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Introduction What kind of regularity

Precise statements

Structure of solutions to Hamilton-Jacobi

Consider the Hamilton-Jacobi equation
us+ H(Vu) =0, (t,x)€RT xR™,

with uniformly convex Hamiltonian H and Lipschitz initial data.

L. Caravenna, C. De Lellis, M. Gloyer, R. Robyr, S. B. Regularity of solutions to Hamilton-Jacobi, Hyperbolic Conser



Introduction What kind of regularity

Precise statements

Structure of solutions to Hamilton-Jacobi

Consider the Hamilton-Jacobi equation
us+ H(Vu) =0, (t,x)€RT xR™,

with uniformly convex Hamiltonian H and Lipschitz initial data.
We expect a smooth function outside countably many regular
hypersurfaces of codimension 1.

t
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Introduction What kind of regularity

Precise statements

Structure of solutions to Hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space
dimension

ur+ f(u)x =0, (t,x) eRT xR, ueR™,
one can decompose the derivative uy in waves
ue =Y vifi, u=>» w,
i i

with
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Introduction What kind of regularity

Precise statements

Structure of solutions to Hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space
dimension
ur+ f(u)x =0, (t,x) €RT xR, ucR™,
one can decompose the derivative uy in waves
ue =Y vifi, u=>» w,
i i
with
1. % direction of the j-th jumps or the i-th eigenvector;
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Introduction What kind of regularity

Precise statements

Structure of solutions to Hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space
dimension

ur+ f(u)x =0, (t,x) €RT xR, ucR™,

one can decompose the derivative uy in waves
ue =Y vifi, u=>» w,
i i
with
1. % direction of the j-th jumps or the i-th eigenvector;
2. w; = —Ajv;, with A\; speed of the /-shock or the j-th
eigenvalue;
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Introduction What kind of regularity

Precise statements

Structure of solutions to Hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one space
dimension

ur+ f(u)x =0, (t,x) €RT xR, ucR™,

one can decompose the derivative uy in waves
ue =Y vifi, u=>» w,
i i

with

1. % direction of the j-th jumps or the i-th eigenvector;

2. w; = —Ajv;, with A\; speed of the /-shock or the j-th

eigenvalue;
3. the continuous part of v; satisfies the equation

(vi)e + (A\ivi)x = Jiy Ji € M(RT x R).
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Introduction

What kind of regularity

Precise statements

Hence each v; should have a similar structure to the second
derivative of the solution to a Hamilton-Jacobi equation, but the
functions \; depends on u and there is a source J;.

AN
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Introduction

What kind of regularity

Precise statements

Hence each v; should have a similar structure to the second
derivative of the solution to a Hamilton-Jacobi equation, but the
functions \; depends on u and there is a source J;.
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Introduction What kind of regularity

Precise statements

Precise notions of regularity

One correct form of these questions is:
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Introduction What kind of regularity

Precise statements

Precise notions of regularity

One correct form of these questions is:

1. m-rectifiability of the jump set;
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Introduction What kind of regularity

Precise statements

Precise notions of regularity

One correct form of these questions is:
1. m-rectifiability of the jump set;

2. regularity of solutions to the linear transport PDE
pt +div(dp) =0,

where d is the direction of the optimal ray for HJ or the
i-eigenvalue for HCL.
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Introduction What kind of regularity

Precise statements

Precise notions of regularity

One correct form of these questions is:
1. m-rectifiability of the jump set;

2. regularity of solutions to the linear transport PDE
pt +div(dp) =0,

where d is the direction of the optimal ray for HJ or the
i-eigenvalue for HCL.

3. SBV regularity of Vu for HJ and u for HCL.
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Introduction What kind of regularity

Precise statements

Precise notions of regularity

One correct form of these questions is:
1. m-rectifiability of the jump set;

2. regularity of solutions to the linear transport PDE
pt +div(dp) =0,

where d is the direction of the optimal ray for HJ or the
i-eigenvalue for HCL.

3. SBV regularity of Vu for HJ and u for HCL.

The first question is an easy application of a well known
rectifiability criteria.

