz]y, = Maly,, |[z]y, € X/Y;,

Y1, Y5 linear subspace of X, Y7 invariant for M and Y; C Y5.

In the following we will denote L simply as M. Similarly we denote with M the restriction of M from
Yto?Y.

Given a vector space X, we say that X has finite dimension if there is a finite number of elements x;,
it =1,...,n, such that X is the linear span of {x1,...,2,}:

(2.6) X:{Zaixi:aiEF,xieX,izl,...,n}.
In this case we define the dimension of X, dim(X), as the minimal number of elements needed so that

(2.6) holds.
Proposition 2.3. We have
(2.7) dim (N /N1 ) = dim Ny 1 /N ).
Note the opposite inequality w.r.t. N;j C Nj4q.
Proof. In fact, if [z] € Nj;+1/Nj, then z = z + N;, where M7 ™!z = 0. Thus
Mz =Mz +MN; C y + N;_q,

where M7y = 0. We have proved that Mz € N;/N;_1.

We prove now that M : N;1/N; — N;/N;_; is injective. In fact, if M([z1] — [22]) = 0 in N;/N,_q,
with [z1],[22] € Njy1/Nj, then M(z1 — 22) € Nj_1, i.e. z1 — 22 € Nj, or [21] = [22). Thus M maps
Nj+1/N; one to one into N;/N,_;. O

In particular, if for some j it happens N; = N;;q, then N; = Ny, for all & > j.
Proposition 2.4. If M:Y —Y and M : X/Y — X/Y are invertible, then M : X — X is invertible.

Proof. We first show that M is injective. In fact, if Mz = 0, then M[z] = 0, and from M : X/Y — X/Y
invertible it follows that z € Y, and from M : Y — Y invertible it follows z = 0.

Next, to prove surjectivity, we look for Mxg = ug. We can solve the above equation modulo Y, i.e.
there is 1 € X such that Mxz; = up + 2, z € Y. From the first condition there is y € Y such that
My = z, so that xg = x1 — y. O

Note that in general if M is invertible and Y is invariant, M : Y — Y M : X/Y +— X/Y need not to
be invertible, see exercises.

3. INDEX OF A LINEAR MAP

A linear map is called degenerate if its range is finite dimensional,

(3.1) dim(Rm) < 0.
If A: X — U is degenerate, and L : Z — X, R : U — V are linear maps, then
AL, RA

are degenerate. Moreover the set of degenerate maps from X to U is a linear subspace of L(X,U). For
the special case of maps from X into itself, the space of degenerate maps forms an ideal with respect to
the composition of maps.

We say that M : X — U, L : U — X are pseudoinverse iff

(3.2) LM=1+G, ML =1+G,
with G degenerate (from X to X or U — U, respectively).
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Note that if M, L are pseudoinverse, then adding degenerate maps we obtain again pseudoinverse
maps. In fact, if A : X — U is degenerate, then
LM+A)=I+G+LA=1+G/,

with G’ degenerate. Similarly for L.
Moreover if M, L and A, B are couple of pseudoinverse maps, then the pseudinverse of AM is LB:
in fact
LBAM=LOI+GM=LM+G' =1+G".
We define the codimension of the linear subspace R C U by
(3.3) codimR = dim(U/R).
Proposition 3.1. A linear map M : X — U has a pseudoinverse iff
(3.4) dim Ny < o0, codimRy < oo.
Proof. For the "only if” part, let L : U — X be a pseudoinverse of X. If x € Ny, then
LMz =z + Gx =0,
i.e. * € Rg which is finite dimensional. Similarly, if y € RmL = Rit+q, then y € Ry, since Ry, C X.
This implies that Ryng D Rpyg. It follows that
codimRy < codimRy; .
Since for € Ng, then (I + G)z = z, then Ng C Riig, so that
codimRyyg < codimNg.

Since G : X/Ng — Rg is one to one, then codimNg = dim Rg, in particular is finite dimensional. This
concludes the ”only if” part.
For the if part, we recall first Zorn’s Lemma.

Let A be a partially ordered set, i.e. there is an order relation <, defined for some pairs of elements
a,b € A which is
e transitive:
a<b, b<c¢c =— a<cg
o reflexive:
a<a VaeA;
e antisymmetric:
a<b, b<a = a=b
A subset B of A is totally ordered if for all a,b € B either a < b or b < a. An element u € A is an upper
bound of a subset B C A if b < w for all b in the subset B. A element m is mazimal if every element a of
the set A such that a < m or m < a, satisfies a < m.

