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Abstract. The Jordan decomposition states that a function f : R → R is
of bounded variation if and only if it can be written as the di�erence of two
monotone increasing functions.

In this paper we generalize this property to real valued BV functions of
many variables, extending naturally the concept of monotone functions. Our
result is an extension of a result obtained by Alberti, Bianchini and Crippa.

A counterexample is given which prevents further extensions.

1. Introduction
One of the necessary and su�cient properties, which characterizes real valued

BV functions of one variable, is the well-known Jordan decomposition: it states
that a function f : R → R is of bounded variation if and only if it can be written
as the di�erence of two monotone increasing functions.

The aim of this work is to generalize this property to real valued BV functions
of many variables.

The starting point is a recent result presented in Section 7 of [1], which shows
that a real Lipschitz function of many variables with compact support can be de-
composed in sum of monotone functions. Precisely the authors give the following
de�nition of monotone function
De�nition 1. A function f : RN → Rm, which belongs to [Lip(RN )]m, is said to
be monotone if the level sets {f = t} := {x ∈ RN | f(x) = t} are connected for
every t ∈ Rm.
and state the theorem below.
Theorem 1. Let f be a function in Lipc(RN ) with compact support. Then there
exists a countable family {fi}i∈N of functions in Lipc(RN ) such that f =

∑
i fi and

each fi is monotone. Moreover there is a pairwise disjoint partition {Ai}i∈N of RN

such that ∇fi is concentrated on Ai.
In the case of BV functions, which are de�ned LN -a.e., an appropriate general-

ization of the concept of monotone function has to involve super-level sets and the
concept of indecomposable set, as given in [2].
De�nition 2. A set E ⊆ RN with �nite perimeter is said to be decomposable if
there exists a partition (A,B) of E such that P (E) = P (A) + P (B) and both
|A| and |B| are strictly positive. A set E is said to be indecomposable if it is not
decomposable.

Here and in the following |E| means the Lebesgue measure of E, for E measur-
able.
De�nition 3. A function f : RN → R, which belongs to L1

loc(RN ), is said to
be monotone if the super-level sets {f > t} := {x ∈ RN | f(x) > t} are of �nite
perimeter and indecomposable for L1-a.e. t ∈ R.
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Di�erences and analogies from the case of functions of one variables arise.
On the one hand, it can be found an L1 monotone function, which is not of

bounded variation, that is a counterexample to the fact that monotonicity is a
su�cient condition for being of bounded variation (Example 3.1).

On the other hand, it can be stated that a BV function is decomposable in a
countable sum of monotone functions, similarly to the case of BV functions of one
real variable.

The main result of the paper is the following.
Theorem 2 (Decomposition Theorem for BV functions). Let f : RN → R be
a BV (RN ) function. Then there exists a �nite or countable family of monotone
BV (RN ) functions {fi}i∈I , such that

f =
∑

i∈I

fi and |Df | =
∑

i∈I

|Dfi|.

This decomposition is in general not unique, see Remark 2.2.
The main tool for proving this theorem is a decomposition theorem for sets of

�nite perimeter, presented here in the form given in [2].
Theorem 3 (Decomposition Theorem for sets). Let E be a set with �nite perimeter
in RN . Then there exists a unique �nite or countable family of pairwise disjoint
indecomposable sets {Ei}i∈I such that

|Ei| > 0 and P (E) =
∑

i∈I

P (Ei).

Moreover, denoting with

E̊M := {x ∈ RN | lim
r→0+

|E ∩B(x, r)|
|B(x, r)| = 1}

the essential interior of the set E, it holds

HN−1
(
E̊M \

⋃

i∈I

E̊M
i

)
= 0

and the Ei's are maximal indecomposable sets, i.e. any indecomposable set F ⊆ E
is contained, up to LN -negligible sets, in some set Ei.

The property stated in Theorem 1, for which there is a disjoint partition {Ai}i∈N
of RN such that every derivative ∇fi of the decomposition is concentrated on Ai, is
no longer preserved in the case of BV functions. Example 2.1 shows that, in general,
this decomposition can generate monotone BV functions without mutually singular
distributional derivatives.

