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1. Introduction

2. Settings

We consider a σ-generated probability space (X,Σ, µ) and a partition X = ∪α∈AXα, where A = X/∼
is the quotient space, and h : X → A the quotient map. We give to A the structure of a probability space
by introducing the σ-algebra A = h]Ω, where Ω are the saturated sets in Σ (unions of fibers of h), and
m = h]µ the image measure such that m(S) = µ(h−1(S)).

Remark 2.1. A is the largest σ-algebra such that h is measurable.

The following example shows that even though Σ is σ-generated, A in general is not.

Example 2.2. Consider in ([0, 1],B) (Borel) the equivalence relation

x ∼ y iff x− y = 0 mod α,

for some α ∈ [0, 1]. If α = p/q, with p, q ∈ N relatively prime, then we can take

(A,A) =
([

0,
1
q

]
,B
)
.

If α ∈ R \ Q, then A is a Vitali set. If µ = L1|[0,1], then m = h]L1|[0,1] has only sets of either full
or negligible measure. Assume by contradiction that {an}n∈N generates A. Since h−1(x) = {x + nα
mod 1 : n ∈ N} ∈ B, it follows that each a ∈ A belongs to a generating set of measure 0. But this leads
to a contradiction:

1 = m(A) = m

 ⋃
m(an)=0

an

 ≤ ∑
m(an)=0

m(an) = 0.

We now define the measure algebra (Â, m̂) by the following equivalence relation on A:

a1 ∼ a2 iff m(a1 4 a2) = 0.

It is easy to check that Â is a σ-algebra and m̂ is a measure on Â.

Proposition 2.3. (Â, m̂) is σ-generated.

Â is isomorphic to a sub-σ-algebra of Σ.

Remark 2.4. More generally, if (X,Σ, µ) is generated by a family of cardinality ωα, then each sub-σ-
algebra A ⊂ Σ is essentially generated by a family of sets of cardinality ωα or less.

This is a particular case of a deep result, Maharam’s Theorem ([7], 332T(b)), which describes isomor-
phisms between probability spaces: if (Σ̂, µ̂) is a probability algebra, then

(Σ̂, µ̂) '
∏
i

ci

[⊗
Ji

{0, 1}

]
,
∑
i

ci = 1,

where
⊗

Ji
{0, 1} is the measure space obtained by throwing the dice Ji times.
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3. Disintegration

Definition 3.1. We introduce the following relation on A:

a1 ∼ a2 iff the following holds:

for all Â ∈ Â, a1 ∈ Â iff a2 ∈ Â.

The equivalence classes of this relation are the atoms of the measure m. In particular, we can define the
measure space

(Λ = A/∼, Â,m).

The σ-algebra is isomorphic to the σ-generated Â constructed in the previous section.

Definition 3.2. The disintegration of the measure µ with respect to the partition X =
⋃
αXα is a map

A→ P (X), α 7→ µα,

where P (X) is the class of probability measures on X, such that the following properties hold:

(1) for all B ∈ Σ, the map α 7→ µα(B) is m-measurable;
(2) for all B ∈ Σ, A ∈ A,

µ(B ∩ h−1(A)) =
∫
A

µα(B) dm(α).

It is unique if µα is determined m-a. e.

Remark 3.3. (1) Since we are not requiring the elements of the partition Xα to be measurable, in
general µα(Xα) 6= 1 for those Xα which are measurable. In this case we say that the disintegration
is not strongly consistent with h.

(2) For general spaces which are not σ-generated, sometimes a disintegration nonetheless exists, but
in general there is no uniqueness.

(3) The disintegration formula can easily be extended to measurable functions:∫
X

f dµ =
∫
A

(∫
X

f dµα

)
dm(α).

We now state the general disintegration theorem.

Theorem 3.4. Assume that (X,Σ, µ) is a σ-generated probability space, X =
⋃
α∈AXα a partition of

X, h : X → A the quotient map, and (A,A,m) the quotient measure space. Then the following holds:

(1) There is a unique disintegration α 7→ µα.
(2) If (Λ, Â,m) is the σ-generated algebra equivalent to (A,A,m), and p : A→ Λ the quotient map,

then the sets
Xλ = (p ◦ h)−1(λ)

are µ-measurable, the disintegration

µ =
∫

Λ

µλ dm(λ)

is strongly consistent p ◦ h, and

µα = µp(α) for m-a. e. α.

