
ON THE RIEMANN PROBLEM FOR NON-CONSERVATIVE HYPERBOLICSYSTEMSSTEFANO BIANCHINIAbstrat. We onsider the onstrution and the properties of the Riemann solver for the hyperbolisystem(0.1) ut + f(u)x = 0;assuming only that Df is stritly hyperboli. In the �rst part we prove a general regularity theorem onthe admissible urves Ti of the i-family, depending on the number of inetion points of f : namely, ifthere is only one inetion point, Ti is C1;1. If the i-th eigenvalue of Df is genuinely nonlinear, by itis well known that Ti is C2;1. However, we give an example of an only Lipshitz ontinuous admissibleurve Ti if f has two inetion points.In the seond part, we show a general method for onstruting the urves Ti, and we prove a stabilityresult for the solution to the Riemann problem. In partiular we prove the uniqueness of the admissibleurves for (0.1).Finally we apply the onstrution to various approximations to (0.1): vanishing visosity, relaxationshemes and the semidisrete upwind sheme. In partiular, when the system is in onservation form,we obtain the existene of smooth travelling pro�les for all small admissible jumps of (0.1).1. IntrodutionIn this paper we onsider the onstrution of the self similar solution u(t) to the n�n stritly hyperbolisystem in one spae dimension(1.1) ut + f(u)x = 0;with initial data(1.2) u(0; x) = (u� x < 0u+ x � 0This problem is known as the Riemann problem, and it orresponds to the weak solution to the boundaryvalue problem(1.3) ��u� + f(u)� = 0; u(�1) = u�:where � = x=t. It is well known that a weak solution to (1.1), (1.2) is not unique, unless we speify someadmissibility ondition on the solution u(t).Let A(u) := Df(u) be the Jaobian matrix of the ux funtion f , and denote with �i(u), i = 1; : : : ; nits eigenvalues and with li(u), ri(u), i = 1; : : : ; n its left and right eigenvetors, respetively.The most general solution to (1.1), (1.2) is given in [8℄. It is assumed that the ux funtion f hasa �nite number of inetion points, i.e. the diretional derivative of the i-th eigenvalue �i(u) in thediretion of ri(u), D�iri(u), is zero along a �nite number of hypersurfae Fm, m = 1; : : : ;M , and eahFm is transversal to ri(u). Under this hypothesis, it is shown that there exists only one weak self similarsolution to the Riemann problem (1.1), (1.2), for u� � u+ suÆiently small. This solution is obtainedby pathing together a �nite number of rarefation fronts and shoks or ontat disontinuities, and theadmissibility ondition is that eah shok satis�es Liu's stability ondition (see [8℄ and setion 2).An alternative approah is given in [10℄, using the limit of an ellipti regularization of the Riemannoperator (1.3), ��u� + f(u)� = �u��; u(�1) = u�:Date: Marh 28, 2002.1991 Mathematis Subjet Classi�ation. 35L65.Key words and phrases. Hyperboli systems, onservation laws, Riemann problem.This work is supported by The Institute of Mathematial Sienes, The Chinese University of Hong Kong.1



2 STEFANO BIANCHINIThe author shows that for a general ux funtion f the solutions to the above equation exists and it hasuniformly bounded total variation, independent of �, if u��u+ is suÆiently small. Up to a subsequene,for � ! 0 we thus obtain a weak solution to the Riemann problem (1.1), (1.2). If the ux f has a �nitenumber of inetion points, then one an show that this limit oinides with Liu's Riemann solver.A generalization of the above results has been obtained in onnetion to the vanishing visosity ap-proximation [3℄. In that work it is shown that the limit of the solutions u� to(1.4) ut + f(u)x � �uxx = 0with initial data (1.2) onverges to a unique weak solution of (1.1). This limiting solution is a self similarsolution, obtained by pathing together a ountable number of rarefation fronts and shoks (or ontatdisontinuities), and eah jump satis�es Liu's stability ondition. The argument relies on the onstrutionof a enter manifold for the equation of travelling pro�les and the analysis of the redued dynamis onthis manifold. We sketh the main ideas here.The equation for travelling pro�les of (1.4) is the �rst order system of ODE(1.5) 8<: ux = ppx = �A(u)� �I�p�x = 0The linearized system of ODE around the equilibrium (�u; 0; �i(�u)) has the eigenvalue 0 with multipliityn+ 2, and the orresponding n+ 2 dimensional invariant eigenspae M0 is given by(1.6) M0 := n(u; p; �) 2 R2n+1 : p = viri(�u); pi 2 Ro :By the strit hyperboliity assumption, the other eigenvalues are real and di�erent from 0, so that thereis an invariant n+ 2 dimensional manifold Ci for (1.5), parameterized by u; pi; �, whih ontains all theorbits remaining lose to the equilibrium (�u; 0; �i(�u)). We an thus writepj = 
lj(�u); p� = Cji(u; vi; �) = vi~rj;i(u; vi; �) 8j 6= i;where the last equality follows from the fat that all the equilibrium points with p = 0 belong to Ci.De�ning the vetor ~ri by(1.7) 
lj(�u); ~ri(u; vi; �)� = (1 j = i~rj;i(u; vi; �) j 6= iwe an write the equation on Ci as(1.8) 8<: ux = vi~ri(u; vi; �)vi;x = �~�(u; vi; �)� ��vi�x = 0where ~�i(u; pi; �) = 
li(�u); A(u)~ri(u; vi; �)�:By onstrution, all the bounded and small travelling pro�les of (1.4) belongs to Ci, so that it is suÆientto study the system (1.8).We assoiate the following system to (1.8): �xed s suÆiently small, onsider(1.9) 8>>><>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = fi�� ;u; vi; �i�� onv[0;s℄fi�� ;u; vi; �i��i(�) = dd� onv[0;s℄fi�� ;u; vi; �i�where we de�ne the "redued" ux fi by(1.10) fi(� ;u; vi; �i) := Z �0 ~�i�u(&); vi(&); �i(&)�d&;and onv[0;s℄fi denotes the onvex envelope of fi in [0; s℄.It is lear that in the regions where fi > onvfi, (1.8) and (1.9) are equivalent, and the solution(u(�); vi(�); �i(�)) orresponds to a travelling wave. The idea is that the regions where vi = 0 desribe