Finally, we conclude the paper showing that there is no hope for a further gen-
eralization of this decomposition to vector valued BV functions, apart from the
case of a function f : R → Rm where the analysis is straightforward. We consider
Lipschitz functions from R2 to R2 and the relative de�nition of monotone func-
tion. In this particular case, we can construct a counterexample showing that the
decomposition property could not be true, see Example 3.2.
In fact, we show that a necessary condition for the decomposability of a Lipschitz
function, from R2 to R2, is that some of its level sets must be of positive H1-
measure. This is an additional property, which is clearly not shared by all the
Lipschitz functions.

The paper is organized as follows.
In Section 2 we prove the Main Theorem and show that this decomposition can

generate monotone BV functions without mutually singular distributional deriva-
tives.
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In Section 3 we give two counterexamples: the �rst to the fact that a monotone
function is always a BV function, the second to a further extension of the Main
Theorem to vector valued functions.

2. The Decomposition Theorem for BV functions from RN to R
To generalize the Jordan decomposition property, let us concentrate on functions

f : RN → R, which belong to BV (RN ). From now on N > 1.
Since we will consider functions of bounded variation, the De�nition 3 of mono-

tone function becomes the following:

De�nition 4. A BV function f : RN → R is said to be monotone if the super-level
sets {f > t} = {x ∈ RN | f(x) > t} are indecomposable, for L1-a.e. t ∈ R.

We recall that, for BV functions, the super-level set {f > t} is of �nite perimeter
for L1-a.e. t ∈ R.

We now prove the main theorem of this paper.

Proof of Theorem 2. The proof will be given in several steps.
Before entering into details, let us consider the following simple case.

Let f = χE with E ⊆ RN a set of �nite perimeter. Thanks to the Decomposition
Theorem for sets, there exists a unique �nite or countable family of pairwise disjoint
indecomposable sets {Ei}i∈I such that

|Ei| > 0 and P (E) =
∑

i∈I

P (Ei).

From the properties of these sets, it follows that the functions χEi are BV (RN )
and monotone, so that the decomposition of χE ,

χE =
∑

i∈I

χEi ,

gives |DχE | =
∑

i∈I |DχEi | as required.
Step 0. We can assume without loss of generality that f ≥ 0: in the general case
one can decompose f+ and f− separately.

Step 1. The sets Et := {f > t} are of �nite perimeter for L1-a.e. t ∈ R+, thanks to
the hypothesis that f is BV (RN ) and coarea formula. Therefore, the Decomposition
Theorem for sets gives, for L1-a.e. t ∈ R+, pairwise disjoint indecomposable sets
{Et

i}i∈It such that ∣∣∣∣Et \
⋃

i∈It

Et
i

∣∣∣∣ = 0.

In particular, the property of maximal indecomposability yields a natural partial
order relation between these sets: since t1 ≥ t2 gives Et1 ⊆ Et2 , it follows that, for
L1-a.e. t1 ≥ t2 ∈ R+,

∀i ∈ It1 ∃! i′ ∈ It2 s.t. Et1
i ⊆ Et2

i′ (mod LN ).

Taken a countable dense subset {tj}j∈J of R+, such that, for all j ∈ J , the
sets Ej := Etj are of �nite perimeter, the countable family {Ej

i }j∈J,i∈Itj
can be

equipped with the partial order relation

Ej
i ≤ Ej′

i′ ⇐⇒ tj ≤ tj′ , Ej
i ⊇ Ej′

i′ (mod LN ).

Therefore there exists at least one maximal countable ordered sequence (here we
do not need the Axiom of Choice).

Let {Ej
i(j)}j∈J one of these maximal countable ordered sequences.
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Notice that, once one of these sequences is �xed, the index i is a function of j, by
the uniqueness of the decomposition {Ej

i }i∈Itj
.

Step 2. De�ne

f̃(x) :=

{
0 x /∈ ⋃

j∈J Ej
i(j)

sup{tj | j ∈ J, x ∈ Ej
i(j)} otherwise

Clearly 0 ≤ f̃(x) ≤ f(x) for all x ∈ RN . Indeed, the set
{tj | j ∈ J, x ∈ Ej

i(j)} ⊆ {tj | j ∈ J, x ∈ Ej} ∀x ∈ RN ,

passing to the supremum one has f̃(x) ≤ f(x) for all x ∈ RN . Moreover f ∈
L1

loc(RN ) and 0 ≤ f̃ ≤ f give f̃ ∈ L1
loc(RN ).