Lemma 3.2 (Zorn’s Lemma). If every totally ordered subset of a partially ordered set has an upper
bound, then the partially ordered set has a maximal element.

By Zorn’s lemma for any subspace N of X there is a complementary (not unique!) subspace such that
X =N@aY,ie. every x € X can be written as

T=n+y, neN, yey.

In fact, let A be the set of subspaces Y of X such that N NY = {0}, ordered by inclusion. The set A
is clearly partially ordered, and if {Y,}, is a totally ordered subset of A, then U,Y,, is an upper bound.
Thus there is a maximal element Y.

Assume now that there is an @ ¢ N+Y. Then Y/ =Y +span{z} is again in A, Y C Y, contradicting
that Y is maximal. Thus for every © = n + y, and since Y N N = {0}, the decomposition is unique.

We can thus define the projection of x onto N by Pz = n. Note that if N has finite codimension then
dimY = codimN. In fact, the map

X/Yszl=h+yl=[n]l—neN

is surjective and injective.
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Decompose now
X=Nu®Y, U=RmaV.
From the fact that M : X/Npg — Ry one to one and onto, then M : Y — Rpp is invertible: one in fact
can again use the identification
X/Nn 3 [zl =[yl »y ey,
so that
z€Ry = Nz] € X/Nm: Mz] =2 = 3y eY: My =z
Denote its inverse by M~!. Define now K = M~!Pg,, . Clearly

I onY I
KM — M 1Py, MK-= onfim _p p o
0 on Nm

By constructions the projections have finite dimensional range. O

We now introduce the indez of a linear map with pseudoinverse:
(3.5) indM = dim Ny; — codimRyy.
Theorem 3.3 (Stability of the index). If M : X — U, L : U — W are linear maps with pseudoinverse,
then
(3.6) indLM = indL + indM.
Proof. By considering the linear spaces X /Ny, Ry, we reduce to prove that

indLM = dim Ny, — codimRyy,

with M one to one and L onto.

Decompose U = Ry + Y, RmNY = {0} such that
(3.7) N, = (NLNRm) + (NLNY).

This can be done using again Zorn’s Lemma, or just by finite dimensional arguments. In fact, we consider
NL N Ry C Np. Then, we decompose first (we are in finite dimension)

N, = (N NRm)+Y, RunNY ={0}.

Then we find a maximal subspace Y containing Y and such that Ry NY = {0}. As in the proof of
Proposition 3.1 one concludes that U = Ry + Y, and (3.7) holds.
Since L is surjective, then the only points which are not mapped by L are the points in Y, or

W = (LY) + Rpwm-
The number of different points in Y which are mapped by L are exactly Y/(Y N Ny,).

Since M is injective, then Ny are the points of X which are mapped by M into Ny, i.e. Np, N Rpp.
We conclude

dim Nym — codimRyv = dlm(NL N RM) — dlm(Y/(Y N NL))
dim(Ng, N Ryp) — codim(Ry) + dim(Y N Ny,)
= dim(Ng,) — codim(Rp).

4. EXERCISES

(1) On the one dimensional vector space C, consider the convex set C' = {z = ¢,¢ € [0,1]} and the
point Z = /2. Clearly there are not linear map M(z) = az such that sups [M(2)| < |[M(z)].
Show that instead this happens when C is considered with the linear structure of the real vector
space R2.

(2) Prove by means that the axioms on linear spaces that:

e every intersection and union of balanced sets is balanced;
e every intersection of convex sets is convex;
o Ais convex iff sA+tA = (s+t)A for all s, > 0.
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(3) Consider the linear space
X = {x: (a1,a9,...),a; € R}.
Define the linear maps R, L (right and left shift respectively) as

R(al,ag,...) = (0,(117a27‘..), L(al,az,...) = ((12,(13,...).

e Prove that LR is invertible, but RL not.
e Show that are pseudoinverse of each other.
e Compute the null spaces, ranges and index and verify the index theorem.
(4) Prove that if Ly, Ly are pseudinverse of M, then L; — Ly is degenerate.
(5) Consider X as the space of bounded function on R, and let Sz(t) = x(t — 1) (right shift of 1).
Let Y be the subspace of functions which vanishes on z < 0.
e Prove that Y is invariant, but S is not invertible on either Y or X/Y.
e Compute the null space on X/Y.
(6) In the vector space C([0,1],R) find the extremal subsets of

B={ueC(0,1]R): lu(z)| <1}.
(7) Let M € L(X,Y) be a linear map. Show that
dim(X/NM) = dim Rpm.
In particular, if Y = R or C, then dim(X/Npy) = 1.