ON THE RIEMANN PROBLEM 3rarefation waves, and the solution to (1.9) is a sequene of rarefation and travelling pro�les desribingthe Riemann Solver for the hyperboli system (1.1).In this paper we generalize the onstrution of the Riemann Solver for the vanishing visosity ase.For many shemes, for example semidisrete shemes or relaxation, it is possible to �nd an invariantmanifold of travelling pro�les, but the redued equations on this manifold are not of the form (1.8). Ingeneral, these equations are of the form(1.11) 8<: ux = vi~ri(u; vi; �i)pi;x = vi�(u; vi; �i)�i;x = 0where u 2 Rn , vi 2 R and �i is the speed of the pro�le. We show however that under an assumption ofnon-degeneray, namely ��i=��i < 0, it is possible to onstrut an integral system of the form (1.9). Thisonstrution works even for systems not in onservation form, and a slight modi�ation of the system(1.9) allows us to onstrut the rarefation urves Ri and shok urves Si for these systems.Note that the hoie �i = dd� onv[0;s℄fi�� ;u; vi; �i�;generalizes the Lax onstrution of the Riemann Solver for the salar ase, where one onsiders the onvexenvelope of the ux funtion f . The main di�erene here is that the redued ux funtion fi is not givenexpliitly, but it must be dedued from the funtion �i.One we have the shok urves even for non onservative systems, we an verify that the RiemannSolver we onstrut by means of (1.9) satis�es Liu's stability ondition. We prove that if the urvesRi and Si are given, and there exists a Riemann Solver suh that every shok satis�es Liu's stabilityondition, then this Riemann Solver must oinide with the one given here. In partiular, if the system(1.11) is derived from an approximation in onservation form, then the rarefation and shok urvesare uniquely determined, and thus there is a unique Riemann Solver whih satis�es the shok stabilityondition. This Riemann Solver is the Riemann Solver obtained by means of the vanishing visosity.Another onsequene of this uniqueness result is that if [u�; u+℄ is a stable shok in the sense of Liu,then there is a travelling pro�les �, i.e. a solution to the system (1.11) suh thatlimx!�1�(x) = u�; limx!+1�(x) = u+:The paper is organized as follows.In setion 2 we prove a general regularity results for the i-th admissible urve Ti. We reall that ubelongs to the admissible urve starting in u� if u an be onneted to u� by pathing together i-thrarefations and i-th admissible shoks. In [7℄ it is shown that if there are not inetion points theadmissible urve is C2;1, i.e. with seond derivative Lipshitz ontinuous. We prove that if there is oneinetion point, then Ti is in general C1;1, and we give a simple example whih shows that if there aremore than two inetion points then this urve is only Lipshitz ontinuous. We reall that in [3℄ theurve Ti is proved to be Lipshitz.In setion 3 we give the onstrution of the admissible urve under the hypotheses that there exist avetor funtion ~ri with values in Rn and a salar funtion �i, both depending on n+ 2 salar quantities.Roughly speaking, the two funtions desribe the evolution of the equation for travelling pro�les on theenter manifold of travelling pro�les: the vetor ~ri gives the diretion of the derivative ux, while thesalar �i ontains the information of the internal dynamis of the pro�les. The approah follows losely[3℄ and it is based on the ontration priniple.Finally in setion 4 we show how to obtain the funtions ~ri, �i for several singular approximationsof (1.1): vanishing visosity with semide�nite positive visosity matrix, general relaxation shemes andsemidisrete shemes. In all these approximations, the funtions ~ri, ~�i are obtained by writing the reduedequations for travelling pro�les on the enter manifold of travelling pro�les.2. Regularity of the admissible urves for general hyperboli systemsConsider the n� n stritly hyperboli system of onservation laws(2.1) ut + f(u)x = 0:



4 STEFANO BIANCHINILet �i(u) be the i-th eigenvetor of A(u) := Df(u), and ri(u), li(u) the orresponding right and lefteigenvetors, normalized by ��ri(u)�� = 1; 
lj(u); ri(u)� = (1 i = j0 i 6= jDenote with Ri(s; u), Si(s; u) the i-th rarefation and shok urves starting in u, respetively. It is wellknown that these urves are de�ned for s 2 [�Æ1; Æ1℄, Æ1 small, and that an be parametrized by the i-thoordinates, i.e. s = 
li(u0); Ri(s; u)� u�; s = 
li(u0); Si(s; u)� u�:See for example [5℄, [6℄.In [8℄ it is shown how to onstrut the entropi self-similar solution a Riemann problem for (2.1), i.e.with the initial data(2.2) u(0; �) = (u� x � 0u+ x > 0The fundamental step is the de�nition of the admissible i-urve Ti(s; u) passing through u: eah pointTi(s; u) an be onneted to u by a �nite union of rarefations and admissible shoks of the i-th familywith inreasing speed. We say that the a shok joining the states u� = u, u+ = Si(�s; u) and travellingwith speed � = �(Si(�s; u); u) is admissible if it satis�es the Rankine-Hugoniot onditions,(2.3) f�Si(�s; u)�� f(u) = ��Si(�s; u); u��Si(�s; u)� u�;and the Liu's admissibility onditions [8℄: for all 0 � s � �s we have that(2.4) ��Si(�s; u); u� � ��Si(s; u); u�:In [8℄ it is shown that the above ondition is equivalent to(2.5) ���s; u� � ��Si(s� �s; Si(�s; u)); Si(�s; u)�;and that Ti(s; u) exists and it is unique in a neighborhood of u, under the assumption that the uxfuntion f has a �nite number of inetion points. The last ondition means that for all i = 1; : : : ; N ,the diretional derivative of �i along ri(u), D�iri(u), vanishes only on a �nite number of hypersurfaesFm, m = 1; : : : ;Mi, and eah Fi is transversal to the vetor �eld ri(u).As it is shown in [8℄, for �xed s, u�, the point Ti(s; u�) an be onstruted pathing together a �nitenumber of urves Ri and Si. Moreover as it will be shown in Setion 3, the mixed urve Ti is Lipshitzontinuous. The following example shows that this is the best regularity we an expet in general.Example 2.1. Consider the following triangular system:(2.6) � ut + f(u)x = 0vt + �vx � �u2=2�x = 0with � 2 (0; 1℄ and where f is the funtionf(u) = u(u� �)2(3�� u):Sine we will onsider solution with u 2 [0; 4�℄, in this region the above system is ertainly stritlyhyperboli for all 0 < � � 1 if � > 4.It is easy to see that the shok 1-urve for this system passing in (u; v) is given by(2.7) u(s) = s; v(s) = v + s2 � u22(�� �(s)) ; �(s) = f(s)� f(u)s� u :For this system, we an expliitly onstrut the mixed urve Ti starting in (0; 0): in fat, for s 2 [0; �℄,Ti(s; (0; 0)) oinides with the shok urve Si(s; (0; 0)):(2.8) u(s) = s; v(s) = s22(�� �(s)) ; �(s) = (s� �)2(3�� s):For s 2 [�; 3�), let x(s) be the point in [�; s) determined by(2.9) f 0(x(s))(s � x(s)) = f(s)� f(x(s)):