Step 3. Fix t ∈ R+ such that Et is a set of �nite perimeter. De�ne Ẽt := {f̃ > t}
and let Et

i(t) the indecomposable component of Et which is contained in a set Ej
i(j)

of the maximal countable ordered sequence and contains another Ej′

i(j′), for certain
j, j′ ∈ J , up to LN -negligible sets. This is possible for L1-a.e. t ∈ R+.

Due to the maximal indecomposability property, one has that
Ej′

i(j′) ⊆ Et
i(t) ⊆ Ej

i(j) (mod LN ) ∀tj′ , tj ,
where tj′ > t > tj .
Notice that, for L1-a.e. t ∈ R+, there exists only one of such an Et

i(t) among all
the indecomposable sets Et

i , i ∈ It.
We show that Ẽt = Et

i(t) (mod LN ), for L1-a.e t in R+, in two steps.
• First we show that Ẽt ⊆ Et

i(t) (mod LN ) for L1-a.e t in R+.
For x ∈ Ẽt = {f̃ > t}, there exist j1 = j1(x), j2 = j2(x) such that

f̃(x) > tj1 > t > tj2 and x ∈ Ej1
i(j1)

∩ Ej2
i(j2)

.

Since it holds for all tj1 > t > tj2

Ej1
i(j1)

⊆ Et
i(t) ⊆ Ej2

i(j2)
(mod LN ),

it follows that for LN -a.e x ∈ Ẽt it holds x ∈ Et
i(t), hence Ẽt ⊆ Et

i(t) (mod LN ).
• Next we show the other inclusion up to countably many values of t.

Observe that set Et
i(t) is contained in Ẽt′ for all t′ < t. In fact x ∈ Et

i(t)

implies f(x) > t > tj > t′ for some j ∈ J , hence f̃(x) ≥ tj > t′. Thus for
every t′n ↗ t one has

⋂
t′n<t Ẽt′n ⊇ Et

i(t).
Suppose |Et

i(t) \ Ẽt| > 0: from Ẽt ⊆ Et
i(t) it follows

0 <

∣∣∣∣
⋂

t′n<t

Ẽt′n \ Ẽt

∣∣∣∣ =
∣∣{f̃ ≥ t} \ Ẽt

∣∣

and this implies |{f̃ = t}| > 0. This last condition can be satis�ed only for
a countable number of t ∈ R+.

Therefore the set of t such that Et
i(t) does not coincide with Ẽt, has zero Lebesgue

measure, i.e. for L1-a.e. t ∈ R+ the sets Ẽt coincide with Et
i(t) up to LN -negligible

sets. Since the property of being indecomposable is invariant up to LN -negligible
sets, they are indecomposable.

In the following we will denote with t̃k, k ∈ K, the countable family of values
such that

Hk := {f̃ = t̃k}, |Hk| > 0.
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Step 4. The function f̃ is BV (RN ) and monotone.
The indecomposability of the super-level sets of f̃ , proved in the previous step,

gives immediately that f̃ is monotone.
Using coarea formula, see for example Theorem 2.93 of [3], we get

|Df̃ |=
∫ +∞

−∞
P ({f̃ > t})dt

=
∫ +∞

−∞
P (Et

i(t))dt

≤
∫ +∞

−∞
P (Et)dt = |Df | < +∞.

Thus the function f̃ is BV (RN ).

Step 5. De�ne the function f̂ := f − f̃ . Clearly f̂ is BV (RN ). The aim of the
following steps is to show that its total variation satis�es

|Df̂ | = |Df | − |Df̃ |.
Denote with Et

1 the super-level sets used to generate the function f̃ : this can be
done setting i(t) = 1 for L1-a.e. t ∈ R+.