L. Caravenna, C. De Lellis, M. Gloyer, R. Robyr, S. B. Regularity of solutions to Hamilton-Jacobi, Hyperbolic Conser



Area estimate
Disinteg n

Transport along rays Reformulation of transport equation
Optimal transport on manifolds
Geodesic spaces

Outline

Transport along rays
Area estimate
Disintegration
Reformulation of transport equation
Optimal transport on manifolds
Geodesic spaces

L. Caravenna, C. De Lellis, M. Gloyer, R. Robyr, S. B. Regularity of solutions to Hamilton-Jacobi, Hyperbolic Conser



Area estimate
Disintegration

Transport along rays Reformulation of transport equation
Optimal transport on manifolds
Geodesic spaces

Area estimate

The solution to HJ equation
u + H(VU) =0
is given by

u(t, x) = min { u(0, y) + tL % . L=H"
y
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Area estimate

The solution to HJ equation
u + H(VU) =0

is given by

u(t, x) = min {u(O,y) + tL(X;y> } L=H"

In particular, it is uniformly approximated by the sequence of
functions

un(t. ) = min {u0) + (T2 )y € bt )
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These solutions have a very simple structure:
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In particular, we have the estimates:
1. divergence is a measure

divd — ?ﬁ’" <0
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Area estimate
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Optimal transport on manifolds
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In particular, we have the estimates:
1. divergence is a measure

divd — ?ﬁ’" <0

2. the Jacobian c(t, x) of the flow x — x + td(x) satisfies

c(t,s,x) = <t;S>m
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In particular, we have the estimates:
1. divergence is a measure

divd — ?ﬁ’" <0

2. the Jacobian c(t, x) of the flow x — x + td(x) satisfies

c(t,s,x) = <t;S>m

By (1), one can show that this is the worst case, i.e.

m
S (t;s) t S s
c(t, s, x)

L. Caravenna, C. De Lellis, M. Gloyer, R. Robyr, S. B.
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Since along optimal rays we have the dual solution

u(s, x) = max{u(t,y) —(t— s)L(y - X> }

t—s

we obtain the bound on the Jacobian

()" () ) 2=l (57322

where [0, T] is the existence time of the ray.
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Transport along rays Reformulation of transport equation

Optimal transport on manifolds
Geodesic spaces

Since along optimal rays we have the dual solution

u(s, x) = max{u(t,y) —(t— s)L(y - X> }

t—s

we obtain the bound on the Jacobian

()" () ) 2=l (57322

where [0, T] is the existence time of the ray.

=T
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Disintegration of Lebesgue measure

The above estimate implies that the change of variable

(t.y) — (t,y + td(y))

has an integrable Jacobian with Lipschitz regularity in t.
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Disintegration of Lebesgue measure

The above estimate implies that the change of variable

(t,y) — (t,y + td(y))

has an integrable Jacobian with Lipschitz regularity in t.

The correct form to state this is to write the disintegration of the
Lebesgue measure along the rays:

L4 = [ clty)demay),
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Area estimate
Disintegration

Transport along rays Reformulation of transport equation
Optimal transport on manifolds
Geodesic spaces

Disintegration of Lebesgue measure

The above estimate implies that the change of variable

(t,y) — (t,y + td(y))

has an integrable Jacobian with Lipschitz regularity in t.

The correct form to state this is to write the disintegration of the
Lebesgue measure along the rays:

L4 = [ clty)demay),

ie. Vo € CS(RT x RM)

[t = [ ([ oty + wtete e )mi)
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Reformulation of transport equations

As a consequence we obtain:
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Reformulation of transport equations

As a consequence we obtain:

1. Equation for the Jacobian c:
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Reformulation of transport equations

As a consequence we obtain:

1. Equation for the Jacobian c:

divie M = % = (divd)a.c.c.
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Reformulation of transport equations

As a consequence we obtain:

1. Equation for the Jacobian c:

divie M = % = (divd)a.c.c.