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Figure 1. The urves T1(s; (0; 0)), R1(s; P1) and T1(s; P1) for the hyperboli system (2.6).Then the urve Ti(s; 0) is given by(2.10) u(s) = s; v(s) = �22� + Z x(s)� s�� �1(s)ds+ s2 � x2(s)2(�� �0(s)) ; �0(s) = f(s)� f(x(s))s� x(s) ;where �1(s) = f 0(s). In fat, the point (s; v(s)) is onneted to (0; 0) by a shok, a rarefation and ashok: the �rst shok start at P0 := (0; 0) and ends in P1 := S1(�; (0; 0)) = (�; �=2�), and has speed 0.The rarefation starts in P1 and ends in P2 := R1(x(s)��; P1), with speed inreasing from 0 to f 0(x(s)).The last shok is S1(s� x(s);P2), and has speed equal to f 0(x(s)).Finally for s � 3�, the urve T1(s; (0; 0)) oinides with the shok urve S1(s; (0; 0)), given by (2.8).Similarly the mixed urve T1 starting in P1 is given by (2.10) for � < s < 3� and by the shok urveS1(s;P1) for s � 3�, whih is the given by(2.11) v(s) = �22� + s2 � �22(�� �00(s)) ; �00(s) = s(s� �)(3�� s):For s = 3� we have thatT1(3�; P0) = S1(3�;P0) = T1(3�;P1) = S2(3�;P1) = �3�; 9�22� � :We now ompute the derivatives of these urves for s = 3�. We have with elementary omputations thatthe �rst and seond derivatives of (2.10) are given by:(2.12) dvds ����s=3� = 3�� � 24�4�2 ; d2vds2 ����s=3� = 1� � 67�3�2 + 288�6�3 :On the other hand we have that for the Rankine-Hugoniot urve (2.8), starting in (0; 0),(2.13) dvds ����s=3� = 3�� � 18�4�2 :Instead, the Rankine-Hugoniot urve (2.11) starting at P1 has derivatives(2.14) dvds ����s=3� = 3�� � 24�4�2 ; d2vds2 ����s=3� = 1� � 58�3�2 + 288�6�3 :Thus we obtain that the urve T1(s; P1) is only C1;1 in s = 3�, and the urve T1(s; (0; 0)) is only Lipshitzontinuous in s = 3�.



6 STEFANO BIANCHININote that T1(s; P1) is only C1;1 beause in the interval [�; 3�℄ there is an inetion point, and thejump in the seond derivative is due to the fat that x0 = �3=2 for s ! 3��, but x � 1 for s � 3�:thus the funtion x(s) is only Lipshitz ontinuous. On the other hand, there are two inetion points in[0; 3�℄, and the Lipshitz ontinuity of T1(s; (0; 0)) is due to the fat that we swith from the shok urveS1(s� �; P1) to the shok urve S1(s; (0; 0)) as the parameter s rosses 3�.The above example proves that if there are at least 2 inetion points, then the urve Ti is in generalonly Lipshitz ontinuous. On the other hand, it is well known that if the �eld is genuinely nonlinear,then the urve Ti is C2;1, i.e. twie di�erentiable with Lipshitz ontinuous seond derivative [7℄, so thatone expet an intermediate situation when there is only one inetion point: as example 2.1 suggests, Tishould be C1;1. This is what is proved in the following proposition:Proposition 2.2. Assume that f has only one inetion point in the i-th family, i.e. the i-th eigenvaluesatis�es D�i(u)ri(u) = 0in a hypersurfae F transversal to the vetor �eld ri(u). Then the admissible i-th urve Ti(s; u) is C1;1.Proof. Consider a point u�, and and let Ti(s; u�) be the mixed urve of the i-th family starting in u�and parametrized by 
li(u�); Ti(s; u�)� u�� = s:Assume for de�niteness that D�i(u�)ri(u�) > 0 and D�i(u� + sri(u�))ri(u� + sri(u�)) < 0 for somes > 0: this means that the rarefation urve Ri will ross the hypersurfae F for some s1 > 0In [8℄ it is shown that the urve Ti for s > 0 is formed by a rarefation until s = s1, i.e. Ti(s1; u�) 2 F .Then, for s1 < s < s2, it is omposed by a rarefation Ri(�; u�), � 2 [0; x(s)℄, starting in u� and endingin the point P1 = Ri(x(s); u�), followed by a shok Si(� 0; P1), � 0 2 [0; s�x(s)℄, where x(s) is determinedby the equation(2.15) f�Si(s; P1)�� f(P1) = �i(P1)�Si(s; P1)� P1�:The value s2 is determined by the relation(2.16) f�Si(s; u�)�� f(u�) = �i(u�)�Si(s; u�)� u��:Finally, for s � s2, Ti(s; u�) oinides with the shok urve Si(s; u�). Note that by letting s ! �sthe admissibility assumption (2.5) implies that �i(Ti(�s; u�)) � �(Si(�s; u�); u�), and by the genuinelynonlinearity for s � s1 we obtain that(2.17) �i�Ti(s2; u�)� < ��Ti(s2; u�)� = �i(u�);i.e. �i(u�) is not an eigenvalue of A(Ti(s2; u�)).In [8℄ it is shown that the mixed urve Ti(s; u�) is C2 for s 6= s2, i.e. outside the point P2 :=Ti(s2; u�) = Si(s2; u�). The proof is based on the fat that the point x(s) depends smoothly on s.We now prove that in that point the urve is C1. In fat, di�erentiating (2.15) for s = s�2 , we have�A(P2)� �i(u�)I���Si�s +DuSiri(u�)dxds� = �A(u�)� �i(u�)I�ri(u�)dxds +D�iri(u�)dxds �P2 � u��= D�iri(u�)dxds �P2 � u��:By de�nition �Ti�s ����s�2 = �Si�s +DuSiri(u�)dxds ����s�2 ;so that, using the fat that hli(u�); �Ti=�s� = 1 and (2.17), we obtain�Ti�s ����s�2 = D�iri(u�) dxds ����s�2 �A(P2)� �i(u�)I��1�P2 � u��(2.18) = �A(P2)� �i(u�)I��1�P2 � u��
li(u�); �A(P2)� �i(u�)I��1�P2 � u��� :
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Figure 2. Single inetion point in the i-th family.Repeating the above omputation for �Ti=�s��s+2 we obtain�Ti�s ����s+2 = d�ids ����s+2 �A(P2)� �i(u�)I��1�P2 � u��= �A(P2)� �i(u�)I��1�P2 � u��
li(u�); �A(P2)� �i(u�)I��1�P2 � u��� = �Ti�s ����s�2 ;and as a onsequene d�ids ����s+2 = d�ids ����s�2 = D�iri(u�) dxds ����s�2 :This onludes the proof. �Remark 2.3. Using similar tehniques, one an hek that in partiular, if u� 2 F , then Ti is C3.3. Constrution of the mixed urvesConsider the hyperboli system (2.1) with visosity,(3.1) ut + f(u)x � uxx = 0It is well known that to identify a small travelling pro�le of the i-th family one needs n+ 2 parameters:the value u, the derivative of u in the i-th diretion ri and the speed �i of the pro�le [3℄. In the ase of(3.1), it is known that there is a loal enter manifold, whih ontains all small i-th travelling pro�les,invariant under the ow generated by the ODE(3.2) ��ux + f(u)x � uxx = 0:On this manifold, the above ODE takes the form(3.3) 8<: ux = vi~ri(u; vi; �i)vi;x = vi�i(u; vi; �i)�i;x = 0The funtion ~ri gives the omponent of the derivative ux when we know the i-th omponent ui;x = vi,while the funtion �i, �i(u; vi; �i) := 
~ri(u; vi; �i); A(u)~ri(u; vi; �i)�� �;desribes the internal dynamis of the travelling pro�le.



