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Abstract. Given a vector field ρ(1,b) ∈ L1
loc(R+ × Rd,Rd+1) such that divt,x(ρ(1,b)) is a measure,

we consider the problem of uniqueness of the representation η of ρ(1,b)Ld+1 as a superposition of

characteristics γ : (t−γ , t
+
γ ) → Rd, γ̇(t) = b(t, γ(t)). We give conditions in terms of a local structure

of the representation η on suitable sets in order to prove that there is a partition of Rd+1 into disjoint

trajectories ℘a, a ∈ A, such that the PDE

divt,x
(
uρ(1,b)

)
∈M(Rd+1), u ∈ L∞(R+ × Rd),

can be disintegrated into a family of ODEs along ℘a with measure r.h.s.. The decomposition ℘a is

essentially unique. We finally show that b ∈ L1
t (BVx)loc satisfies this local structural assumption and

this yields, in particular, the renormalization property for nearly incompressible BV vector fields.
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1. Introduction

In this paper we consider the initial value problem for the continuity equation associated to a vector
field b : R+

t × Rdx → Rd, i.e. {
∂tu+ divx(ub) = 0,

u(0, ·) = u0(·)
(1.1)

and the corresponding advective formulation, namely the transport equation{
∂tu+ b · ∇u = 0,

u(0, ·) = u0(·)
(1.2)

where u : R+
t × Rdx → R is a scalar field and u0 : Rd → R is a given initial datum. When b is globally

bounded and enjoys Lipschitz bounds, existence and uniqueness results for (classical) solutions to Prob-
lems (1.1) and (1.2) are well known. They rely on the so called method of characteristics which establishes
a deep connection between the “Eulerian” problems (1.1), (1.2) and the “Lagrangian” problem given by
the ordinary differential equation driven by b:{

γ̇(t) = b(t, γ(t)), γ : R+ → Rd,
γ(0) = x x ∈ Rd.

(1.3)

Our aim here is to study the problem of uniqueness in the non-smooth setting. For instance, if we assume
that the vector field b is merely locally integrable, then one can give a distributional meaning to the
following equation

divt,x
(
u(1,b)

)
:= ∂tu+ divx(ub) = c, (1.4)

provided, for instance, u ∈ L∞(R+ × Rd) and c ∈ L1(Rd+1) is an integrable function. Furthermore, one
can prove (see e.g. [DL07]) that, if u is a weak solution of (1.4), then there exists a map ũ ∈ L∞(R+×Rd)
such that u(t, ·) = ũ(t, ·) for a.e. t ∈ R+ and t 7→ ũ(t, ·) is weakly? continuous from R+ into L∞(Rd) and



A UNIQUENESS RESULT FOR THE DECOMPOSITION OF VECTOR FIELDS IN Rd 3

this allows to prescribe an initial condition for a weak solution u of (1.4), by imposing that u(0, ·) = u0(·)
holds if ũ(0, ·) = u0(·).
The definition of weak solutions to the transport equation (1.2) is slightly more delicate: if the spatial
distributional divergence of b is a measure which is absolutely continuous with respect to the Lebesgue
measure, then the equation in (1.2) can be written in the form (1.4) and, as already pointed out, the
latter can be understood in the sense of distributions.
In the case when divx b is a measure which has a non trivial singular part, the notion of weak solution
of (1.2) can be defined within the class of nearly incompressible vector fields.

Definition 1.1. A locally integrable vector field b : R+
t ×Rdx → Rd is called nearly incompressible if there

exists a function ρ : R+×Rd → R (called density of b) and a constant C > 0 such that C−1 ≤ ρ(t, x) ≤ C
for Lebsgue almost every (t, x) ∈ R+ × Rd and

divt,x
(
ρ(1,b)

)
= 0 in the sense of distributions on R+ × Rd.

Accordingly, one can give the following definition of weak solution:

Definition 1.2. Let b be a nearly incompressible vector field with density ρ. We say that a function
u ∈ L∞(R+ × Rd) is a ρ-weak solution of (1.2) if

divt,x
(
ρu(1,b)

)
= 0 in the sense of distributions on R+ × Rd.

Thanks to Definition 1.2 one can prescribe the initial condition for a weak solution to the transport
equation similarly to the case of the continuity equation, which we mentioned above (see [DL07] for the
details).

1.1. The classical approach: renormalized solutions. Once reasonable definitions of weak solutions
have been established, one can start wondering whether they exist and are unique.
On the one hand, existence results for weak solutions are available under quite mild assumptions on b,
due to the linearity of the problems: for instance, one can show that a weak solution to initial value
problem for transport equation (1.2) with a nearly incompressible vector field always exists by means of
a standard regularization argument (see [DL07]).
On the other hand, the problem of uniqueness of weak solutions is more delicate and has been stud-
ied by several authors, since the work of DiPerna-Lions [DL89]. In that paper, uniqueness was estab-
lished as a corollary of the so called renormalization property. Roughly speaking, a bounded function
u ∈ L∞(R+ × Rd) is said to be a renormalized solution to (1.2) if for all β ∈ C1(R) the function β(u)
is a solution to the corresponding Cauchy problem:{

∂tu+ b · ∇u = 0,

u(0, ·) = u0

=⇒

{
∂t(β(u)) + b · ∇(β(u)) = 0

β(u(0, ·)) = β(u0(·))
for every β ∈ C1(R).

This can be interpreted as a sort of weak “Chain Rule” for the function u, saying that u is differentiable
along the flow generated by b. In [DL89] it is shown that the validity of this property for every β ∈ C1(R)
implies, under general assumptions, uniqueness of weak solutions for (1.2); furthermore, it is proved that
renormalization property is fulfilled by vector fields b which have locally Sobolev regularity (in space).
The argument relies on an approximation scheme based on commutator estimates: if {ϕε}ε>0 is a standard
family of mollifiers in Rn and uε := u ∗ ϕε then one can write

∂tu
ε + b · ∇uε = T ε (1.5)

where T ε is the commutator defined as

T ε := b · ∇uε − (b · ∇u) ∗ ϕε

By multiplying both sided of (1.5) times β′(uε) one obtains

∂tβ(uε) + b · ∇(β(uε)) = T εβ′(uε).

If b ∈ W 1,p
x , one can show that the r.h.s. converges strongly (in Lp) to 0, from which one deduces the

renormalization property.
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1.2. Bressan’s compactness conjecture. In the recent years, several efforts have been made in order
to extend these results to a larger class of vector fields, remarkably BV vector fields. In 2004, Ambrosio
[Amb04] proved the renormalization property for vector fields of bounded variation whose divergence is
absolutely continuous.
However, in view of the relevant connections with the theory of hyperbolic systems of conservation
laws (for instance the Keyfitz-Kranzer system, see [KK80]), it is interesting to consider the case of
vector fields whose divergence has non trivial singular part. In particular, one would like to extend the
DiPerna-Lions theory of renormalized solutions to the transport equation when the vector field b is BV
(locally in space) and nearly incompressible. Notice that, using simple regularization arguments, one
can prove that if div b ∈ L∞(R+ × Rd) then b is nearly incompressible. The converse implication does
not hold, so near incompressibility can be considered as a weaker version of the assumption div b ∈
L∞(R+ ×Rd). In particular, uniqueness of solutions in the BV nearly incompressible setting implies (as
shown in [ADLM07]) the following conjecture on compactness of ODEs, raised by A. Bressan in 2003
(see [Bre03a, Bre03b]:

Conjecture (Bressan’s compactness conjecture). Let bn : R×Rd → Rd, n ∈ N, be a sequence of smooth
vector fields. Denote by Φn the flow generated by bn, i.e.

d

dt
Φn(t, x) = bn(t,Φn(t, x)),

Φn(0, x) = x.

Assume that ‖bn‖∞ + ‖∇t,xbn‖L1 is uniformly bounded and there exists a constant C > 0 such that

C−1 ≤ det(∇xΦn(t, x)) ≤ C
for all (t, x) ∈ R× Rd and all n ∈ N. Then the sequence Φn is strongly precompact in L1

loc.