It has been proved that, L1-a.e. t ∈ R+, one has {f̃ > t} = Et
1, up to LN -

negligible sets, therefore for such t's

P ({f > t}) =
∑

i∈It

P (Et
i )

=
∑

i∈It, i>1

P (Et
i ) + P ({f̃ > t}).

We would like to show that, for L1-a.e. t ∈ R+, for every i ∈ It, i > 1, Et
i is

equal, up to LN -negligible sets, to one of the indecomposable components Ê t̂
i of

{f̂ > t̂}, where t̂ = t− t̃i for a certain t̃i.
The index i in t̃i refers to the fact that its value varies with the indecomposable
component Et

i , i ∈ It, i > 1.
We prove it in the following three steps.

Step 6. Let t such that the set Et is of �nite perimeter and {Et
i}i∈It are its inde-

composable components.
Let us prove that there exists a unique k ∈ K such that the set Et

i , i ∈ It, i > 1,
is contained in Hk, up to LN -negligible sets.

The set Et
i is indecomposable and Et

i ∩Et
1 = ∅. Being, up to LN -negligible sets,

Ej
1 ⊆ Et

1 for all tj ≥ t, it follows
∣∣Et

i ∩ Ej
1

∣∣ = 0 ∀tj ≥ t.

Therefore, from the de�nition of f̃ , for LN -a.e. x ∈ Et
i one has f̃(x) ≤ t.

Again from the indecomposability of Et
i and from the fact that Et

i is contained
in {f > tj} for all tj ≤ t, it follows that there exists a unique l ∈ Itj such that,

Et
i ⊆ Ej

l (mod LN ) and
∣∣Et

i ∩ Ej
m

∣∣ = 0 ∀m 6= l, m ∈ Itj ,

for all tj ≤ t.
If there exists a j′ such that

∣∣Et
i ∩ Ej′

1

∣∣ = 0 then

∀tj , 0 ≤ tj′ ≤ tj ≤ t
∣∣Et

i ∩ Ej
1

∣∣ = 0,
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on the other hand if there exists a j′′ such that Et
i ⊆ Ej′′

1 , up to LN -negligible sets,
then

∀tj , 0 ≤ tj ≤ tj′′ Et
i ⊆ Ej

1 (mod LN ).

Thus, being the de�nition

f̃(x) :=

{
0 x /∈ ⋃

j∈J Ej
1

sup{tj | j ∈ J, x ∈ Ej
1} otherwise

equivalent to
f̃(x) := inf{tj | j ∈ J, x /∈ Ej

1},
it follows that, up to LN -negligible subsets of Et

i , f̃ |Ei
t
= constant, which belongs

to {t̃k}k∈K .
In particular, we can order the sets Et

i , i ∈ It, i > 1, as Et
(k,i) where

{Et
(k,i)| i ∈ Bt

k} =
{

Et
i | i ∈ It, i > 1, Et

i ⊆ Hk (mod LN )
}

.

Note that Bt
k could be empty for some t ∈ R+, k ∈ K.

Step 7. Let t̂ > 0 such that the set Ê t̂ is of �nite perimeter and {Ê t̂
i}i∈Ît̂

are its
indecomposable components.

Let us prove that there exists a unique k ∈ K, such that the set Ê t̂
i is contained

in Hk, up to LN -negligible sets.
De�ne

t̄ := sup{0, tj | j ∈ J, Ê t̂
i ⊆ Ej

1 (mod LN )}.
It follows that

f |Êt̂
i

= f̂ |Êt̂
i
+ f̃ |Êt̂

i
> t̂ + t̄ > t̄.

For every tj , in the countable dense sequence, such that t̄ < tj < t̄ + t̂ there
exists a unique ī ∈ Itj such that

Ê t̂
i ⊆ Ej

ī
(mod LN ),

due to the indecomposability of Ê t̂
i , and, for the de�nition of t̄, the index ī must be

greater than 1.
Therefore f̃ |Êt̂

i
= t̄ and t̄ belongs to {t̃k}k∈K .

In particular, we can order the sets Ê t̂
i , i ∈ Ît̂, as Ê t̂

(k,i) where

{Ê t̂
(k,i)| i ∈ B̂ t̂

k} = {Ê t̂
i | i ∈ Ît̂, Ê t̂

i ⊆ Hk (mod LN )}.
Note that B̂ t̂

k could be empty for some t̂ ∈ R+, k ∈ K.