8 STEFANO BIANCHINIAim of this setion is to prove that it is possible to assoiate three urves to the system (3.3) underthe assumptions that the funtions ~ri, �i are smooth and that(3.4) ��i��i < 0:These urves, whih we will denote as Ri, Si, Ti, orrespond to the rarefation urves Ri, shok urvesSi and mixed urves Ti for the hyperboli system (2.1). Given the funtions ~ri, �i, the urves Ri, Si, Tiare then uniquely determined, in terms of ~ri, �i. However, we will prove that if the \rarefation urves"Ri and the \shok urves" Si of (3.3) oinide with their hyperboli ounterparts Ri, Si, then also the\mixed urves" Ti oinide with the urves Ti. As a onsequene the uniqueness of the admissible urvesTi follows.In partiular, using the funtions ~ri, �i obtained by the enter manifold theorem applied to (3.1), wean onstrut the urves Ti without any assumption on the number of inetion points of f , see [3℄.Consider a �xed basis of vetors �ri, i = 1; : : : ; n in Rn , and its dual base �li, normalized by���ri�� = 1; 
�lj ; �ri� = (1 j = i0 j 6= iWe will use the following norm in Rn :��u�� = maxn��
�li; u���; i = 1; : : : ; no:Let ~ri be a smooth vetor valued funtion de�ned in a neighborhood of a the point (�u; 0; ��i) 2 Rn+2 ,(3.5) ~ri = ~ri�u; vi; �i�; with ~ri��u; 0; ��i� = �ri;normalized suh that(3.6) 
�li; ~ri(u; vi; �i)� = 1:The last ondition is not a restrition beause for any smooth funtion ~ri satisfying (3.5) we have(3.7) ���~ri�u; vi; �i�� ~ri�u0; v0i; �0i���� � C0n��u� u0��+ ��vi � v0i��+ ���i � �0i��o;where C0 is a suÆiently big onstant and thus
�li; ~ri(u; vi; �i)� � 12 ;if (u; vi; �i) is suÆiently lose to (�u; 0; ��i). We will all ~ri the i-th generalized eigenvetor.Similarly, let �i be a smooth funtion satisfying(3.8) �i = �i(u; vi; �i); �i(�u; 0; ��i) = 0; ���i �(�u; 0; ��i) := � < 0:Sine we have(3.9) ����i�u; vi; �i�� �i�u0; v0i; �0i���� � C0n��u� u0��+ ��vi � v0i��+ ���i � �0i��o;the last onditions in (3.8) imply that(3.10) ����i(u; vi; �i����; ����1 ��i�� + 1���� � C0�ju� �uj+ jvij+ j�i � ��ij	;for some onstant C0. For reasons whih will be lear later, we de�ne(3.11) ~�i(u; vi; �i) := 1�i(u; vi; �i) + �ias the i-th generalized eigenvalue. By hoosing C0 � 1 suÆiently big, we an also assume that(3.12) 1n��Du�i��+ ���i;v��o � C0:Note that from (3.8) there is a unique smooth funtion ~�i = ~�i(u; vi) suh that(3.13) �i�u; vi; ~�i(u; vi)� = 0:



ON THE RIEMANN PROBLEM 9Fix a point u� 2 Rn suÆiently lose to �u and let Æ1 be a small onstant. For any s � Æ1 onsider thefamily of Lipshitz ontinuous urves with values in Rn+2(3.14) �i(s; u�) = � : [0; s℄ 7! Rn+2 ; (�) = �u(�); vi(�); �i(�)��suh thatu(0) = u�; ui(�) = u�i + �; ��u(�)� u��� = �; ��vi(0)�� = 0; ��vi(�)�� � Æ1; ���i(�)� ��i�� � 2C0Æ1 � 1;for some small Æ1 � 1=2C0. We de�ne in �i the norm(3.15)  � 0 = u� u0L1 + vi � v0iL1 + Æ1�i � �0iL1 :For any  2 �i(s; u�), de�ne the funtion fi(� ; ), � � s as(3.16) fi(� ; ) := Z �0 ~�i�i(&)�d& = Z �0 �1�i�u(&); vi(&); �i(&)�+ �i(&)� d&:It is easy to verify that we have the estimates(3.17) ���fi�� ; �� fi�� ; 0���� � C0��u� u0L1 + vi � v0iL1 + 4C20Æ1�i � �0iL1� = 4C20� � 0;where we used (3.10). For any funtion f de�ned on [0; s℄, denote with onvf its lower onvex envelope,i.e. the setonvf(x) = infn�f(y) + (1� �)f(z); x = �y + (1� �)z; x; y; z 2 [0; s℄; � 2 [0; 1℄o:We now de�ne the i-th rarefation urve Ri(s; u�) as the solution of the ODE(3.18) duds = ~ri�u; 0; ~�i(u; 0)�:The i-th shok urve Si(s; u�) is the value u at � = s of the solution of the system(3.19) 8>>><>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = �fi�� ;u; vi; �i�� ��i��i = fi�s;u; vi; �i�=sfor � 2 [0; s℄. Similarly, the i-th admissible urve Ti(s; u�) = u(s), where, for any �xed s > 0, u(s) is theterminal value of the solution of the system(3.20) 8>>>><>>>>: u(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&vi(�) = �fi�� ;u; vi; �i�� onvfi�� ;u; vi; �i���i(�) = dd� onvfi�� ;u; vi; �i�de�ned � 2 [0; s℄. For s < 0, we perform an entirely similar onstrution, taking the upper onaveenvelope of fi in the seond and third equation of (3.20).Remark 3.1. Consider the triangular system of example 2.1 with unit visosity matrix(3.21) � ut + �u(u� �)2(3�� u)�x = uxxvt + �vx � u2=2 = vxxIn [4℄ using the enter manifold theorem, it is shown that there is a funtion ~r1 satisfying (3.5),(3.6).Moreover it is shown that the equations on the enter manifold are(3.22) 8<: u� = ~ri�u(�); v1(�); �1(�)�v1;� = �1�u(�)�� �1�1;� = 0so that the funtion �i = �1(u) � � satis�es (3.8). It is easy to hek that in this speial ase f1(s) �s(s � �)2(3� � s), and then, using the onservation form of (3.21), we have the identities R1 � R1,S1 � S1, T1 � T1.