Definition 3.5. R ⊂ X is a rooting set for X =
⋃
α∈AXα, if for each α ∈ A there exists exactly one

x ∈ R ∩Xα.
R is a µ-rooting set if there exists a set Γ ⊂ X of full µ-measure such that R is a rooting set for

Γ =
⋃
α∈A

Γα =
⋃
α∈A

Γ ∩Xα.

Proposition 3.6. If µ =
∫
A
µα dm(α) is srongly consistent with the quotient map, then there exists a

Borel µ-rooting set.
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Example 3.7. Consider again
x ∼ y iff x− y = 0 mod α.

If α = p/q with p, q relatively prime, then the rooting set is [0, 1/q), so that we know that the disintegration
is strongly consistent with h. One can check that

µ =
∫ 1

q

0

dα
q−1∑
n=0

δ

(
x− α− n

q

)
.

If α ∈ R \Q, then we know that

(Λ, Â,m) '
(
{λ}, {∅, {λ}}, δλ

)
,

so that

µ =
∫

dmµ.

4. Hamilton-Jacobi equation and monotonicity

In the following we consider the Hamilton-Jacobi equation{
ut +H(∇u) = 0,
u(0, x) = ū(x),

where (t, x) ∈ R+ × Rd and ū ∈ L∞(Rd). We assume that H : Rd → R is C1 and convex. We denote by
L = H∗ the Legendre transform of H and assume that it has at least linear growth,

L(x) ≥ 1
c

(|x| − c),

and is locally Lipschitz. By the properties of the Legendre transform, L is strictly convex.
For example, we can consider H(x) = L(x) = 1

2 |x|
2.

The viscosity solution is given explicitly by

u(t, x) = inf
{
ū(y) + tL

(
x− y
t

)
: y ∈ Rd

}
.

Remark 4.1. The following properties can easily be checked:

(1) Finite speed of propagation: u(t, x) depends only on the values of ū(y) for |x− y| ≤ c.
(2) Uniform Lipschitz continuity: For fixed y, the function ū(y)+ tL((x−y)/t) is uniformly Lipschitz

in x for |x− y| ≤ c. Hence u(t, x) is uniformly Lipschitz in x for all t > 0.
(3) Semigroup property: For t > s > 0, we have that

u(t, x) = min
{
u(s, z) + (t− s)L

(
x− z
t− s

)
: z ∈ Rd

}
.

(4) If D2H ∈ [1/c, c]I, then D2L ∈ [1/c, c]I, and thus u(t, x)− c|x|2/2t is concave in x. Hence u(t, ·)
is quasi-concave for t > 0.

We can solve the backward problem {
vt +H(∇v) = 0,
v(1, x) = ū(1, x).

Then v has the same properties as above for t < 1, and the following duality holds:

u(1, x) = min
{
v(0, y) + L(x− y)

}
,

v(0, y) = max
{
u(1, x)− L(x− y)

}
.

We say that u(1, x) and v(0, y) are L-conjugate functions.
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Definition 4.2. The couple [y, x] ∈ Rd × Rd such that

u(1, x) = v(0, y) + L(x− y)

is called an optimal couple. The corresponding segment{
(1 + t)y + tx : 0 ≤ t ≤ 1

}
is called an optimal ray.

Remark 4.3. Due to the strict convexity of L, two rays cannot intersect anywhere except at their end
points.

Remark 4.4. In general, the duality of u(1, x) and v(0, y) does not imply that u(t, x) = v(t, x) for
0 < t < 1.

Example 4.5. In the case H(x) = L(x) = |x|2/2, the optimal rays are the graph of the maximal monotone
operator

x 7→ y(x) = ∂x

(
|x|2

2
− u(1, x)

)
.

It follows from Minty’s Theorem ([2], p.142) that the map

x 7→ tx+ (1− t)y(x)

is surjective. Since the rays do not intersect, it follows that for all 0 < t < 1 and all z ∈ Rd, there exists
a unique optimal couple [y, x] such that

z = (1− t)y + tx.

Hence, using the explicit formula for the optimal ray, we obtain

u(t, x) = v(t, x) for all t ∈ [0, 1], x ∈ Rd.

Hence the solution is both (2t)−1-concave and (2(1− t))−1-convex, thus u ∈ C1,1.