Step 8. In this step we prove that, for L1-a.e. t ∈ R+, k ∈ K �xed,

{Et
(k,i)| i ∈ Bt

k} = {Êt−t̃k

(k,i) | i ∈ B̂t−t̃k

k }.
Indeed, �x i ∈ Bt

k

f̂ |Et
(k,i)

= f |Et
(k,i)

− f̃ |Et
(k,i)

> t− t̃k.

Let us consider only the t's such that the set {f̂ > t− t̃k} is of �nite perimeter.
For its indecomposabiltity, Et

(k,i) must be contained, up to LN -negligible sets, in
Êt−t̃k

(k,i′) for a unique i′ ∈ Ît−t̃k
.

Take then the set Êt−t̃k

(k,i′):

f |
Ê

t−t̃k
(k,i′)

= f̃ |
Ê

t−t̃k
(k,i′)

+ f̂ |
Ê

t−t̃k
(k,i′)

> t̃k + t− t̃k = t.
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For its indecomposability, Êt−t̃k

(k,i′) must be contained, up to LN -negligible sets, in
Et

(k,i′′) for a unique i′′ ∈ It, i
′′ > 1. Thus i′′ = i and Et

(k,i) = Êt−t̃k

(k,i′), up to
LN -negligible sets.
Hence

{Et
(k,i)| i ∈ Bt

k} ⊆ {Êt−t̃k

(k,i) | i ∈ B̂t−t̃k

k }.

The same argument, reversed, shows that, once i′ ∈ B̂t−t̃k

k is �xed, Êt−t̃k

(k,i′) =
Et

(k,i), up to LN -negligible sets, for a certain i ∈ Bt
k. Hence

{Et
(k,i)| i ∈ Bt

k} ⊇ {Êt−t̃k

(k,i) | i ∈ B̂t−t̃k

k }.

In an equivalent way, we can also say that, for L1-a.e. t̂ ∈ R+, k ∈ K �xed,

{Ê t̂
(k,i)| i ∈ B̂ t̂

k} = {E t̂+t̃k

(k,i) | i ∈ B t̂+t̃k

k }.

In the following i = i′.

Step 9. Coarea formula gives

|Df |=
∫ +∞

−∞
P ({f > t})dt

=
∫ +∞

−∞

∑

i∈It,i>1

P (Et
i )dt +

∫ +∞

−∞
P ({f̃ > t})dt.

The �nal steps consist in showing that

∫ +∞

−∞

∑

i∈It,i>1

P (Et
i )dt = |Df̂ |.

Step 10. Let {t̃k| k ∈ K} the countable set of values such that
∣∣f̃−1(t̃k)

∣∣ > 0.
Step 6 shows that, for L1-a.e. t ∈ R+ and for all i ∈ It, i > 1, there exists a

unique k ∈ K such that f̃ |Et
i
= t̃k.

For every k ∈ K, let {Et
(k,i)| i ∈ Bt

k} be the set of indecomposable components
of Et such that f̃ |Et

(k,i)
= t̃k, i > 1.

Observe that
∑

i∈Bt
k
P (Et

(k,i)) are measurable functions of t, for all k ∈ K: indeed
we have

∣∣D(f − t̃k)χHk

∣∣ =
∫ +∞

−∞

∑

i∈It,i>1 s.t. {f>t}i⊆{f̃=t̃k}
P ({f > t}i)dt

=
∫ +∞

−∞

∑

i∈Bt
k

P ({f > t}i)dt ≤ |Df |(RN ) < +∞.