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1Figure 3. The lines R1, S1 and T1 in the triangular ase.We onsider only the onstrution of Ti(s; u�) for s > 0, sine (3.18) is a standard ODE and theonstrution of Si and of Ti for s < 0 are similar. We basially repeat the omputations of [3℄.On the set �i(s; u�) onsider the transformation �i;s :  = (u; vi; �i) 7! ̂ = (û; v̂i; �̂i) de�ned by(3.20), i.e.(3.23) 8>>>><>>>>: û(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&v̂i(�) = �fi�� ;u; vi; �i�� onvfi�� ;u; vi; �i���̂i(�) = dd� onvfi�� ;u; vi; �i�First of all we show that the new urve ̂ = (û; v̂i; �̂i) belongs to �i. In fat, using (3.7) we have that���u(�)� u���� = maxj ������lj ; Z �0 ~ri(&)d&����� � maxj n�; 4C20�Æ1 + C0��u� � �u��o = � � Æ1;��vi(�)�� �  Z �0 ��f 0(& ; )� f 0(0; )��d& = ~�i()� ~�i(u�; 0; �i(0))L1 � 8�C20Æ1 � Æ1;���i(�) � ��i�� � 1�i + �iL1 + C0��u� � �u�� � C0Æ1 + 4C30Æ21 + C0��u� � �u�� � 2C0Æ1:for s, Æ1 suÆiently small. Moreover fi is a C1;1 funtion, whih implies that �̂i is at least Lipshitzontinuous, while u(�) and vi(�) are C1;1. In partiular we have a uniform estimate on the Lipshitznorm of u(�), vi(�), �i(�): in fat for u, vi it follows easily that��u0(�)�� = ��~ri(�)�� = 1; ��v0i(�)�� � ~�i � ~�i�u�; 0; �(0)�L1 � 16C20Æ1;while for � one has ���0i(�)�� � C0n1 + 16C20Æ1 + Æ1�0iL1o � 20C30Æ1;if k�0ikL1 � 10C30Æ1 and Æ1 suÆiently small. This implies that if we obtain a limit in C0 of , this limitis Lipshitz ontinuous (atually one an prove that it is C1;1 in �).Next we show that the map 
i;s is a ontration in �i(s; u�) if s is suÆiently small: in fat we have��u(�) � u0(�)�� = ����Z �0 �~ri�u; vi; �i�� ~ri�u0; (vi)0; �0i��d� ����� C0��u� u0L1 + vi � v0iL1 + �i � �0iL1�;��vi(�)� v0i(�)�� � ����Z s0 n�i�u; vi; �i�� �i�u0; v0i; �0i�+ ��i � �0i�od&����� C0s�u� u0L1 + vi � v0iL1 + 4C0Æ1�i � �0iL1�;



ON THE RIEMANN PROBLEM 11����i(�) � �0i(�)��� � 1�i�u; vi; �i�+ �i � �i�u0; v0i; �0i�+ �0iL1� C0�u� u0L1 + vi � v0iL1 + 4C0Æ1�i � �0iL1�:Thus we onlude that̂ � ̂0 � C0(2s+ Æ1)u� u0L1 + C0(2s+ Æ1)vi � v0iL1 + C0�s+ 4C0Æ1s+ 4C0Æ21��i � �0iL1(3.24) � 10C0(1 + )Æ1�u� u0L1 + vi � v0iL1 + Æ1�i � �0iL1� � 12 � 0;if s = O(1)Æ21 and Æ1 is suÆiently small. Hene �i;s is a ontration and has a unique �xed point.Now we de�ne Ti(s; u�) by(3.25) Ti�s; u�� := u(s);orresponding to the end point of the solution  2 �i(s; u�) to system (3.20).Remark 3.2. Note that to �nd the point Ti(s; u�) we have to solve the system (3.20) for � 2 [0; s℄.This is similar to the hyperboli ase, where to onstrut a line Ti(s; u�) we have to �nd the pointu(s) = Ti(s; u�) whih an be onneted to u� using only admissible shoks and rarefations of the i-thfamily.We prove that the urve s 7! Ti(s; u�) is Lipshitz ontinuous, and its derivative is lose to �ri. In fat,if  2 �i(s; u�), 0 2 �i(s+h; u�) are the �xed points of the transformations �i;s and �i;s+h respetively,by the ontration property (3.24) we have � 0��[0;s℄ � 2�i;s�0��[0;s℄�� 0��[0;s℄ � O(1)sh:Thus from the �rst equation in (3.20) one obtains that(3.26) Ti(s; u�)� Ti(s+ h; u�) = O(1)sh:In partiular Ti(s; u�) is di�erentiable in 0 and has derivative�Ti�s ����s=0 = ~ri�u�; 0; ~�i(u�; 0)�:We now prove a stability result for the urves Ti, analogous to the stability for shoks of 1-dimensionalsalar onservation laws.Lemma 3.3. Fix u�, and let 0 < s < s0. Denote withi(�) = �u(�); vi(�); �i(�)�; 0i(�) = �u0(�); v0i(�); �0i(�)�;the solutions to (3.23) in �i(s; u�), �i(s0; u�). Then(3.27) �i(�) � �0i(�) � 2 [0; s℄:Proof. Consider f 0i(� ; 0) and denote with onvsf 0i is its onvex envelope in [0; s℄. De�ne the quantities(3.28) wi(�) := f 0i(� ; 0)� onvsf 0i(� ; 0); �i(�) := dd� onvsf 0i(� ; 0):Note that by onstrution wi(�) � v0i(�), and that v0i � wi, �i � �0i are inreasing and positive.We will now use the following norm on �i(s; u�):(3.29) X = Æ1uL1 + Æ1viL1 + �L1 :It is easy to prove that the map (3.23) is ontration w.r.t. the norm k � kX , i.e.