1.2.1. The chain rule approach and the 2D case. In view of Definition 1.2, in order to establish uniqueness
of solutions to transport equation (1.2) in the nearly incompressible case (and, thus, Bressan’s conjecture),
one is led to consider continuity equation

∂tρ+ divx(ρb) = 0 (1.6)

and would like to prove a uniqueness result for the initial value problem associated to (1.6). By pursuing
the renormalization approach, one has to observe that the chain rule along the flow of b for the equation
(1.6) takes a different form (even in the smooth setting):

∂tβ(ρ) + divx
(
β(ρ)b)

)
=
(
β(ρ)− ρβ′(ρ)

)
divx b. (1.7)

In general, the r.h.s. of (1.7) cannot be written in that form, being only a distribution; in the case the
vector field b ∈ BV, it can be shown to be a measure, controlled by divx b. As noted in [ADLM07], the
main problem is to give a meaning to the r.h.s. of (1.7) when the measure divx b is singular and ρ is only
defined almost everywhere with respect to Lebesgue measure. To overcome this difficulty, the authors
split divx b ∈ M(Rd+1) into its absolutely continuous part, jump part and Cantor part and treat the
cases separately. Their first result ([ADLM07, Thm. 3]) is that in all Lebesgue points of ρ the formula
(1.7) holds (possibly being divx b singular), where ρ is replaced by its Lebsgue value ρ̃. This is achieved
along the same techniques of [Amb04], which are in turn a (non-trivial) extension of the ones employed in
[DL89]: in general, in the BV setting, strong convergence of commutators does not hold. The argument
can be fixed if divx b is absolutely continuous, by considering suitable convolution kernels which look
more elongated in some directions in order to control the singular terms.
By exploiting properties of Anzellotti’s weak normal traces for measure divergence vector fields (see
[Anz83]), Ambrosio-De Lellis-Malý managed to settle the jump part: they obtain an explicit formula (in
the spirit (1.7)), involving the traces of b and ρ(1,b) along a Hd−1-rectifiable set. We refer the reader
also to [ACM05] for an extension of these results to the BD case.
In order to tackle the Cantor part, a “transversality condition” between the vector field and its derivative
is assumed: it is shown that, if in a point (t̄, x̄) one has (Db · b)(t̄, x̄) 6= 0 (where b(t̄, x̄) is the Lebesgue
value of b in (t̄, x̄)) then the point (t̄, x̄) is a Lebesgue point for ρ.
From the analysis of [ADLM07], it remains open the case of tangential points, i.e. the set of points at
which Db · b vanishes, which make up the so called tangential set. This is actually relevant, as shown
in [BG16]: answering negatively to one of the questions in [ADLM07], in [BG16] the authors exhibited
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Figure 1. Example of [BG16]: the tangential set of the vector field b (only the integral
curves have been drawn here) is a Cantor like set of dimension 3/2. Notice
that each trajectory γ meets the tangential set in exactly one point, at time
tγ : the density ρ, computed along the curve, is piecewise constant, having a
unique jump of size 1 in tγ .

an example of BV, nearly incompressible vector field with non empty tangential set. Even worse, the
tangential set is a Cantor like set of non integer dimension but, at level of the density ρ, one sees a pure
jump. This severe pathology is depicted in Figure 1 and we refer the reader to [BG16] for a detailed
construction.
In the same paper, the authors studied the 2D case and established, via a different technique, uniqueness
of weak solutions for a BV vector field, nearly incompressible (with a time independent density): as a
consequence they give explicitly the form of the r.h.s. of (1.7) in the 2D case. Their proof is inspired
to previous results in the divergence free case (obtained by [ABC14]) and takes advantage of the under-
lying Hamiltonian structure of the problem in the two dimensional setting. In [ABC14], the existence
of a Lipschitz Hamiltonian allows to establish a sufficient and necessary condition for uniqueness for
autonomous, divergence-free, bounded vector fields: this is done via a disintegration argument, in view
of the regularity results for level sets of Lipschitz maps obtained in [ABC13]. For an extension of these
techniques to the 2D nearly incompressible case we refer the reader to [BBG16].

1.3. A different method. Our analysis starts from the following observation: the two techniques pre-
sented above (Hamiltonian in two-dimensional setting and Chain Rule) are not suited for the general
case for two different reasons. On the one hand, in the general d-dimensional case with d > 2, the
Hamiltonian approach cannot be applied, as divergence free vector fields in Rd do not admit in general a
Lipschitz potential. On the other hand, in the Chain Rule approach the problem is more subtle: clearly,
it seems arduous to construct suitable convolution kernels, which adapt to the irregularity of the vector
field, controlling the errors, once the main term is exhibited. The subtle problem is however to determine
which are the main terms: one has to compute some sort of trace on sets which are not rectifiable, i.e.
Cantor-like sets. Lacking a suitable notion of trace, this task seems quite difficult. Such a notion could
be given by means of a Lagrangian representation η of the Rd+1-valued vector field ρ(1,b), and this is
the starting point of our approach.

Lagrangian representations. In the general non-smooth setting, one could recover a link between the
continuity equation (1.1) and the ODE (1.3) thanks to the so called Superposition Principle, which has
been established by Ambrosio in [Amb04] (see also [Smi94]). Roughly speaking, it asserts that, if the
vector field is globally bounded, every non-negative (possibly measure-valued) solution to the PDE (1.1)
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can be written as a superposition of solutions obtained via propagation along integral curves of b, i.e.
solutions to the ODE (1.3).
More generally, let us consider a locally integrable vector field b ∈ L1

loc((0, T ) × Rd) and let ρ be a
non-negative solution to the balance law

∂tρ+ div(ρb) = µ, µ ∈M((0, T )× Rd). (1.8)

with ρ ∈ L1
loc((1+ |b|)Ld+1) (so that a distributional meaning can be given). For simplicity, we will often

write (1.8) in the shorter form
divt,x

(
ρ(1,b)

)
= µ. (1.9)

Let us denote the space of continuous curves by

Υ :=
{

(t1, t2, γ) ∈ R+ × R+ × C(R+,Rd), t1 < t2
}

and let us tacitly identify the triplet (t−γ , t
+
γ , γ) ∈ Υ with γ, so that we will simply write γ ∈ Γ . We say

that a finite, non negative measure η over the set Υ is a Lagrangian representation of the vector field
ρ(1,b) if the following conditions hold:

(1) η is concentrated on the set of characteristics Γ , defined as

Γ := {(t1, t2, γ) ∈ Υ : γ characteristic of b in (t1, t2)} ;

we explicitly recall that a curve γ is said to be a characteristic of the vector field b in the interval
Iγ if it is an absolutely continuous solutions to the ODE

γ̇(t) = b(t, γ(t)),

in Iγ , which means that for every (s, t) ⊂ Iγ we haveˆ
Γ

∣∣∣∣γ(t)− γ(s)−
ˆ t

s

b(τ, γ(τ)) dτ

∣∣∣∣ η(dγ) = 0.

(2) The solution ρ can be seen as a superposition of the curves selected by η, i.e. if (id, γ) : Iγ →
Iγ × Rd denotes the map defined by t 7→ (t, γ(t)), we ask that

ρLd+1 =

ˆ
Γ

(id, γ)]L1 η(dγ);

(3) we can decompose µ, the divergence of ρ(1,b), as a local superposition of Dirac masses without
cancellation, i.e.

µ =

ˆ
Γ

[
δt−γ ,γ(t−γ )(dt dx)− δt+γ ,γ(t+γ )(dt dx)

]
η(dγ),

|µ| =
ˆ
Γ

[
δt−γ ,γ(t−γ )(dt dx) + δt+γ ,γ(t+γ )(dt dx)

]
η(dγ).

The existence of such a decomposition into curves is a consequence of general structural results of 1-
dimensional normal currents (see [Smi94] and, for the case µ = 0, [AC08, Thm. 12]). The non-negativity
assumption on ρ ≥ 0 (i.e. the a-cyclicity of ρ(1,b) in the language of currents) plays here a role, allowing
to reparametrize the curves in such a way they become characteristic of b, i.e. they satisfy Point (1).