2. Reformulation of transport equation as ODE:

d
pt +div(dp) =f — jf + (divd)acp = f.
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Disintegration

Transport along rays Reformulation of transport equation
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Reformulation of transport equations

As a consequence we obtain:

1. Equation for the Jacobian c:

divie M = % = (divd)a.c.c.

2. Reformulation of transport equation as ODE:
. dp .
pt +div(dp) =f — o + (divd)acp = f.

Remark. The proof depends only on the convexity of H.
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Transport along rays Reformulation of transport equation
Optimal transport on manifolds
Geodesic spaces

Riemannian manifolds

Instead of the cost || - ||, we can use the distance cost on a
Riemannian manifold (M, m)

d(x.y) = inf { / Jm ) (0)de.A(0) = x,2(1) = y}.
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Riemannian manifolds

Instead of the cost || - ||, we can use the distance cost on a
Riemannian manifold (M, m)

d(x.y) = inf { / Jm ) (0)de.A(0) = x,2(1) = y}.

In the smooth case, the study of the evolution of the Jacobian J
reduces to the system

q = uJ
U = —U?>—-R(%,7%)

where R is a symmetric tensor whose trace is Ric.
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In particular, if JJ~1(0) is symmetric (ok for optimal transportation
where a potential is present) we obtain that det J satisfies
d2
— logdet J < —Ric(%,4
72 108 < (%, %),

so that if the Ricci curvature is bounded from below, the function
t — logdet J(7(t))

is semiconcave.
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Disintegration
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Optimal transport on manifolds
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In particular, if JJ~1(0) is symmetric (ok for optimal transportation
where a potential is present) we obtain that det J satisfies

2
d2

so that if the Ricci curvature is bounded from below, the function

log det J < —Ric(¥,7),

t — logdet J(7(t))

is semiconcave.

Hence if the two measures p, v are absolutely continuous, the
Jacobian never vanish and we obtain again an absolutely
continuous disintegration along rays:

d? d? 1
d |Og C(t y) dt2 l <det J> — R’IC(’Y77)
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Area estimate

Transport along rays
Optimal transport on manifolds
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General geodesic spaces

The semiconvexity estimate is stable under a weak convergence
notion of metric spaces. Recall that a geodesic space is a metric
space (X, d;) such that

di(x,y) = min {L(7),7(0) = x,7(1) = y}.

The space is non-branching if the geodesics do not split.
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Disintegr

Transport along rays Reformulation of transport equation
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General geodesic spaces

The semiconvexity estimate is stable under a weak convergence
notion of metric spaces. Recall that a geodesic space is a metric
space (X, d;) such that

di(x,y) = min {L(7),7(0) = x,7(1) = y }.
The space is non-branching if the geodesics do not split.

Definition

(X,d,d;,n) is a measure geodesic space if (X, d) is a Polish
space, (X, d) is a geodesic space with d; : X x X — [0, 4o0]
d-l.s.c., and 7 is a probability measure on (X, d).
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We say that (X,, dp, din, 1n) converges to (X, d, d;,n) if there
exist
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We say that (X,, dp, din, 1n) converges to (X, d, d;,n) if there
exist

> a metric cA!LJ7 : Xp UX — [0, 400] extending d ,, di
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Optimal transport on manifolds
Geodesic spaces

We say that (X,, dp, din, 1n) converges to (X, d, d;,n) if there
exist

> a metric dy , : X, UX — [0, +00] extending dj ,, di
> a transference plan # € M<(n,, )
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Area estimate
Disintegration
Transport along rays Reformulation of transport equation

Optimal transport on manifolds
Geodesic spaces

We say that (X,, dp, din, 1n) converges to (X, d, d;,n) if there
exist

> a metric cA!LJ7 : Xp UX — [0, 400] extending d ,, di

> a transference plan # € M<(n,, )
such that

im [/amﬁﬁ (1—#a(X, UX))| =0.
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Area estimate
Disintegration
Transport along rays Reformulation of transport equation

Optimal transport on manifolds
Geodesic spaces

We say that (X,, dp, din, 1n) converges to (X, d, d;,n) if there
exist

> a metric cA!LJ7 : Xp UX — [0, 400] extending d ,, di

> a transference plan # € M<(n,, )
such that

lim [/amfrﬁ (1 —ﬁn(XnUX))} =0.