i;s()� 
i;s(0)X � 12 � 0X :



12 STEFANO BIANCHINIWe an estimate �i;s(u0j[0;s℄; wi; �i) as�i;s�u0j[0;s℄; wi; �i�� �u0j[0;s℄; wi; �i�X � Z s0 ���~ri�u(&); wi(&); �i(&)�� ~ri�u(&); v0i(&); �0i(&)����d&+  Z s0 ���~�i�u(&); wi(&); �i(&)�� ~�i�u(&); v0i(&); �0i(&)����d&+ Z s0 ���~�i�u(&); wi(&); �i(&)�� ~�i�u(&); v0i(&); �0i(&)����d&� 5C0(1 + ) Z s0 n�v0i(&)� wi(&)�+ ��(&)� �0i(&)�od& � 10C0(1 + )vi(s):Thus by the strit ontration propertyfi � f 0i j[0;s℄ � C0Æ1 � 0X � 2C0Æ1�i;s�u;wi; �i�� �u;wi; �i�X � 10C20Æ1v0i(s) � 12 ��v0i(s)��:(3.30)This implies immediately that fi(s) � f 0i(s) + jv0i(s)j=2.Assume now that �i(�) < �0i(�) for some � 2 [0; s℄. Sine fi(s) � f 0i(s), there is a point �s 2 [0; s℄ suhthat fi(�s) < f 0i(�s) and onvfi(�s) = fi(�s):The last equality implies vi(�s) = 0. It is easy to hek that the urve  restrited to [0; �s℄ is the solutionto (3.20) in �i(�s; u�). But this is in ontradition with (3.30). �For any u� we de�ne the jump [u�;Si(s0; u�)℄ admissible if for all s 2 [0; s0℄ one has(3.31) �i(�) � �0i � 2 [0; s℄;where �0i is the speed of the shok and �i is obtained as the solution to (3.20) in �i(s; u�). Using thesame arguments as in the proof of Lemma 3.3, it is easy to prove that this is equivalent to the onditionof admissibility introdued by T.P. Liu in [8℄,(3.32) �i � �0i;where �i is the speed of the jump [u�;Si(s; u�)℄. Note moreover that the same proof given above showsthat any Liu's admissible shok is a solution with � ostant of systems (3.20).We onlude then with the following theorem:Theorem 3.4. For all u� lose to �u, and for any s suÆiently small, the admissible urves s 7! Ti(s; u�),de�ned in terms of (3.20), are Lipshitz ontinuous and admit derivative for s = 0. Moreover theseurves are the unique urves suh that eah point u(s) = Ti(s; u�) an be onneted to u� by pathing aountable number of rarefations Ri and admissible shoks Si, in suh a way that the orresponding speed�i is inreasing.Proof. By onstrution the line  2 �i(s; u�) solution to (3.20) is the union of generalized rarefation orshoks. In fat, if fi(�) = onvfi(�) in some lose interval [sm; sm+1℄ � [0; s℄ with non empty interior,then (�) learly oinides with the rarefation Ri(� � sm; i(si)) for � 2 [sm; sm+1℄. On the other hand,if fi(�) � onvfi(�) in some interval [sn; sn+1℄ � [0; s℄, fi(sn) = onvfi(sn), fi(sn+1) = onvfi(sn+1) and�i(�) is onstant in [sn; sn+1℄, then it is lear that (sn+1) = Si(sn+1 � sn; (sn)). By Lemma 3.3 theseshoks are admissible.Suppose now that ~ is another urve obtained by pathing rarefations and admissible shoks suhthat �i is inreasing. Then it is learly a solution to (3.20). By the uniqueness of the solution the resultfollows. �As a orollary we have thatCorollary 3.5. Assume that the rarefations Ri and shok lines Si oinide with the rarefation Ri andshoks Si of the hyperboli system (2.1). Then for every u� there is a unique admissible urve Ti(s; u�)for s suÆiently small.



ON THE RIEMANN PROBLEM 13Proof. In [3℄ it is proved the existene of the admissible urves Ti(s; u�) obtained by pathing admissibleshoks and rarefations by means of the enter manifold for (3.1). The above theorem gives the uniquenessof the line Ti � Ti. �Remark 3.6. Assume that we have the funtions ~ri, �i for i = 1; : : : ; n and that(3.33) spann�r1; : : : ; �rno = Rn ; ��1 < � � � < ��n:We an onstrut the urves Ti(si; u), i = 1; : : : ; n for jsij � Æ1, ju � �uj � Æ1, with Æ1 suÆiently small,and moreover we have that the omposed map(3.34) (s1; : : : ; sn) 7! Tn�sn; Tn�1�sn�1; Tn�2�sn�2; : : : T1(s1; u)���has an invertible derivative in fsi = 0g beause of (3.33). Thus, by the impliit funtion theorem,given u�, u+, we an onnet u� to u+ by a sequene of rarefations Ri and admissible shoks Si withinreasing speed.The inverse of (3.34) de�nes a Riemann solver, whih in the onservative ase is unique by Corollary3.5.Remark 3.7. If instead of the last inequality in (3.8) we assume that���i���u; 0; ��i� :=  > 0;then we an repeat the omputations of this setion by onsidering the system8>>>><>>>>: û(�) = u� + Z �0 ~ri�u(&); vi(&); �i(&)�d&v̂i(�) = �fi�� ;u; vi; �i�� onfi�� ;u; vi; �i���̂i(�) = dd� onfi�� ;u; vi; �i�where onfi is the onave envelope of f . In the hyperboli setting, it means that we are going from u+to u�, or equivalently that t is reversed.4. Examples of Riemann SolversWe now onsider some examples of the onstrution of the urves Ti. Our aim is to prove that we anobtain the funtions ~ri, �i, and thus the urvesRi, Si, Ti using the enter manifold theorem in onnetionwith many approximations of the hyperboli system (2.1): vanishing visosity, relaxation shemes andsemidisrete shemes. By Remark 3.6, we an then speify a Riemann solver \ompatible" with theapproximation.In partiular we an identify all the small