Restriction of Lagrangian representations and proper sets. One problem we face immediately
lies in the fact that η is a global object, thus it is not immediate to relate suitable local estimates with
η: in other words, in general, η cannot be restricted to a set, without losing the property of being a
Lagrangian representation. If we are given an open set Ω ⊂ Rd+1 and a curve γ, we can write

γ−1(Ω) =

∞⋃
i=1

(ti,−γ , ti,+γ )

and then consider the family of curves

RiΩγ := γx(ti,−γ ,ti,+γ ).

We can now define

ηΩ :=

∞∑
i=1

(RiΩ)]η. (1.10)
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In general, the series in (1.10) does not converge. Moreover, even if the quantity in (1.10) is well defined
as a measure, since η satisfies Points (1) and (2) of the definition of Lagrangian representation 3.1, it
certainly holds

ρ(1,b)Ld+1xΩ=

ˆ
Γ

(id, γ)]
(
(1, γ̇)L1

)
ηΩ(dγ).

but, in general, Point (3) is not satisfied by ηΩ (more precisely the second formula): in other words, ηΩ

might not be a Lagrangian representation of ρ(1,b)Ld+1xΩ: the key point is that the sets of γ which are
exiting from or entering in Ω are not disjoint.

Thus the first question we have to answer to is to characterize the open sets Ω ⊂ Rd+1 for which ηΩ is
a Lagrangian representation of ρ(1,b)Ld+1xΩ. It turns out that there are sufficiently many open sets Ω
with this property: apart from having a piecewise C1-regular boundary and assuming that Hdx∂Ω-a.e.
point is a Lebesgue point for ρ(1,b), the fundamental fact is that there are two Lipschitz functions φδ,±

such that

1Ω ≤ φδ,+ ≤ 1Ω+Bd+1
δ (0), 1Rd+1\Ω ≤ φδ,− ≤ 1Rd+1\Ω+Bd+1

δ (0)

and

lim
δ→0

ρ|(1,b) · ∇φδ,±| Ld+1 = ρ|(1,b) · n|Hdx∂Ω in the sense of measures on Rd+1,

which essentially mean that ρ(1,b)Hdx∂Ω is measuring the flux of ρ(1,b) across ∂Ω. We call these set
ρ(1,b)-proper (or just proper for shortness): our first results are that there are sufficiently many proper
sets and that they can be perturbed in order to adapt to the vector field under study.

Cylinders of approximate flow. Once we are able to localize the problem in a proper set, we can
start studying which are the pieces of information on the local behavior of the vector field that one needs
in order to deduce global uniqueness results. To begin with, we consider again the case of the jump part
of b in the L∞ ∩ BV (or L∞ ∩ BD) case: in this framework, in [ACM05, Thm. 6.2] it has been proved
the existence of a strong trace for ρ over the jump set of b by taking suitable cylinders, so that on both
sides of the discontinuity the later flux becomes negligible w.r.t. their base (see Figure 2a). By strong
trace we mean that the trace operator, defined in the Anzellotti’s distributional sense, agrees with the
(approximate) pointwise limits defined with integral averages on balls. One could be tempted at this
point to reproduce the proof in the tangential points: ignoring the fact that we do not have a suitable
notion of (strong) trace on these Cantor sets, the main difference lies in the fact that, since the vector
field is not transversal to the measure theoretic normal of the set, the cylinders should be much more
elongated (see Figure 2b).

Thus we have to look for a different approach. Given a proper set Ω ⊂ Rd+1, we assume we can construct
locally cylinders of approximate flow as follows:

Assumption 1.3. There are constants M, $ > 0 and a family of functions {φ`γ}`>0,γ∈Γ such that:

(1) for every γ ∈ Γ, ` ∈ R+, the function φ`γ : [t−γ , t
+
γ ]×Rd → [0, 1] is Lipschitz, so that it can be used

as a test function;
(2) the shrinking ratio of the cylinder φ`γ is controlled in time, preventing it collapses to a point:

more precisely, for t ∈ [t−γ , t
+
γ ] and x ∈ Rd,

1γ(t)+Bd
`/M

(0)(x) ≤ φ`γ(t, x) ≤ 1γ(t)+Bd
M`(0)(x);

(3) we control in a quantitative way the flux through the “lateral boundary of the cylinder” (compared
to the total amount of curves starting from the “base of the cylinder”) with the quantity $: more
precisely, denoting by

Flux`(γ) :=
flux of the the vector field ρ(1,b)

across the “boundary of the cylinder” φ`γ

=

¨
(t−γ ,t

+
γ )×Rd

ρ(t, x)
∣∣(1,b) · ∇φ`γ(t, x)

∣∣Ld+1(dx dt),

σ`(γ) := amount of curves starting from the base of the cylinder φ`γ
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Jb

b+

b−

(a) Visual proof of Thm. 6.2 in [ACM05]:

the trace of ρ on the jump set Jb is
strong, as a consequence of the fact

that the flux of b through the lateral

boundaries of the cylinders is asymp-
totically negligible w.r.t. the base of

the cylinders.

(b) Back to the example of [BG16]:

in the tangential points, the cylin-
ders should be much more elon-

gated than in the jump case, as

the vector field is not transversal.

Figure 2. Strong traces via cylinders: the jump case and the Cantor case.

and

ηin
Ω := ηΩx{curves entering in Ω}

we ask that ˆ
Γ

1

σ`(γ)
Flux`(γ) ηin

Ω (dγ) ≤ $. (1.11)

We decided to call cylinders of approximate flow the family of functions {φ`γ}`>0,γ∈Γ : indeed, if γ is a

characteristic of the vector field b, the function φ`γ can be thought as generalized, smoothed cylinder

centered at γ. Notice that the measure ηin
Ω makes sense if Ω is a proper set, in view of the above analysis.

Thus the ultimate meaning of the assumption is that one controls the ratio between the flux of ρ(1,b)
across the lateral boundary of the cylinders and the total amount of curves entering through its base in
a uniform way (w.r.t. `), as the cylinder shrinks to a trajectory γ. A completely similar computation
can be performed backward in time, by considering ηΩ restricted to the exiting trajectories and adopting
suitable modifications.

Passing to the limit via transport plans. At this point, one would like to determine what the cylinder
estimate (1.11) yields in the limit `→ 0. In order to perform this passage to the limit, we borrow some
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tools from the Optimal Transportation Theory. The language of transference plans is particularly suited
for our purposes: we define

Γ cr(Ω) :=
{
γ ∈ Γ : γ(t±γ ) ∈ ∂Ω

}
, Γ in(Ω) :=

{
γ ∈ Γ : γ(t−γ ) ∈ ∂Ω

}
and we consider plans between ηcr

Ω := ηΩxΓ cr(Ω) and the entering trajectory measure ηin
Ω . Notice that

ηcr
Ω is concentrated, by definition, on the set of trajectories entering in and exiting from Ω (crossing

trajectories). In the correct estimate one has to take into account also of trajectories which end inside
the set Ω and this, in view of Point 3 of the definition of Lagrangian representation, is estimated by the
negative part µ− of the divergence µ, defined in (1.9). By means of a deep duality result in Optimal
Transport [Kel84], one obtains the following

Proposition 1.4. Let Ω ⊂ Rd+1 be a proper set and η be a Lagrangian representation of ρ(1,b). If
Assumption 1.3 holds then there exist N1 ⊂ Γ cr(Ω), N2 ⊂ Γ in(Ω) such that

ηcr
Ω (N1) + ηin

Ω (N2) ≤ inf
C>1

{
2$ + C$ +

µ−(Ω)

C − 1

}
and for every (γ, γ′) ∈ (Γ cr \N1)× (Γ in \N2)

either clos Graph γ′ ⊂ clos Graph γ or clos Graph γ, clos Graph γ′ are disjoint. (?)

Proposition 1.4 gives essentially a uniqueness result (from the Lagrangian point of view) at a local level,
namely inside a proper set Ω: it says that, under Assumption 1.3, up to removing a set of trajectories
whose measure is controlled, one gets a family of essentially disjoint trajectories (meaning that are either
disjoint or one contained in the other).