The set y(x) is convex, therefore the rays departing from a given point form a convex set.
The example can be generalized to the case H(x) = 1/2〈x,Ax〉 by a linear change of variable.

Example 4.6. A more difficult case is D2H,D2L ∈ [1/c, c]I. One can use that v(0, y) + |y|2/(2c) is convex
to compute the optimal rays for t� 1:

u(t, z) = min
{
v(0, y) + tL

(
z − y
t

)}
= min

{
v(0, y) +

|y|2

2c
+ tL

(
z − y
t

)
− |y|

2

2c

}
.

The last two terms together are convex for t < c−2, so that the minimizer is given by

∇L
(
z − y
t

)
= ∂−v(0, y),

where ∂−v(0, y) denotes the subdifferential of v at y:

∂−f(x) =
{
p : lim inf

f(x+ h) + f(x)− ph
|h|

≥ 0
}
.

Similarly, we can introduce the superdifferential

∂+f(x) =
{
p : lim sup

f(x+ h) + f(x)− ph
|h|

≤ 0
}
.

These sets are convex, but in general they are empty. We thus obtain

z = y + t∇H(∂−v(0, y)) for 0 ≤ t� 1.

The strict convexity implies that the map z 7→ y is single-valued and Lipschitz. For t� 1, the projections
of the rays z(y) are still convex sets. However, in general the rays do not extend to t = 1.
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Example 4.7. Taking
L(x) = 3|x|+ x1|x|,

u(1, x) = min
{
L

(
x−

(
0
1

))
, L

(
x−

(
0
1

))}
,

and computing the corresponding v(0, y), one can prove that there is a gap between the rays, i. e. there
exists a region inside of which one has

u(t, x) > v(t, x).

Example 4.8. In the general case, when L is only strictly convex, there is no notion of subdifferential
or superdifferential. One then has no quasi-concavity or quasi-convexity, hence no BV regularity. The
graph of the optimal rays [y, x] is in general full of holes, and there is no interval where one could prove
C1,1 regularity.

5. Regularity properties of L-conjugate functions and optimal rays

We consider a pair of L-conjugate functions u, v ∈ L∞ ∩ Lip,

u(x) = min
{
v(y) + L(x− y) : y ∈ Rd

}
,

v(y) = max
{
u(x)− L(x− y) : x ∈ Rd

}
,

where as before L : Rd → R is strictly convex and has at least linear growth.
We define the set

F =
{

[y, x] ∈ Rd × Rd : [x, y] optimal couple
}

and its projection

F (t) =
{
z : z = (1− t)y + tx for some [y, x] ∈ F

}
.

By the duality, we know that F (0) = F (1) = Rd. On the set F (t) we define the vector field

pt(z) = (1, pt(z))

= (1, x− y), where [y, x] ∈ F such that z = (1− t)y + tx.

We also introduce the set-valued functions

y(x) =
{
y : [y, x] ∈ F

}
,

x(y) =
{
x : [y, x] ∈ F

}
.

From the fact that u and v are L-conjugate, we obtain the following lemma.

Lemma 5.1. The set F and its projections F (t) are closed, and the set-valued functions x(y), y(x) have
locally compact images.

In particular y(x), x(y) are Borel measurable, because the inverse of compact sets is compact.

Example 5.2. When ∇u, ∇v exist, then they are related to p by

∇v(y) = ∂L(p0(y)),

∇u(x) = ∂L(p1(x)).

If we consider for example

L(x) =
1
2
|x|2 + |x1|,

u(x) = min
{
L

(
x−

(
1
0

))
, L

(
x−

(
−1
0

))}
,

then it is easy to check that u(0) has no subdifferential or superdifferential.
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5.1. Rectifiability property of jumps. Define the sets

Jm =
{
x ∈ Rd : there exist y1, y2 ∈ y(x) such that |y1 − y2| ≥

1
m

}
and

J =
⋃
m∈N

Jm.

Lemma 5.3. Jm is closed and countably (d−1)-rectifiable, i. e. it can be covered with a countable number
of images of Lipschitz functions Rd−1 → Rd.

The lemma can be proved by applying the rectifiability criterion [1], Theorem 2.61. The proof is
analogous to Lemma 3.4 in [4].