It can be shown that under this convergence Ricci bounds are
preserved.

Example. The optimal transport in Wiener space is equivalent to
the optimal transport in

(ﬂ% 1l - s, H -2 dx,-),

and it is possible to show that the curvature is 1 (Sturm).
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & '"C‘?Sl,'m, ff)" Sheckiaieation
SBV regularity

A formula for the divergence

In the case of uniform convexity, it is possible to prove the following
formula:
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & '"C‘?Sl,'m, ff)" Sheckiaieation
SBV regularity

A formula for the divergence

In the case of uniform convexity, it is possible to prove the following
formula: if A is a set where d is single valued, then for t > 0

L ((1 - td)"1(A)) > c(m(A) (T - t)divd(A)).
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & mc?surc ﬁ)r Sheckiaieation
SBV regularity

A formula for the divergence

In the case of uniform convexity, it is possible to prove the following
formula: if A is a set where d is single valued, then for t > 0

L ((1 - td)"1(A)) > c(cm(A) (T - t)divd(A)).

t=T

WL
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & mc?surc ﬁ)r Sheckiaieation
SBV regularity

A formula for the divergence

In the case of uniform convexity, it is possible to prove the following
formula: if A is a set where d is single valued, then for t > 0

L ((1 - td)"1(A)) > c(cm(A) (T - t)divd(A)).

t=T

WL

In particular, if there is a Cantor part (hence single rays), the area
is strictly positive.

X
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A formula for the divergence
SBV estimate for HJ
A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

SBV estimate for Hamilton-Jacobi

The argument for SBV now works as follows:
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & mc?suré ﬁ)r Sheckiaieation
SBV regularity

SBV estimate for Hamilton-Jacobi

The argument for SBV now works as follows:

1. if the rays which arrive in the set A where the Cantor measure
is concentrated can be prolonged, the previous formula implies
that L™(A) > 0, yielding a contradiction;
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & mc?suré ﬁ)r Sheckiaieation
SBV regularity

SBV estimate for Hamilton-Jacobi

The argument for SBV now works as follows:

1. if the rays which arrive in the set A where the Cantor measure
is concentrated can be prolonged, the previous formula implies
that L™(A) > 0, yielding a contradiction;

2. hence the L™ measure of rays which start and t; and arrive at
t > t; decreases of a strictly positive quantity;
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A formula for the divergence
SBV estimate for HJ

SBV estimates for HJ and HCL & mc?suré ﬁ)r Sheckiaieation
SBV regularity

SBV estimate for Hamilton-Jacobi

The argument for SBV now works as follows:

1. if the rays which arrive in the set A where the Cantor measure
is concentrated can be prolonged, the previous formula implies
that L™(A) > 0, yielding a contradiction;

2. hence the L™ measure of rays which start and t; and arrive at
t > t; decreases of a strictly positive quantity;

3. since we have o-finite measures, then up a countable set of
times d has not Cantor part in the divergence.

L. Caravenna, C. De Lellis, M. Gloyer, R. Robyr, S. B. Regularity of solutions to Hamilton-Jacobi, Hyperbolic Conser



A formula for the divergence
SBV estimate for HJ
A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

SBV estimate for Hamilton-Jacobi

The argument for SBV now works as follows:

1. if the rays which arrive in the set A where the Cantor measure
is concentrated can be prolonged, the previous formula implies
that L™(A) > 0, yielding a contradiction;

2. hence the L™ measure of rays which start and t; and arrive at
t > t; decreases of a strictly positive quantity;

3. since we have o-finite measures, then up a countable set of
times d has not Cantor part in the divergence.