Untangling of trajectories. It seems at this point natural to try to perform some “local-to-global”
argument, seeking a global analog of Proposition 1.4. In order to do this, we introduce the following
untangling functional for ηin, defined on the class of proper sets as

F
in

(Ω) := inf
{
ηcr

Ω (N1) + ηin
Ω (N2) : ∀(γ, γ′) ∈ (Γ \N1)× (Γ \N2) the condition (?) holds

}
and, in a similar fashion, one can define an untangling functional for the trajectories that are exiting
from the domain Ω. In a sense, these functionals are measuring the minimum amount of curves one has
to remove so that the remaning ones are essentially disjoint, i.e. they satisfy condition (?). The main
property of these functionals is that they are subadditive with respect to the domain Ω, meaning that

F
in

(Ω) ≤ F
in

(U) + F
in

(V),

whenever U,V ⊂ Rd+1 are proper sets whose union Ω := U∪V is proper. The subadditivity suggests the
possibility of having a local control in terms of a measure $τ , whose mass is τ > 0, replacing the constant
$ in Proposition 1.4 with $τ (Ω). In view of Proposition 1.4 one has to combine $τ with the divergence

and this can be done by introducing a suitable measure ζτC ≈ C$τ + |µ|
C on Rd+1. If Assumption 1.3 is

satisfied locally by a suitable family of balls, then one can show, by means of a covering argument, the
following fundamental proposition, which is the global analog of Proposition 1.4.

Proposition 1.5. There exists a set of trajectories N ⊂ Γ such that

η(N) ≤ CdζτC(Rd+1)

and for every (γ, γ′) ∈ (Γ \N)2 it holds

either Graph γ ⊂ Graph γ′ or Graph γ′ ⊂ Graph γ
or Graph γ,Graph γ′ are disjoint (up to the end points).

(??)

The interesting situation is when the measure ζCτ can be taken arbitrarily small, i.e. when τ → 0: in that
case η is said to be untangled, i.e. it is concentrated on a set ∆ such that for every (γ, γ′) ∈ ∆ ×∆ the
condition (??) holds.
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Partition via characteristics and Lagrangian uniqueness. The untangling of trajectories is the
core of our approach and it encodes, in our language, the uniqueness issues and the computation of
the chain rule. Indeed, once the untangled set ∆ is selected, we can construct an equivalence relation
on it, identifying trajectories whenever they coincide in some time interval: this gives a partition of
∆ into equivalence classes Ea := {℘a}a, being A a suitable set of indexes. This, in turn, induces a
partition of Rd+1 (up to a set ρLd+1-negligible) into disjoint trajectories (that we still denote by ℘a):
both partitions admit a Borel section (i.e. there exist Borel functions f : Rd+1 → A and f̂ : ∆→ A such
that ℘a = f−1(a) and f̂−1(a) = Ea for every a ∈ A): hence a disintegration approach can be adopted,
like in the two-dimensional setting. One reduces the PDE (1.9) into a family of one-dimensional ODEs
along the trajectories {℘a}a∈A: we are thus recovering a sort of method of the characteristic in the weak
setting.

To formalize this disintegration issue, we propose to call a Borel map g : Rd+1 → A a partition via
characteristics of the vector field ρ(1,b) if:

• for every a ∈ A, g−1(a) coincides with Graph γa, where γa : Ia → Rd+1 is a characteristic of b in
some open domain Ia ⊂ R;

• if ĝ denotes the corresponding map ĝ : ∆→ A, ĝ(γ) := g(Graph γ), setting m := ĝ]η and letting
wa be the disintegration

ρLd+1 =

ˆ
A

(id, γa)](waL1)m(da)

then

d

dt
wa = µa ∈M(R), (1.12)

where wa is considered extended to 0 outside the domain of γa;
• it holds

µ =

ˆ
(id, γa)]µam(da) and |µ| =

ˆ
(id, γa)]|µa|m(da).

We will say the partition is minimal if moreover

lim
t→t̄±

wa(t) > 0 ∀t̄ ∈ Ia.

In view of the discussion above, the family of equivalence classes {℘a}a∈A arising from the untangled
set ∆ constitutes a partition via characteristics. Moreover, since the function wa is a BV function on R,
in view of (1.12), we can further split the equivalence classes so that it becomes a minimal partition via
characteristics of ρ(1,b). We have thus obtained the following

Main Theorem 1. There exists a minimal partition via characteristics f of ρ(1,b)Ld+1.

If now u ∈ L∞ is such that divt,x(uρ(1,b)) = µ′ is a measure, one can repeat the computations for
(2‖u‖∞+u)ρ(1,b)Ld+1 obtaining that the same partition via characteristics works also for uρ(1,b)Ld+1,
concluding with the following uniqueness result, which is the second main result of the present work.

Main Theorem 2. If u ∈ L∞(ρLd+1) then the map f is a partition via characteristics of uρ(1,b)Ld+1.

In particular, by disintegrating the PDE div(uρ(1,b)) = µ′ along the characteristics ℘a = f−1(a), we
obtain the one-dimensional equation

d

dt

(
u
(
t, ℘a(t)

)
wa(t)

)
= µ′a.

At this point, an application of Volpert’s formula for one-dimensional BV functions allows an explicit
computation of d

dt (β(u ◦ ℘a)wa), i.e. of div(β(u)ρ(1,b)) thus establishing the Chain rule in the general
setting. We remark that, even without BV-BD bounds on b, the distribution div(β(u)ρ(1,b)) turns out
to be a measure in our setting, i.e. when the representation η is untangled.
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stant matrix A, which will be taken

close to Dab.

t

y1

y⊥

Q̄

Q(t)
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(b) The singular case: the cylinders shrink
(if divb < 0) in a controlled way,

their sides being graph of monotone

Lipschitz functions which satisfy suit-
able differential equations.

Figure 3. Approximate cylinders of flow in the L1
t (BVx)loc nearly incompressible case.

1.3.1. The BV nearly incompressible case. The last part of this work aims to give an interesting example
where the above construction can be performed: it is the case where b ∈ L1

t (BVx)loc. In view of Main
Theorem 2, without loss of generality, we assume ρ = 1 so that the vector field under consideration is
exactly (1,b)Ld+1 and we denote by Db =

´
Db(t) dt the derivative of b. The construction considers

a local approximating vector field for which the flow is Lipschitz and whose cylinders of flows satisfy
Assumption 1.3.

For any matrix A and γ characteristic (and for `, δ1 > 0), one can define the cylinder

φ`,δ1γ

(
t, γ(t) + eAty

)
=

[
1− 1

δ1`
dist

(
y,Bd` (0)

)]+

.

By some computations (similar to the renormalization analysis) one can to show that the integral (1.11)
can be estimated by

ˆ
1

σ`,δ1

[ ˆ t+γ

t−γ

ˆ ∣∣(1,b) · ∇t,xφ`,δ1γ

∣∣Ld+1

]
η(dγ) ≤ C|Db−ALd+1|

(
Bd+1
r (t̄, x̄)

)
. (1.13)

where σ`,δ1 is a suitable normalization constant and C a positive constant. In particular, the right hand
side of (1.13) can be made arbitrarly small in the absolutely continuous part of Db. Roughly speaking
we have replaced the real evolution (under the flow of b) of a ball Bd` (0) with an ellipsoid, given by a fixed
matrix A (compare with Figure 3a): the computation behind (1.13) shows that the difference between the
two evolutions (i.e. the lateral flux through the cylinder) is small, when compared to the volume of Bd` (0).