travelling pro�les of these approximations. If the system isin onservation form, i.e. the shok urve satisfy the Rankine-Hugoniot ondition, Corollary 3.5 impliesthat all the small admissible jumps [u�; u+℄ of the system (2.1) have a smooth travelling pro�le '(�) suhthat '(�1) = u�, '(+1) = u+ (see [1℄, [9℄, [11℄).4.1. Vanishing visosity. Consider the paraboli system(4.1) ut +A(u; ux)ux �B(u)uxx = 0:Note that partiular ase of the above system is the system in onservation formut + f(u)x � �B(u)ux�x = 0:The matrix A(u; ux) is assumed to be stritly hyperboli, smooth, de�ned for u� �u, ux lose to 0, andB(u) is a semide�nite positive matrix. Denote with �i(u; ux) the i-th eigenvalue of A(u; ux) and letri(u; ux), li(u; ux) be the orresponding right and left eigenvetors.We assume that, by means of a hange of oordinates y = J(u)x, B(u) an be written as(4.2) B(u) = J(u) � 0 00 C(u) � J�1(u);



14 STEFANO BIANCHINIwhere C(u) is a k�k uniformly positive matrix. We assume moreover Kawashima's dissipative ondition,i.e. for a �xed index i 2 f1; : : : ; ng(4.3) 
li(u; ux); B(u)ri(u; ux)� > 0:The hange of oordinates y = J(u)x transforms the matrix A(u; ux) in(4.4) J�1(u)A(u; ux)J(u) = � A11(u; ux) A12(u; ux)A21(u; ux) A22(u; ux) � ;where A11 is a n� k-dimensional square matrix, and A22 is k-dimensional. Note that by (4.3), we havethat(4.5) ranknh �A11(u; ux)� �i(u; ux)I� A12(u; ux) io = n� k:The equation for travelling pro�les is the ODE�A(u; ux)� �I�ux = B(u)uxx;whih an be rewritten as the �rst order system by setting ux = J(u)p,(4.6) 8><>: ux = J(u)pB(u)J(u)px = �A�u; J(u)p�� �iI �B(u)�DJ(u)J(u)�p�J(u)p�i;x = 0Due to the assumptions (4.2), and its onsequene (4.5), the equation for p = (p1; p2), with p1 2 Rn�k ,p2 2 Rk , an be divided into two parts: n� k algebrai relations and a system of k ODE for p2.For simpliity we assume here the ondition(4.7) det�A11(�u; 0)� �i(�u)I� 6= 0;so that we an write p = Q(u; ux)p2;where A(u; ux) is the (n� k)� n-matrix(4.8) Q(�u) = " ��A11(u; ux)� �i(u; ux)I��1A12(u; ux)I # ;Note that the above ondition is not implied by (4.3).Let v = (v1; v2), where v2 is k-dimensional. The assumption (4.7) implies that we an obtain v1 as afuntion of v2 by(4.9) v1 = ��A11 � �iI � �JB(DJJ)v�11��1�A12 + �JB(DJJ)v�12�v2;if v is suÆiently small, so that the system (4.6) beomes(4.10) 8><>: ux = J(u)vC(u)v2;x = �A22 �A21�A11 � �iI��1A12 � �iI � d(u; v)v�v2�i;x = 0for some smooth funtion d(u; v).The linearization of the system (4.10) around the equilibrium (�u; 0; �i(�u)) gives the linear system(4.11) 8><>: ux = J(�u)vC(�u; 0)v2;x = �A22(�u; 0)�A21�A11 � �iI��1A12(�u; 0)� �i(�u)I�v2�i;x = 0where v = (v1; v2) an be obtained byv1 = ��A11(�u; 0)� �i(�u; 0)I��1A12(�u; 0)v2:We an write this system as _X = PX;



ON THE RIEMANN PROBLEM 15where the matrix P is the n+ k + 1 matrix(4.12) P = 264 0 I 00 A22 � A21�A11 � �iI��1A12 � �iI 00 0 0 375 :It is lear that P has a null spae of dimension n + 2 beause �i(�u) is an eigenvalue of A(�u; 0), so thatthere is a enter manifold Ci of dimension n+ 2 for the original system (4.6).In the spae (u; v; �i) 2 R2n+1 , the invariant manifold is tangent to the eigenspae(4.13) Mi = n(u; v; �i) 2 Rn � Rn � R; v = viri(�u; 0)o;so that we an write(4.14) vj = Cji�u; vi; �i�; 8j 6= i:Sine for (u; vi = 0; �) we have that the solution to (4.6) whih lies on the enter manifold is the onstantu(x) � u, this implies that Cji(u; 0; �i) = 0, i.e.(4.15) v = vi~ri�u; vi; �i�;for some smooth vetor funtion ~ri, normalized by hli(�u); ~rii = 1. Moreover Ci is tangent to the eigenspaeMi, so that ~ri��u; 0; �i(�u)� = ri(�u):The equations on this invariant manifold are(4.16) 8<: ux = vi~ri(u; vi; �i)i(u; vi; �i)vi;x = �ai(u; vi; �i)� �iI�vi�i;x = 0where we de�ned the funtions(4.17) i(u; vi; �i) := Dli(�u); B(u)�~ri(u; vi; �i) + vi~ri;v(u; vi; �i)�E;(4.18) ai(u; vi; �i) := Dli(�u); A(u; vi~ri)~ri(u; vi; �i)E� viDli(�u); B(u)Du~ri~ri(u; vi; �i)E:Note that by the assumption (4.3) we obtain that in a neighborhood of (�u; 0; �i(�u)), i is stritly biggerthan 0. De�ning(4.19) �i(u; vi; �i) := ai(u; vi; �i)� �ii(u; vi; �i) ;we an apply the results of Setion 3: in fat,���i �i��u; 0; �i(�u)� = 1i �
li(�u); A(�u; 0)~ri;��� 1�� 12i �
li(�u); A(�u; 0)ri(�u)�� �i(�u)�i;�= � 1i��u; 0; �i(�u)� ;beause hli(�u); ~ri;�i = 0.4.2. Relaxation shemes. Consider the relaxation problem(4.20) � ut +A11(u; v)ux +A12(u; v)vx = 0vt +A21(u; v)ux +A22(u; v)vx = Q(u; v):where u, v are n-dimensional and k-dimensional vetors, respetively.The equation for travelling pro�les is the ordinary di�erential equation(4.21) � �A11(u; v)� �I�ux +A12(u; v)vx = 0A21(u; v)ux + �A22(u; v)� �I�vx = Q(u; v):We assume that the ondition Q(u; v) = 0 uniquely determines v as a funtion of u, i.e. a manifold ofequilibria v = h(u).