Since divd(t, x) = tr(D?H(Vu)D?u), D>H > cl and D?u < 0 in
the Cantorian part, we obtain that tr(D?u) has not Cantor parts,
hence D?u has not Cantor parts.
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A formula for the divergence
SBV estimate for HJ
A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

A measure for shock creation

If v is the jump part of the i-th component v; of uy, then we have
the two equations
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SBV estimates for HJ and HCL SBV regularity

A measure for shock creation

If v is the jump part of the i-th component v; of uy, then we have
the two equations

1. equation for v;: if @ is the interaction potential,

(V,')t + (;\,'V,')X = J; |J,'|((S, t‘] X R) < C(Q(S) — Q(t)),
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A formula for the divergence
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A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

A measure for shock creation

If v is the jump part of the i-th component v; of uy, then we have
the two equations

1. equation for v;: if @ is the interaction potential,

(v,')t + (;\,'V,')X = J; |J,'|((S, t‘] X R) < C(Q(S) — Q(t)),

2. equation for v?:

(v)e + (Aiv?)x = I,

|J2[((s, t] x R) < Tot.Var.(v; — v7(s)) — Tot.Var.(v; — v/(t))
+ C(Q(s) — Q(1)).
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SBV regularity

SBV estimates for HJ and HCL

The interpretation of J? is the following:
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A formula for the divergence
SBV estimate for HJ

A measure for shock creation
SBV regularity

SBV estimates for HJ and HCL

The interpretation of J? is the following:

1. it is easy to create shocks with negligible interactions
(quadratic w.r.t. strength);
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A formula for the divergence
SBV estimate for HJ

A measure for shock creation
SBV regularity

SBV estimates for HJ and HCL

The interpretation of J? is the following:
1. it is easy to create shocks with negligible interactions
(quadratic w.r.t. strength);
2. you need a interaction and cancellation of the order of the
shock to cancel it.
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A formula for the divergence
SBV estimate for HJ
A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

SBV regularity

The continuous part v{ of v; thus satisfies

(Ve + Aivi)x =I5 JF=di— J7
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A formula for the divergence
SBV estimate for HJ
A measure for shock creation

SBV estimates for HJ and HCL SBV regularity

SBV regularity

The continuous part v{ of v; thus satisfies

(vi)e+(Aivi)e=J7, JF=Jdi—J.
As argument similar to the estimate of the decay of positive waves
yields now

LY(A)

vi(T,A) > — T |J7| (Domain of influence of A>.
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SBV regularity

The continuous part v{ of v; thus satisfies

(vi)e+(Aivi)e=J7, JF=Jdi—J.
As argument similar to the estimate of the decay of positive waves
yields now

LY(A)

vi(T,A) > — T |J7| (Domain of influence of A>.
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A formula for the divergence
SBV estimate for HJ

A measure for shock creation
SBV regularity

SBV estimates for HJ and HCL

In particular, if A is a set of measure 0 where the Cantor part is
concentrated, then by taking a sequence t, N\, T we obtain

|JF|(A) > 0.
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SBV estimates for HJ and HCL

In particular, if A is a set of measure 0 where the Cantor part is
concentrated, then by taking a sequence t, N\, T we obtain

|JF|(A) > 0.

Since Jf is a bounded measure, then the set of times where a
Cantor part appears is countable.
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concentrated, then by taking a sequence t, N\, T we obtain

|JF|(A) > 0.

Since Jf is a bounded measure, then the set of times where a
Cantor part appears is countable.
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SBV estimates for HJ and HCL

In particular, if A is a set of measure 0 where the Cantor part is
concentrated, then by taking a sequence t, N\, T we obtain

|JF|(A) > 0.

Since Jf is a bounded measure, then the set of times where a
Cantor part appears is countable.
These times corresponds to:

1. strong interactions among waves;
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A formula for the divergence
SBV estimate for HJ

A measure for shock creation
SBV regularity

SBV estimates for HJ and HCL

In particular, if A is a set of measure 0 where the Cantor part is
concentrated, then by taking a sequence t, N\, T we obtain

|JF|(A) > 0.

Since Jf is a bounded measure, then the set of times where a
Cantor part appears is countable.
These times corresponds to:

1. strong interactions among waves;

2. generation of shock with the same strength of the Cantor part.
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