The estimates for the singular part are more delicate and depend heavily on the shape of the approximate
cylinders of flow. The main idea is to choose properly the (non-transversal) sides’ lenghts of the cylinders,
in such a way to cancel the effect of the divergence. First of all, by Rank One Theorem, we can find a
suitable (local) coordinate system y = (y1, y

⊥) ∈ Rd in which the derivative Db is essentially directed
toward a fixed direction (without loss of generality, the one given by e1). Accordingly, we define the
(section at time t of the) cylinder

Q = Q`±1,γ ,`
(t) := γ(t) +

{
y = (y1, y

⊥) : −`−1 (t, y⊥) ≤ y1 ≤ `+1 (t, y⊥), |y⊥| ≤ `
}
, (1.14)
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where ` > 0 and `±1,γ are monotone Lipschitz functions to be chosen. This is indeed a crucial step: we
show it is possible to adapt locally the cylinders of approximate flows, by imposing that the sides’ lengths
`±1,γ(t) are monotone functions satisfying suitable differential equations (see Figure 3b). In a simplified

setting, i.e. if the level set of b1(t) were exactly of the form y1 = constant, then we would impose

d

dt
`+1,γ(t) = (Db1)

(
γ(t), γ(t) + `+1,γ(t)

)
(1.15)

(and an analogous relation for `−1,γ). Plugging the solution of (1.15) into the definition of the cylinder

(1.14), we can show that the flux of b through the lateral boundary of Q is under control. Actually, a
technical variation of this is needed in order to take into account the fact that the level sets are not of
the form y1 = constant: to do this we exploit Coarea Formula and a classical decomposition of finite
perimeter sets into rectifiable parts (De Giorgi’s rectifiability Theorem). We show that, up to a |Dsingb|-
small set, one can find Lipschitz functions y1 = Lt,h(y⊥) in a fixed set of coordinates (y1, y

⊥) ∈ R×Rd+1,
whose graphs cover a large fraction of the singular part DsingbxBd+1

r (t̄,x̄). We can at this point reverse the

procedure, i.e. we construct a vector field starting from the level sets: this yields a BV vector field U(t)
whose component U1 can be put into the right hand side of (1.15) and we can now perform the precise
estimate of the flux of b through the lateral boundary of Q. By an application of the Radon-Nikodym
Theorem, it follows that on a large compact set it holds that the flow integral (1.11) is controlled by
τ |Dsingb|(Bd+1

r (t̄, x̄)). Finally a covering argument implies that the measure ζCτ can be taken to be τ |Db|,
i.e. Theorem 1 holds.

1.4. Structure of the paper. The paper is organized as follows.
Section 2 introduces the main notations used in the paper.
Section 3 collects some results which will be used. After specifying the problem under consideration

and observing that due to the locality of the result it is enough to consider vector fields with compact
support, in Section 3.1 we recall the basic results on the existence of a Lagrangian representation η
(Definition 3.1), i.e. a measure on the space of trajectories of the vector field b defined in an open
interval. The only variation w.r.t. the results of [Smi94] is that, thanks to the form of the vector field
(i.e. (1,b)), can parametrize the curves with t. The fact that η-a.e. curve is of finite length implies that

ˆ [ ˆ t+γ

t−γ

|γ̇(t)| dt
]
η(dγ) = ‖b‖L1 ,

i.e. there exists the limit points γ(t±γ ): in particular for us Graph γ is the graph of γ together with its
starting and ending points. Section 3.2 deals with a duality result which will lead to the untangling
properties of the representation η: the fundamental result (Proposition 3.3) is that if B is a Borel set,
and µi, i = 1, 2, are two bounded measures (possibly with different mass), then the dual of the optimal
transport problem

sup
(pi)]π≤µi

π(B) = inf

{∑
i

ˆ
hi µi, hi Borel,

∑
i

hi ≥ 1B

}
has a minimum, which is actually given by some characteristic functions hi = 1Bi .
Finally Section 3.3 recalls some fundamental properties of BV functions, which are used in the last part of
the paper when studying the L1

t (BVx)-case: the most important ones are the Coarea Formula, Theorem
3.7, and the Rank-One Property, Theorem 3.8.

The rest of the paper is divided into 3 parts, each studying a different problem: select suitable sets
which can be used for testing purposes (Part 1), deduce from a local estimate on the Lagrangian repre-
sentation some global uniqueness properties (Part 2), and finally show that b ∈ L1

t (BVx)loc satisfies this
local estimate (Part 3).

In Section 4 we give a property of open sets Ω with sufficiently regular boundary which (at the end)
will imply that the normal trace controls the flow of trajectory across ∂Ω: the idea is that there are
two Lipschitz functions φδ,± such that ρ|(1,b) · ∇φδ,±|Ld+1 converges to the outer/inner normal trace.
Definition 4.1 of ρ(1,b)-proper sets requires more conditions, which are not restrictive being the sets
used for testing purposes; subsequent remarks are addressed to possible extensions. The main results of
Section 4.1 are that there are sufficiently many sets which have a simple geometry and are ρ(1,b)-proper
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(Lemma 4.8) and a condition to construct new proper sets (Proposition 4.9).
In particular, these sets can be perturbed: Section 4.2 construct indeed perturbations Ωε of proper sets
Ω, which are still proper, arbitrarily close to the original Ω and such that the entering/exiting fluxes
mainly occur across finitely many time-constant planes, Theorem 4.16.

The restriction operation ρ(1,b)Ld+1 7→ ρ(1,b)Ld+1xΩ has as a key point the computation of traces:
indeed the boundary of ∂Ω adds a trace, i.e. a source/sink for the trajectories γ. The idea is to consider
the operator

γ−1(Ω) =
⋃
i

(ti,−γ , ti.+γ ), RiΩγ = γx(ti,−γ ,ti.+γ ),

and the natural image measure

(RΩ)]η =
∑
i

(RiΩ)]η.

After recalling some known results of (now) classical trace theory for L∞-divergence measure vector
fields, we show in Section 5.1 that the maps ti,±γ are Borel (Lemma 5.7), and give a representation of

the distributional trace as a countable sum of measures (Ti,±Ω )]η (Lemma 5.8); an example showing that
the trace in general is not absolutely convergent is given in Example 5.9. A consequence of this lack
of convergence is that (RΩ)]η is not a Lagrangian representation of ρ(1,b)Ld+1xΩ, since the balance of
the divergence is not true. By increasing the regularity of the vector field, one can obtain an absolutely
convergent sequence of measures representing the trace for Lipschitz sets: this is the case of BV or BD
vector fields, and this is studied in Section 5.2. After a trivial extension to L1(BDx)loc of the chain rule
for traces (Proposition 5.11), in Proposition 5.12 we show that (RΩ)]η is an absolutely convergent sum of
measures.

The main aim of this analysis is to identify two disjoint subsets A± of ∂Ω such that (Ti,±Ω )]η is
concentrated on A±: this is exactly the case of proper sets, and it is studied in Section 6. The key fact,
used several times in the section, is that the trace controls the flux of trajectories across ∂Ω: using the
perturbations Ωε of Section 4.2 one can further show that a weak differentiability holds, Corollary 6.6,
and finally that (RΩ)]η is a Lagrangian representation of ρ(1,b)Ld+1xΩ, Theorem 6.8. Further regularity
properties and stability w.r.t. perturbations are analyzed in Corollary 6.9 and Proposition 6.10.

This concludes Part 1, and next we begin with Part 2.

The starting point of Section 7 is to give a set of assumptions in a proper set Ω which implies uniqueness
up to a set of trajectories whose η-measure is controlled: this is mainly Assumption 7.1 of Section 7.1.
(See also Remark 7.5 for essentially equivalent conditions, Assumption 7.6). This uniqueness result is
divided into two propositions: in the first, Proposition 7.2, we control the trajectory which starts from the
same point of the boundary and subsequently bifurcate. In Proposition 7.3 instead we use transference
plans to control the amount of trajectories starting from two different points of ∂Ω and intersecting at
a later time. Example 7.4 shows that Proposition 7.2 is sharp, in the sense that in general one cannot
hope for a full control of transference plans π between ηin.
Restricting to the crossing trajectories, instead, it is possible to have such a control: indeed, Corollary
7.8 gives the estimate on the π-measure of trajectories starting from two different points and intersecting,
while at the expenses of o(1)µ−(Ω), Proposition 7.11 considers the other case. The final result is Theorem
7.14, which follows from the above two bounds and Kellerer’s duality results: it states that, after removing
a set of trajectories whose η-measure is explicitly controlled, the remaining curves are either disjoint or
one a subset of the other. For convenience, the analysis is performed first on perturbation of propers
sets, and then passed to the limit as shown in Theorem 7.15.