Therefore the function t 7→ ∑
i∈Bt

k
P (Et

i ) is integrable for all k ∈ K.
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Using this notation, we can write
∫ +∞

−∞

∑

i∈It,i>1

P (Et
i )dt =

∫ +∞

−∞

∑

k∈K

∑

i∈Bt
k

P (Et
(k,i))dt

=
∑

k∈K

∫ +∞

−∞

∑

i∈Bt
k

P (Et
(k,i))dt

=
∑

k∈K

∫ +∞

−∞

∑

i∈B̂
t−t̃k
k

P ({f̂ > t− t̃k }(k,i))dt

=
∑

k∈K

∫ +∞

−∞

∑

i∈B̂t̂
k

P ({f̂ > t̂ }(k,i))dt̂

=
∫ +∞

−∞

∑

k∈K

∑

i∈B̂t̂
k

P ({f̂ > t̂ }(k,i))dt̂.

Since it holds from Step 7

Ê t̂ =
⋃

i

{Ê t̂
i | i ∈ Ît̂}

=
⋃

i

⋃

k∈K

{Ê t̂
(k,i)| f̃ |Êt̂

i
= t̃k, i ∈ Ît̂}

=
⋃

k∈K

⋃

i

{Ê t̂
(k,i)| i ∈ B̂ t̂

k},

we can write∫ +∞

−∞

∑

k∈K

∑

i∈B̂t̂
k

P ({f̂ > t̂ }(k,i))dt̂ =
∫ +∞

−∞

∑

i∈Ît̂

P ({f̂ > t̂}i)dt̂

=
∫ +∞

−∞
P ({f̂ > t̂})dt̂ = |Df̂ |.

Step 11. Finally we have

|Df |=
∫ +∞

−∞
P ({f > t})dt

=
∫ +∞

−∞
P ({f̂ > t})dt +

∫ +∞

−∞
P ({f̃ > t})dt

= |Df̂ |+ |Df̃ |.
Since f has bounded variation we can iterate this process at most a countable

number of times generating the family of monotone functions fi ∈ BV (RN ) which
satis�es the theorem.

¤

Remark 2.1. Notice that we have also proved that

f̂ =
∑

k∈K

f |Hk
− t̃k.

Remark 2.2. In general the decomposition of f in BV monotone functions is not
unique as the following example shows.

The function f in Figure 1(c) can be decomposed either in the way shown in
Figure 1(a) or in Figure 1(b).
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f

2

1

f

(a)

f
1

2

f

(b)

f

(c)

Figure 1.

In the simple case, where f is the characteristic function of a set of �nite perime-
ter, there exists a unique subdivision of f as a countable sum of BV monotone
functions. Moreover in that case, due to the fact that the sets Ei are pairwise
disjoint, DχEi are mutually singular for all i ∈ I.

This property, which has been proved also for the decomposition of Lipschitz
functions in Theorem 1, can be false in the general case. As shown in the example
below, one can have monotone BV functions, whose distributional derivatives are
concentrated on sets with non empty intersection.

Example 2.1. Let us consider a BV function f as in the Figure 2. In this case
the Decomposition Theorem gives two BV monotone functions f1 and f2 such that
f = f1 + f2. Their distributional derivatives are

|Df1| = 2δ0 + δ1 + δ3 and |Df2| = 2δ2 + 2δ3,

where δx is the Dirac measure, δx(A) = 1 if x belongs to the set A, δx(A) = 0
otherwise. Clearly these distributional derivatives are not mutually singular, since
both have an atom in x = 3.

One can show that for any possible decomposition it is impossible to �nd two
disjoint sets on which the distributional derivatives are concentrated.

3. Counterexamples
As we said in the Introduction, the de�nition of monotone function could be

given, in the same way, even for a function which is only L1
loc(RN ). In that case
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f

1

2

3
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Figure 2.

one has to require that this function must have super-level sets with �nite perimeter,
which is true L1-a.e. t ∈ R for the super-level sets of a BV function.

The Jordan decomposition states that monotonicity is a su�cient condition for
a function of one variable to be of bounded variation. However, we cannot say
that every monotone function f : RN → R de�ned as in De�nition 3 is of bounded
variation.

A counterexample is given below by a function, whose super-level sets are pro-
gressive con�gurations of the construction of a Koch snow�ake.

Example 3.1. The Koch snow�ake is a curve generated iteratively from a unitary
triangle T adding each time, on each edge, a smaller centered triangle with edges
one third of the previous edge, see Figure 3.