In a similar way we obtain the following proposition:

Proposition 5.4. The set

Jk =
⋃
m∈N

Jkm

=
⋃
m∈N

{
x ∈ Rd : there exist y1, . . . , yk+1 ∈ y(x) s. t. B

(
0,

1
m

)
⊂ co{y1, . . . , yk+1}

}
is countably (d − k)-rectifiable, i. e. it can be covered with a countable number of images of Lipschitz
functions Rd−k → Rd.

5.2. Some approximations. To prove the estimates on the vector field pt or pt, we need an approxi-
mation technique. The following proposition will be an essential tool.

Proposition 5.5. Assume that

ūn(y)→ ū(y), Ln(x)→ L(x)

locally uniformly, and that we have the uniform bound

Ln(x) ≥ 1
c

(|x| − c) for all n ∈ N,

where c does not depend on n.
Then the conjugate functions un(1, x), vn(0, y) converge uniformly to u(1, x), v(0, y), and the graph

Fn converges locally in Hausdorff distance fo a closed subset of F .

5.3. Fundamental example. Let {yi : i ∈ N} be a dense sequence in Rd, and define

uN (x) = min
{
u(yi) + L(x− yi) : i = 1, . . . , N

}
.

We can split Rd into at most N open regions Ωi (Voronoi-like cells), inside which we have

uN (x) = u(yi) + L(x− yi), x ∈ Ωi,

together with the negligible set ⋃
i 6=j

(
Ω̄i ∩ Ω̄j

)
.

The boundary of each region is Lipschitz, and inside each region the corresponding directional field pN
is given by

pN (x) = x− yi, x ∈ Ωi.
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5.4. Divergence estimate. In the points x where the field p(x) is single valued, the approximate pn(x)
converges to p(x). This implies that

pn(x)→ p(x) Ld-a. e.

Using this fact we can prove the following proposition:

Proposition 5.6. div p is a locally bounded measure satisfying

div p− dLd ≤ 0.

Proof. The approximating fields satisfy the bound, thus by the above convergence we get the bound for
div p. It is a measure because positive distributions are measures. �

6. Jacobian estimates

As in the previous section, we take a dense sequence {yi : i ∈ N} in Rd. For a fixed time t ∈ (0, 1), we
consider the approximation with finitely many points at t = 0,

uN (t, x) = min
{
u(0, yi) + tL

(
x− yi
t

)
: i = 1, . . . , N

}
.

Take a compact subset A(t) ⊂ F (t). We denote by AN (s) the push-forward of the set A(t) along the
approximating rays pN (t, x). Then we get

Ld(AN (s)) ≥
(s
t

)d
Ld(A(t)) for s ≤ t.

Up to a set of measure ε, we can assume that pN (t), p(t) are continuous and pN (t)→ p(t) uniformly on
A(t). Then AN (s) is compact for s ≤ t, and it converges to A(s) in Hausdorff distance. Since Ld is upper
semicontinuous with respect to the Hausdorff distance, this implies that

Ld(A(s)) ≥
(s
t

)d
Ld(A(t)) for s ≤ t.

By repeating the above approximation with finitely many points at t = 1, one obtains the corresponding
estimate

Ld(A(s)) ≥
(

1− s
1− t

)d
Ld(A(t)) for s ≥ t.

We thus obtain the following estimate for the push-forward of the Lebesgue measure.

Lemma 6.1. Let
µ(s) = [z + (s− t)p]]Ld.

Then
µ(s) = c(s, t, z)Ld|F (t),

with

c(s, t, z) ∈

[(s
t

)d
,

(
1− s
1− t

)d]
for s ≤ t,

c(s, t, z) ∈

[(
1− t
1− s

)d
,

(
t

s

)d]
for t ≤ s.

Proof. By the previous estimates, we have for s ≥ t,(
1− t
1− s

)d
Ld(A(s)) ≤ Ld(A(t)) ≤

(
t

s

)d
Ld(A(s)).

By the definition of the image measure,

Ld(A(t)) = µ(s)(A(s)).

Thus the result follows. �

The function c(s, t, z) is the Jacobian of the transformation.