The next section, Section 8, addresses the problem of passing the local results obtained in Section
7 to a global estimate. From the estimates of Theorem 7.15, it is natural to introduce the untangling

functionals F
in

and f out, Definitions 8.1 and 8.2. The main result of Section 8.1 is their subadditivity,
Proposition 8.3. Lemma 8.4 gives a simple but useful estimate on their relationship.
Being the untangling functionals subadditive, it is natural to control their values with a measure: this
is exactly Assumption 8.5, Section 8.2. A standard covering argument yields Theorem 8.9, which is
the global version of Theorem 7.15. In the case the comparison measure can be made arbitrarily small
(which will be the case if Assumption 8.12 is satisfied) then Corollary 8.11 shows that the Lagrangian
representation η is untangled, Definition 8.10.
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The last section of this second part shows that if η is untangled then, as in the classical case, there
exists a partition of Rd+1 into trajectories of b (Proposition 9.1) such that the PDE div(ρ(1,b)) = µ can
be decomposed into ODEs on the characteristics (Proposition 9.3). The final result of Section 9.1 is the
existence of a partition via characteristics, Definition 9.4 and Theorem 9.5.
In the second part, Section 9.2, we prove how a partition via characteristics is the same in the class
ρ′ ∈ L∞(ρ), Theorem 9.6; this allows the explicit computation of the chain rule, performed in Proposition
9.8.

The last part, Part 3, shows that b ∈ L1
t (BVx)loc satisfies Assumption 8.12.

In Section 10, we exploit Coarea formula and Rank-One Theorem to show that it is possible to
approximate locally the singular part of Db with a measure concentrated on uniformly Lipschitz graphs,
Corollary 10.5. The proof of this fact is split into several steps (Propositions 10.2-10.3 and Corollary 10.4)
and relies ultimately on the properties of sets of finite perimeter, in particular the De Giorgi Rectifiability
Theorem. Using the Rank one property, the vector valued case is reduced to the previous analysis and
we obtain the desired decomposition in Corollary 10.5.

The key section is Section 11, where the explicit form of the local cylinders is exhibited. We have to
consider two cases.
In the absolutely continuous part of Db, Section 11.1, one compares the Lagrangian flow η with the linear
flow generated by a constant matrix A. In this case, the analysis is pretty much similar to the standard
renormalization estimates, giving in Proposition 11.1 the correct bounds.
The singular part (Section 11.2) is definitely more involved: the cylinders are constructed by solving a
PDE (equations (11.5)) using the approximate vector field constructed in the previous section. Lemma
11.2 guarantees that the Lipschitz regularity of sets is preserved in time, so that they can be used as
approximate cylinders of flows. Lemmata 11.3, 11.4 estimates the lateral flows of these cylinders and
yield Proposition 11.5, giving the correct bound for the singular case. We thus conclude with Theorem
11.6, which states that Assumption 8.12 holds for b ∈ L1

t (BVx)loc.
We collect in the last section, Section 12 the proof of Lemmata 11.3, 11.4.

1.5. Acknowledgements. The authors would like to thank the Center of Mathematical Sciences and
Applications (CMSA) of Harvard University and the Institut des Hautes Études Scientifiques (IHES)
where part of this work has been done. They are also grateful to Guido de Philippis for useful discussions.
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2. Notation

The aim of this section is to introduce some basic notation, used through the paper.
The real numbers will be denoted by R, the d-dimensional real vector space by Rd, and its norm by

| · |. In the following we will consider the space Rd+1, whose coordinates will be denoted by t time and x
space, with t ∈ R, x ∈ Rd.

The open ball in Rd centered in x with radius r is

Bdr (x) =
{
y : |y − x| < r

}
.

The unit sphere of dimension d will be denoted by Sd. Its Hd-measure is dωd, so that

Ld(Bdr (0)) = ωdr
d.

More generally, in a metric space X the ball centered in x ∈ X with radius r will denoted BXr (x), and
Br(x) when no confusion occurs about X. A generic open set in Rd will be Ω. The norm in a generic
Banach space will be denoted by ‖ · ‖, with an index referring to the space whenever some confusion may
occur.

The closure of a set A is denoted by closA, usually being clear the ambient topological space. The
relative closure of A in the topological space B is clos(A,B). The interior is similarly written as intA or
int(A,B), and the frontier Fr(A,B). In same cases (mainly for Ω ⊂ Rd) we will use the more standard
notation ∂Ω. We will say that A b B if closA is a compact set contained in B. A neighborhood of x ∈ X
will be written as Ux.

We denote the projection on the space X by pX : in general the product space X ×Y is clear from the
context, and sometimes we will also write pj :

∏
iXi → Xj as the projection on the j-component Xj . In

the product space X × Y , for all sets A we will use the notation

A(x) =
{
y : (x, y) ∈ A

}
, A(y) =

{
x : (x, y) ∈ A

}
.

We will be not very coherent when writing also A(x̄) = A ∩ {x = x̄} ⊂ X × Y , and A(x) = Ax ⊂ Y . If
A is a set, we will denote by 1A the characteristic function

1A(x) :=

{
1 x ∈ A,
0 x /∈ A.

We say that the family Aα is a covering of A if

A ⊂
⋃
α

Aα.

They are a partition if they are a disjoint covering, i.e. Aα ∩Aβ = ∅ for α 6= β.
By the bold letters we denote some particular vectors, e.g. b = (bi)

d
i=1 or n. For notational convenience,

we will write

xn = (x · n)n, x⊥n = x− xn.

Often we will identify each of these vectors with their subspace vectors, e.g. xn ' x · n. A generic
vector will be written as B: we will sometime use this notation when the particular structure of B is not
important. If the vector field b : Rd+1 → Rd is time dependent, then we will use either the notation b(t)
or bt.

A distribution f evaluated on a function ψ will be written asˆ
fψLd or 〈f, ψ〉.

The distributional partial derivatives of a function f will be written as ∂tft, ∂xif . The differential of
a smooth function f will be written as Df , and the divergence of a vector field b by div b. For time
dependent functions and vectors we will consider only space gradients and divergence,

Df(t) =
(
∂xifi(t, x1, . . . , xd)

)
i=1,...,d

, div b(t) =

d∑
i=1

∂xibi(t, x1, . . . , xd).
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If e is a unit vector, the derivative of b along e = (ei)
d
i=1 will be

Def =

d∑
i=1

ei∂if.

In general, we will use the same notation also for the distributional counterparts of Df , div bt, Def . The
space of functions f which belong BV(Bdr (0)) for every r > 0 is denoted by BVloc.

When the function is defined in a subset of the ambient space, the domain will be written as D(f),
while the range is R(f). The graph of a function f is denoted as Graph f , and the support of by supp f .

We will use the notation Ld for Lebesgue measure in Rd, Hd for the d-dimensional Hausdorff measure
and δx as the Dirac mass at x. For a generic signed Radon measure µ on Rd we will write |µ| as its
total variation. Given another Radon measure ν, the Radon-Nikodym derivative of ν w.r.t. the positive
measure µ ≥ 0 will be written as dν

dµ . We say that ν, µ are orthogonal and we write µ ⊥ ν if there exists

two disjoint sets A1, A2 such that A1 ∪ A2 = Rd and |µ|(A2) = |ν|(A1) = 0. The set of signed Radon
measures over X is denoted by M(X), the positive Radon measures with M+(X) and the bounded
Radon measures by Mb(X).

Usually the integral of a Borel function f w.r.t. a measure µ will be written (when it exists) asˆ
f µ

and in the case µ = Ld as ˆ
f Ld or

ˆ
f dx.