Figure 3. The �rst four iterations of the Koch snow�ake

More precisely letting T0 be the equilateral triangle T with unitary edge, and Ti

the successive iterations of the curve, one has that at every stage
• the number of edges is Nk = 3 · 4k,
• the length of the edges is Lk =

(
1
3

)k,
• the perimeter of the iterated curve is P (Tk) = 3 · ( 4

3

)k,
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• the area of the iterated curve is

|Tk| =
[
1 +

1
3

k∑

j=1

(
4
9

)j ]
·
√

3
2

.

Denote with B the ball
B = {x ∈ R2| ‖x‖ < R},

which contains the unitary triangle T centered in the origin: hence Ti ⊆ B for all
i ∈ N.

Let Ek := B \ Tk for k ∈ N and de�ne f : B → R in this way

f(x) :=
∑

k

(
3
4

)k

χEk
(x).

Clearly 0 ≤ f < 4, therefore f belongs to L1(B) and coarea formula can be used
to obtain its variation.

Let us note which are the super-level sets and their perimeter:
• for t < 0 the set {f > t} = B and P (B,B) = 0,
• for t = 0 the set {f > t} = E0 and P (E0, B) = 3,
• for 0 < t < 4 the set {f > t} = Ek̄ for the �rst k̄ such that

∑k̄
k=0

(
3
4

)k
> t

and P (Ek̄, B) = 3 · ( 4
3

)k̄,
• for t ≥ 4 the set {f > t} = ∅ and P (∅, B) = 0.

Thus this function is monotone and computing its variation one has

|Df |(B) =
∫ +∞

−∞
P ({f < t}, B)dt

=
∫ 4

0

P ({f < t}, B)dt

=
+∞∑

k=0

3 ·
(

4
3

)k

·
(

3
4

)k

= +∞

which implies that f does not belong to BV (B).

The Decomposition Theorem for real valued BV functions of RN is in some sense
optimal. Considering BV functions from R2 to R2 one can �nd counterexamples
to this theorem, i.e. BV functions which cannot be decomposed in sum of BV
monotone functions preserving total variation.

The crucial point is that we require to our decomposition, besides being the sum
of BV monotone functions, to preserve the the total variation, i.e.

|Df | =
∑

i∈I

|Dfi|.

Remark 3.1. For example, let us generalize as follows our de�nition of BV monotone
function to functions with values in a space of a greater dimension.

De�nition 5. A function f : RN → Rm, which belongs to [BV (RN )]m, is said to
be monotone if the super-level sets

{f > t} := {x ∈ RN | fi(x) > ti i = 1, ...,m},
are indecomposable, for Lm-a.e. t ∈ Rm.

Let f : RN → Rm a BV function f =




f1

...
fm


.
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For i = 1, ...,m, every fi is a BV function from RN to R so that Theorem 2 ap-
plies. Therefore, for every i = 1, ...,m, one has the decomposition in BV monotone
functions fi =

∑
j∈Ji

f j
i .

Note that, if g : RN → R is a BV monotone function, the function




0
...
g
...
0




is a

BV monotone function too, from RN to Rm, in the sense of De�nition 5.
It follows that we can decompose f in that way

f =
∑

j∈J1




f j
1

0
...
0


 + ... +

∑

j∈Jm




0
...
0

f j
m


 .

However, this decomposition does not preserve the total variation of f and one can
only say that

|Df | ≤
∑

j∈J1




|Df j
1 |

0
...
0


 + ... +

∑

j∈Jm




0
...
0

|Df j
m|


 .

We give now a counterexample in the case of Lipschitz function from R2 to R2.
In this situation we recall the De�nition 1.
De�nition 6. A function f : R2 → R2, which belongs to [Lip(R2)]2, is said to be
monotone if the level sets {f = t} = {x ∈ R2| f(x) = t} are connected for every
t ∈ R2.
Example 3.2. From the area formula∫

R2
H0(f−1(t))dL2(t) =

∫

R2
det(∇f(x))dx

one can say that f−1(t) is �nite for a.e. t ∈ R2, i.e. f−1(t) = {x1(t), ..., xq(t)(t)}.
Therefore there exists a measurable selection h : R2 → R2 such that h(t) ∈ f−1(t)
for all t ∈ R2.