16 STEFANO BIANCHINIThe linearization in the equilibrium (�u; �v := h(�u)) gives the linear system(4.22) � �A11(�u; �v)� �I�ux +A12(�u; �v)vx = 0A21(�u; �v)ux + �A22(�u; �v)� �I�vx = Qu(�u; �v)u+Qv(�u; �v)v:As in [11℄, we assume that there is an invertible (n+ k)� (n+ k) invertible matrix P (u; v) suh that(4.23) P (u; v) � 0 0Qu(u; v) Qv(u; v) �P�1(u; v) = � 0 00 S(u; v) � ;where S is stritly negative de�nite. With a linear hange of oordinates v 7! Lu + v for some n � nmatrix L, we an set P (�u; �v) = I . We an thus rewrite (4.22) as(4.24) � �A11(�u; �v)� �I�ux +A12(�u; �v)vx = 0A21(�u; �v)ux + �A22(�u; �v)� �I�vx = S(�u; �v)v:We assume that ~A11(�u; �v) is stritly hyperboli and denote with �i(u; v) its i-th eigenvalue, and letri(u; v), li(u; v) be its left and right eigenvetors, respetively in a neighborhood of (�u; h(�u)).The non harateristi ondition says that A(u; v)� �i(�u; h(�u))I is invertible, whereA(u; v) := � A11(u; v) A12(u; v)A21(u; v) A22(u; v) � ;so that, for �i lose to �i(�u; h(�u)), the system (4.21) an be written as(4.25) 8<: � uxvx � = �A(u; v)� �iI��1� 0Q(u; v) ��i;x = 0whose linearization around (�u; 0; �i(�u)) is(4.26) 8<: � ~ux~vx � = �A(�u; �v)� �iI��1� 0S(�u; �v)v ��i;x = 0In [11℄ it is shown that, if �A(�u; �v)� �i(�u; h(�u))I��1 � 0 00 S(�u; �v) �has no nonzero purely imaginary eigenvalues, and if the following stability ondition holds(4.27) 
�li; A12(�u; �v)S�1(�u; �v) ~A21�ri� < 0;then there exists an invariant n+ 2-dimensional spae Mi for the linearized system (4.26),(4.28) Mi = spann�ri; S�1(�u; �v)A21(�u; �v)�rio;and by the enter manifold theorem there is an invariant manifold Ci tangent to Mi at (�u; �v = h(�u)),whih an be parametrized by u, a salar omponent �i and the speed �i. Sine all the equilibria v = h(u)belong to Ci, we an write(4.29) v = h(u) + �igi(u; �i; �i);with gi(�u; 0; �i(�u)) = S�1(�u; �v)A21(�u; �v)�ri and h(�u) = �v, Dh(�u) = 0. The last onditions follow from theassumption P (�u; �v) = I , i.e. Qu(�u; �v) = 0.Thanks to the non harateristi ondition, the equations on Ci an be written as(4.30) 8<: ux = �i~ri(u; �i; �i)�i;x = �i�i(u; �i; �i)�i;x = 0for some funtions ~ri and �i, with h�li; ~rii = 1. In fat, for �i = 0 we are on the equilibrium manifoldv = h(u), and then ux = �i;x = 0. Beause Ci is tangent to Mi, we obtain the relations(4.31) ~ri(�u; 0; ��i) = �ri; �i(�u; 0; ��i) = 0:



ON THE RIEMANN PROBLEM 17Moreover a simple omputation shows that(4.32) ���i �i(�u; 0; ��i) = 1D�li; A12(�u; �v)S�1(�u; �v)A21(�u; �v)�riE < 0;by (4.27). It follows that we an onstrut the urves Ri, Si and Ti in a neighborhood of �u. Moreover,if the system (4.20) is in onservation form, we have proved same results of [11℄, i.e. the existene oftravelling pro�les for all admissible shoks of the limiting hyperboli system.4.3. Semidisrete shemes. Consider the semidisrete sheme(4.33) umt + f(um)� f(um�1) = 0;where for linear stability we assume that �i(u) > 0.The equation for travelling pro�les is the Retarded Funtional Di�erential Equation (RFDE)(4.34) ��u0(�) + f�u(�)�� f�u(� � 1)� = 0:In [1℄ it is shown the existene of a enter manifold Ci of dimension n+ 2 in C1([�1; 0℄;Rn), whih anbe parametrized by u, vi = ui;x = hli(�u); uxi, �i (see [2℄):(u; vi; �i) 7! ���;u; vi; �i� 2 C1�[�1; 0℄;Rn); �(0) = u; �0i(0) = vi:In partiular, sine for (u0; vi = 0; �i) we obtain the equilibrium u � u0, from the map (u; vi; �i) 7!�(�; u; vi; �i) one an dedue the two funtions(4.35) ux = ddx�(0;u; vi; �i) := vi~ri(u; vi; �i); vi(�1) = �li(�u); ddx�(�1;u; vi; �i)� := vi~pi�u; vi; �i�:The funtion ~ri gives diretion of the derivative ux one we know the i-th omponent vi = ui;x, whilevi~pi gives the value of the i-th omponent of the derivative at � = �1, i.e. ui;x(�1).The equation for vi an be obtained from (4.34): in fat, di�erentiating w.r.t. x and taking the salarprodut with li(�u), it follows��ivi;x + ~�i�u; vi; �i�vi � ~�i�u(�1); vipi; �i�vipi(u; vi; �i) = 0;where u(�1) an be omputed from ��ivi + f(u)� f(u(�1)) = 0;and where ~�i is given by(4.36) ~�i(u; vi; �i) = 
li(�u); A(u)~ri(u; vi; �i)�:Thus we obtain that on the manifold Ci the RFDE (4.34) takes the form of the system of ODE(4.37) 8><>: ux = vi~ri(u; vi; �i)vi;x = vi�~�i(u; vi; �i)� ~�i�u(�1); vipi; �i�pi�=�i�i;x = 0Sine Ci is tangent in u(x) � �u to the manifold (see [2℄)Mi = �u+ vie�iri(�u)�; �i�i(�u) = 1� e��i�i ; � 2 (�1; 0℄� 2 C1�(�1; 0℄;R2�;we dedue that(4.38) ~ri��u; 0; �i(�u)� = ri(�u); ~�i��u; 0; �i(�u)� = �i(�u):Using the fat that in all points u(x) � u suÆiently lose to �u the enter manifold Ci is also tangent tothe set Mi = �u+ vie�iri(u)�; �i�i(u) = 1� e��i�i ; � 2 (�1; 0℄� 2 C1�(�1; 0℄;R2�;in [2℄ it is shown that(4.39) pi�u; 0; �i� = e��i ;
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