We will also use the standard notations L1(µ, Y ) (L∞(µ, Y )) for the space of functions with values in
Y Banach whose norm is µ-integrable (µ-essentially bounded), and C(X,Y ) for the space of continuous

functions. If X = Rd, Ck(Rd,Rd′) is the space of functions with continuous partial derivatives up to
order k. Whenever the measure µ = Ld and Y = R we will just write L1(Rd) (L∞(Rd)), and we add in
case the index loc to denote properties which holds locally, e.g. local integrability (local boundedness).
Sometimes, when the space Y is clear from the context, we use the notation L1(µ) (L∞(µ)).

The disintegration of a measure µ w.r.t. a partition {Aα}α will be written as

µ =

ˆ
µα f]µ(dα),

where f is the partition function, i.e. f−1(α) = Aα. Usually f is a projection.
The restriction of a measure µ to a set A will be written as µxA, and similarly for a function fxA.

Recall also the decomposition

ν =
dν

dµ
µ+ ν⊥,

where ν⊥ is orthogonal to µ. If ν⊥ = 0 then ν is a.c. w.r.t. µ and we will write ν � µ. When the
measure µ = Ld, then the first term will be denoted by νa.c. (either for the function or the measure).
Since all results in this paper are local in space-time, we will not distinguish between weak and narrow
convergence, and sometime we will just write weak (or weak∗) convergence of measures to denote both
of them.

For a Borel function f , set f]µ as the push-forward of µ through f , i.e. for g Borelˆ
g (f]µ) =

ˆ
(g ◦ f)µ,

where g ◦ f denotes the usual composition of the two functions f, g. Note that we will sometime avoid to
write the set of integration, being implicitly characterized by the measure w.r.t. we are integrating.

Given a point x ∈ Rd and r > 0, let frx be the rescaling of f about x ∈ Rd,

frx(y) := f(x+ ry).

For a measure µ, similarly we define µrx asˆ
f(y)µrx(dy) =

ˆ
f

(
x+

y − x
r

)
µ(dy).
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In the case of 1-dimensional BV functions f (or, in general, whenever the limits exist), we will write

f(x̄±) = lim
x→x̄

f(x)

for the right/left limit.
The average integral on a set will be written as 

A

f µ :=
1

µ(A)

ˆ
A

f µ.

A smooth positive function ϕ with compact support and Ld-integral equal to 1 will be called convolution

kernel. We will use the notation ϕε = ε−dϕ
1/ε
0 . A smooth test function will be denoted by ψ. We will

denote the convolution in Rd by ∗.
The notation φ is usually reserved to some particular functions, and will have some apex/index de-

pending on the case. The same for particular sets Q. Moreover, when Q ⊂ R × Rd, we will denote ∂lQ
the boundary of Q in the open set {t ∈ int(p1Q)}.

An open set Ω ⊂ Rd is said to be Lipschitz or Lipschitz regular if ∂Ω is Lipschitz : the latter means
that for every point x ∈ ∂Ω there exists a Lipschitz function ςx : Rd−1 ⊃ Ux → R and r > 0 such that in
a local coordinate system

∂Ω ∩Bdr (x) = Graph(id, ςx).

The notation id is for the identity function id(x) = x.
To conclude this section, we will use L for a scale constant, Cd for a dimensional constant and C for

a generic constant. If f is some function, we will write O(f) for a quantity equivalent to f or o(f) for
an infinitesimal quantity w.r.t. f : usually the point about where the limit are taken is clear from the
context. A negligible set (w.r.t. some given measure) is often denoted by N .

3. Preliminaries

In this section we recall some basic results concerning measure divergence vector fields, their represen-
tation as superimposition of curves [Smi94], duality for transportation problems [Kel84] and properties
of BV functions [AFP00].

Consider a vector field with compact support of the form

ρ(1,b) ∈ L1(Rd+1,Rd+1),

where
ρ : Rd+1 → R+, b : Rd+1 → Rd.

We assume moreover that it holds in the sense of distribution,

div(ρ(1,b)) = µ ∈M (Rd+1), (3.1)

which means that ρ(1,b) is a measure-divergence vector field. To avoid dealing with sets of Ld-negligible
measure, we will assume that ρ,b are defined pointwise as Borel functions.

An absolutely continuous curve γ : Iγ → Rd, where Iγ = (t−γ , t
+
γ ) is a time interval, is a characteristic

of the vector field ρ(1,b) if it solves the ODE

d

dt
γ(t) = b(t, γ(t)),

where the equivalence holds L1-a.e. in Iγ .

3.1. Lagrangian representations. We consider the space of curves γ: more precisely, let

Υ = {t1 < t2} × C(R,Rd),
and its subset made of characteristics

Γ =
{

(t1, t2, γ) ∈ Υ : γ characteristic in (t1, t2)
}
.

One can show that Γ is a Borel subset of Υ . We will often consider γ as defined in the interval Iγ =
(t−γ , t

+
γ ), i.e. γ = γx(t−,t+).

Definition 3.1. We say that a bounded, positive measure η ∈M+
b (Υ ) is a Lagrangian representation of

the vector field ρ(1,b)Ld+1 if the following conditions hold:
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(1) η is concentrated on the set Γ of absolutely continuous solutions to the ODE

γ̇(t) = b(t, γ(t)), (3.2)

which explicitly means for every s, t ∈ Iγ
ˆ
Γ

∣∣∣∣γ(t)− γ(s)−
ˆ t

s

b(τ, γ(τ)) dτ

∣∣∣∣ η(dγ) = 0;

(2) if (id, γ) : Iγ → Iγ × Rd denotes the map defined by t 7→ (t, γ(t)), then

ρ(1,b)Ld+1 =

ˆ
Γ

(id, γ)]
(
(1, γ̇)L1

)
η(dγ);

(3) we can decompose the divergence µ as local superposition of Dirac masses without cancellation,
i.e.

µ =

ˆ
Γ

[
δt−γ ,γ(t−γ )(dt, dx)− δt+γ ,γ(t+γ )(dt, dx)

]
η(dγ),

|µ| =
ˆ [

δt−γ ,γ(t−γ )(dt, dx) + δt+γ ,γ(t+γ )(dt, dx)
]
η(dγ),

where we recall that, for every γ, the interval in which it is a characteristic is denoted by (t−γ , t
+
γ ) =

Iγ .

The existence of such a measure η follows from the analysis of [Smi94], where the more general case of
1-dimensional normal currents is addressed (see [Smi94] for the classical results for currents in Euclidean
space and [PS12, PS13] for an extension to Ambrosio-Kirchheim currents): the only difference is the time
parametrization. Indeed, consider any curve τ 7→ (t(τ), γ(τ)) solving the normalized ODE (3.2),

dt

dτ
=

1

|(1,b)|
,

dγ

dτ
=

1

|(1,b)|
b(t(τ), γ(τ)) =

dt

dτ
b(t(τ), γ(τ)).

Define now s = s(t) as the inverse of the Lipschitz function t 7→ t(τ) (s is strictly increasing) then
t 7→ γ(s(t)) is continuous. From Coarea formula we deduce that the following change of variables holds:

ˆ t2

t1

|b(t, γ(s(t)))| dt =

ˆ s(t2)

s(t1)

|b(t(τ), γ(τ))| dt
dτ

dτ

so that in particular b(t, γ(s(t))) ∈ L1
loc (being η-a.e. of finite length) and again by Coarea without

modulus γ̇(s(t)) = b(t, γ(s(t)).
Observe that for all γ the interval of definition is a bounded time interval (recall that we assume

ρ(1,b)Ld+1 with compact support), so that if µ± is the positive/negative part of the divergence we can
disintegrate η according to

η =

ˆ
ηz µ

−(dz), µ± = (t±γ )]η. (3.3)

Notice that γ can be defined in the closed or open interval: adding or subtracting the end points does
not change the representation.Nevertheless, when we need to study some sets, we will consider the graph
of γ in the closed interval, i.e. with a slight abuse of notation

Graph γ = clos Graph γ. (3.4)

We remark finally that, by the first and second points of Definition 3.1, it follows that

ˆ
Γ

[ˆ
Iγ

|γ̇| L1

]
η(dγ) =

ˆ
Γ

[ˆ
Iγ

|b(t, γ(t))| dt
]
η(dγ) =

ˆ
ρ|b|Ld+1,

so that the total variation of η-a.e. curve is finite, and thus γ(t±γ ) ∈ Rd exists.
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3.2. Optimal transport and duality. In this section we recall some results contained in the paper
[Kel84]. Given finitely many finite measures µi ≥ 0 over Polish spaces Xi, define the set of admissible
transference plans Adm(µi) defined by

Adm(µi) =
{
π ≥ 0 : (pi)]π ≤ µi

}
⊂M+

(∏
i

Xi

)
.