Note that the graph
G(f) = {(x, f(x))| x ∈ R2}

is closed, thus for Theorem 5.8.11 of [5],

G(f) =
⋃

i∈I

{(t, hi(t))| t ∈ R2},

where every hi is a Borel function and I a countable set.
De�ne, for every x ∈ Ai := hi(R2), the function fi(x) := h−1

i (x).
Being Ai the set where hi is invertible, fi : Ai → R2 is well de�ned and, in its
domain, it is a Lipschitz function with constant equal to the one of f . One also has
f = fi in Ai.
Due to the injectivity of fi, for all t ∈ fi(R2) there exists a unique x ∈ Ai such that
{fi = t} = {x} which is a connected set. Therefore, for every i ∈ I fi is a Lipschitz
monotone function in Ai.

Thus, we can decompose f =
∑

i∈I fi. This decomposition in sum of Lipschitz
monotone functions fi preserves total variation as desired |Df | = ∑

i∈I |Dfi|. How-
ever, these functions are not de�ned on the all R2 but only on the sets Ai ⊆ R2 for
which we just know measurability.
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The fact that it is possible to extend these functions to the all R2 requires an
additional property of the function f . Clearly every fi can be extended to Ai

preserving its Lipschitzianity 1.
Fix an i ∈ I. We have R2 \ Ai =

⋃
j∈J Oj where the Oj are connected open

sets. The extension of fi on the all R2 must preserve monotonicity and the total
variation of fi. For this reason and due to the fact that we already know that
|Df | =

∑
i∈I |Dfi|, the function fi must be constant on the Oj with positive

measure.
Therefore, to preserve the Lipschitzianity, fi must be constant on ∂Oj . Thus,
for every j ∈ J such that Oj has positive measure, there must be a tj for which
H1({fi = tj}) > 0.
Note that, if for every j ∈ J the sets Oj have zero measure, the function fi is
the only one in the decomposition and is already monotone, therefore the only
interesting case is when there exists at least a j ∈ J where the corresponding set
Oj has positive measure.

Thus one must have

H1({f = t̄ }) ≥ H1({fi = t̄ }) > 0

for at least a t̄ ∈ R2. The condition H1({f = t̄ }) > 0 for at least a t̄ ∈ R2 is a
necessary condition to the decomposition of a function in that particular way.

However, not all Lipschitz functions from R2 to R2 have this particular property.
For example consider

f : R2 → R2, f(x) =
(

1− cos(πx1
2 )

1− cos(πx2
2 )

)
.

Then it follows

{f = t} =
{

(x1, x2) ∈ R2| 1− cos(
πx1

2
) = t1, 1− cos(

πx2

2
) = t2

}
,

i.e. we have

{f = t} =
{

(x1, x2) ∈ R2| x1 = α1 + 4k, x2 = α2 + 4k k = 1, 2, ...

}

if 0 ≤ ti ≤ 2, for i = 1, 2, where αi ∈ {± 2
π arccos(1− ti)} for i = 1, 2, or

{f = t} = ∅

otherwise.
In both cases they have zero length.

Thus, for this particular function, there could not exist any decomposition with
the properties desired.

1Thanks to Kirszbraun's theorem, see Theorem 2.10.43 in [4], every fi can be extended to a
Lipschitz function of the all R2. However, for our purpose, it is su�cient to consider the basic
Lipschitz extension to the closure.
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4. Notations
HK K-dimensional Hausdor� measure
LN N-dimensional Lebesgue measure
R+ set of all non negative real number
[L1(RN )]m Lebesgue space of functions from RN to Rm

L1(RN )loc space of functions from RN to R which are locally L1(RN )
[Lipc(RN )]m space of c-Lipschitz functions from RN to Rm

[BV (RN )]m space of bounded variation functions from RN to Rm

∇f gradient of the Lipschitz function f
Df distributional derivative of the BV function f
|Df | total variation of the function f
P (E) perimeter of the set E
|E| Lebesgue measure of the set E

E̊M essential interior of the set E
E closure of the set E
χE characteristic function of the set E
(mod LN ) up to LN -negligible sets
δx Dirac measure
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