8 STEFANO BIANCHINI AND MATTEO GLOYER

6.1. Disintegration of the Lebesgue measure. Using Lemma 6.1, we now apply the Fubini-Tonelli
theorem to a measurable set A =

⋃
t{t} ×A(t) ⊂

⋃
t{t} × F (t) to obtain∫

A

dt× Ld =
∫

dt
∫
A(t)

Ld

=
∫

dt
∫
A(t,s)

c(t, s)Ld

=
∫
Ld
∫

dt c(t, s)χA(t,s),

where A(t, s) is the image of the set A(t) by

A(t, s) = (z + (s− t)p(z))(A(t)).

Remark 6.2. In the new coordinates, dt c(t, s) is concentrated on a single optimal ray.

Since the rays do not intersect, we can disintegrate the Lebesgue measure along rays,

Ld × dt|F =
∫

dm(α)µα.

We can parameterize the rays by the points of the plane t = 1/2, then the support of µα is the optimal
ray passing through α ∈ F (1/2). Using the previous formula, we obtain the following theorem:

Theorem 6.3. The disintegration of the Lebesgue measure on the set of optimal rays F is∫
dm(α)µα,

with

m(α) = Ld
∫ 1

0

c

(
t,

1
2

)
dt,

µα =
(∫ 1

0

c

(
t,

1
2

)
dt
)−1

c

(
t,

1
2

)
dt,

where c
(
t, 1

2

)
is the Jacobian along the ray α+ (t− 1/2)p(α).

Remark 6.4. By Fubini’s theorem, ∫ 1

0

c

(
t,

1
2

)
dt < +∞ Ld-a. e.,

therefore the formula makes sense.

In the following we denote c(t, α) = c(t, 1/2, α).

6.2. Regularity of the Jacobian and applications.

Lemma 6.5. c(t, α) ∈W 1,1
t , and there exists a Kd > 0 such that∫ 1

0

∣∣∣∣ d
dt
c(t, α)

∣∣∣∣ dt ≤ Kd.

Proof. Since
d
dt
c(t, α) +

d

1− t
c(t, α) ≥ 0,

we can estimate ∫ 1
2

0

∣∣∣∣ d
dt
c(t, α)

∣∣∣∣dt ≤ ∫ 1
2

0

d
dt
c(t, α) + 2

d

1− t
c(t, α) dt

≤ c
(

1
2
, α

)
+ 4d

∫ 1
2

0

c(t, α) dt,
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and similarly ∫ 1

1
2

∣∣∣∣ d
dt
c(t, α)

∣∣∣∣dt ≤ c(1
2
, α

)
+ 4d

∫ 1

1
2

c(t, α) dt,

Hence

(6.1) Tot.Var.(c(·, α)) ≤ 4d+ 2c
(

1
2
, α

)
.

In particular the limits
lim

t→0+,1−
c(t, α)

exist. From the normalization ∫ 1

0

c(t, α) dt = 1

and the estimate

c(t, α) ≥ min
{

2d|t|d, 2d|1− t|d
}
c

(
1
2
, α

)
,

it follows that there is K ′d such that

c

(
1
2
, α

)
≤ K ′d,

so that by (6.1) there is Kd such that

Tot.Var.(c(·, α)) ≤ Kd

�

Corollary 6.6.
1
c

∣∣∣∣ d
dt
c

∣∣∣∣ ∈ L1
loc(dtdx).

6.3. Divergence formulation.

Proposition 6.7. We have the following relation between c and the divergence of the vector field p:

div(1, pχF ) =
1
c

dc
dt

dtdz
∣∣∣∣
F

.

From
1
c

dc
dt
∈
(
− d

1− t
,
d

t

)
it follows that it is an absolutely continuous measure.

Proof. Take a test function φ ∈ C1
c (F ). Applying the disintegration along the rays, one obtains∫

Rd

∫ 1

0

φ(t, z)div(1, ptχF (t)) dtdz

= −
∫

Rd

∫ 1

0

χF (t)(z)φt(t, z) + pt(z) · ∇φ(t, z) dtdz

= −
∫

dm(α)
∫ 1

0

dt c(t, α)
[
φt(t, (1− t)y + tx) + (x− y) · ∇φ(t, (1− t)y + tx)

]
= −

∫
dm(α)

∫ 1

0

dt c(t, α)
d
dt
φ(t, (1− t)y + tx)

=
∫

dm(α)
∫ 1

0

dt
dc
dt

(t, α)φ(t, (1− t)y + tx)

=
∫

Rd

∫ 1

0

(
1
c

dc
dt

)
φ(t, z)dtdz.

�
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