Given a positive Borel function h ≥ 0, consider the following duality problem:

sup
Adm(µi)

ˆ
hπ = inf

{∑
i

ˆ
hi µi, hi Borel,

∑
i

hi ≥ h
}
. (3.5)

The following observations are fairly easy.

(1) One can get rid of the fact that the measures µi have different mass by adding an additional x̄i
point to Xi and putting a Dirac delta in xi of suitable mass. Extending h to

∏
iXi t {x̄i} by

putting h = 0 on the set ∪ip−1
i (x̄i), the values of the two sides of (3.5) is unchanged.

(2) Clearly the first side is maximized when (pi)]π = µi, because of the positivity of the measures.

We thus are in the setting considered by Kellerer, and we can thus state the following.

Theorem 3.2 (Theorems 2.14,2.12 of [Kel84]). The equality (3.5) holds if h is a Borel function, and the
infimum is actually a minimum.

Moreover, in the case of 2 factors X1, X2 and when h is a characteristic function, the infimum can be
restricted to Borel sets.

Proposition 3.3 (Proposition 3.3. of [Kel84]). If n = 2 and h = 1B, then the r.h.s. of (3.5) can be
replaced by

inf

{ ∑
i=1,2

µi(Bi), Bi Borel,
∑
i=1,2

1Bi ≥ 1B

}
,

and the minimum is attained.

3.3. BV and BD functions. For b ∈ L1
loc(Rd;Rd) we denote by Db = (Dib

j)i,j the derivative in the
sense of distributions of b, i.e. the Rd×d-valued distribution defined by

Dib
j(ϕ) :=

ˆ
Rd
bj
∂φ

∂xi
dx ∀φ ∈ C∞c (Ω), 1 ≤ i, j ≤ d.

Furthermore, we denote by Eb = (Eijb)ij the symmetric part of the distributional derivative of b, i.e.,

Eijb :=
1

2
(Dib

j +Djb
i), 1 ≤ i, j ≤ d.

Definition 3.4 (BV and BD functions). We say that b ∈ L1(Rd;Rd) has bounded variation in Rd, and
we write b ∈ BV(Rd;Rd) if Db is representable by a Rd×d-valued measure, still denoted with Db, with
finite total variation in Rd. We say that b ∈ L1(Rd;Rd) has bounded deformation in Rd, and we write
b ∈ BD(Rd), if Eijb is a Radon measure with finite total variation in Rd for any i, j = 1, . . . , d.

We now recall the following theorem.

Theorem 3.5 (Structure theorem for BV). If b : Rd → Rd is a BVloc vector field, then the measure Db
can be decomposed into three parts

Db = Da.c.b +Dsingb = Da.c.b +Dcantorb +Djumpb,

where

(1) Da.c.b is the a.c. part of Db w.r.t. Ld,
(2) Dsingb is the singular part of Db w.r.t. Ld,
(3) Djumpb is the (d-1)-rectifiable part, absolutely continuous w.r.t. to the Hd−1-measure concentrated

on the (d-1)-countably rectifiable set J ,
(4) Dcantorb is the residual part, orthogonal to the Lebesgue measure, and such that each set with

finite Hd−1-measure is Dcantorb-negligible.

The jump set J is determined by the following property.
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Proposition 3.6. The blow-up brx converges in L1 to the pure jump

b̄ =

{
b− x · n < 0,

b+ x · n > 0.
(3.6)

The existence of the approximate limits b± and of the normal vector n are part of the statement, and
n is determined up to a sign. In particular it follows that

lim
r→0

(Db)rx
rd−1

= (b+ − b−) nHd−1x{x·n=0}.

In the case of scalar functions f ∈ BV(Rd;R) the following Coarea formula holds. We denote the super

level sets by Eh := f−1((h,+∞)). In the case the function f needs to be specified, we will write Efh .

Theorem 3.7 (Coarea). It holds

|Df | =
ˆ
R
|D1Eh | L1(dh), Df =

ˆ
R
D1Eh L1(dh).

In the case of BV vector field b, we recall the following deep result, due to Alberti:

Theorem 3.8 (Alberti’s Rank-one). It holds

Db = M(x)|Da.c.b|+ n(x)⊗m(x)|Dsingb|.

In the following we will use the notation n and m to denote the two unit vectors in the rank-one
property. The matrix M(x) will denote the Radon-Nicodym derivative of the absolutely continuous part.
Note that from the orthogonality of the decomposition

|Da.c.b| = |Db|a.c., |Dcantorb| = |Db|cantor, |Djumpb| = |Db|jump.

3.3.1. Sets of finite perimeter. Let F ⊂ Rd: we will say it is of (locally) finite perimeter is the character-
istic function 1F ∈ BV(Rd;R) (resp. locally of bounded variation). We recall that the reduced boundary
∂?F of F is the set of points such that

lim
r↘0

|D1F |(Bdr (x))

rd−1
= ωd−1, lim

r↘0

D1F (Bdr (x))

|D1F |(Bdr (x)
= n(x),

where n(x) is the measure theoretical inner unit normal.

|D1F | = Hd−1x∂?F .

Furthermore, it holds

lim
r↘0

1

ωdrd
Ld
(
F ∩Bdr (x) ∩ {x · n(x) > 0}

)
= 1, lim

r↘0

1

ωdrd
Ld
(
F ∩Bdr (x) ∩ {x · n(x) < 0}

)
= 0.

We finally recall the following (see, for instance, [Zie89, Thm. 5.7.3]):

Theorem 3.9 (De Giorgi). If F ⊂ Rd is of locally finite perimeter, then ∂?F is countably Hd−1 rectifiable.
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Part 1

Proper sets, Lagrangian representations and traces

This part addresses to the following

Problem. Characterize the open sets Ω ⊂ Rd+1 such that, if η is a Lagrangian representation of
ρ(1,b)Ld+1 and RΩγ = γx(id,γ)−1(Ω) is the restriction to Ω of a trajectory, then (RΩ)]η is a Lagrangian

representation of ρ(1,b)Ld+1xΩ.

More precisely, setting

(id, γ)−1(Ω) =
⋃
i∈N

(ti,−γ , ti,+γ ), RiΩγ = γx(ti,−γ ,ti,+γ ),

we can define the quantity

(RΩ)]η =
∑
i∈N

(RiΩ)]η. (3.7)

In general, the series in (3.7) does not converge; nevertheless, for a fixed vector field ρ(1,b) it is possible to
give sufficient conditions on Ω such that (RΩ)]η is well defined and provides a Lagrangian representation
for ρ(1,b)Ld+1xΩ. The sets which enjoy this property will be called ρ(1,b)-proper sets and they can be
characterized by a strong trace approximation property.

The convergence of the series is indeed strongly related to the fact that it is possible to split the
boundary ∂Ω into two disjoint sets A± where the trajectories are only entering or only exiting. Whenever
the vector field has more regularity, one can relax the requests on proper sets: an important example is
the class of BD vector fields, where the set can be taken merely Lipschitz.

4. Proper sets and their perturbations

This section is divided in two parts.
In the first one we define a family of sets which have good trace properties for a given vector field of

the form ρ(1,b) ∈ L1(Rd+1,Rd+1): we call these sets ρ(1,b)-proper. Their main properties are that their
boundary ∂Ω is piecewise C1, it is made of Lebesgue points of ρ(1,b) and more importantly that the
measure ρ(1,b)Hdx∂Ω is the strict limit of the measures ρ(1,b) · ∇t,xφδ,±, where

φδ,+(x) = max

{
1− dist(x,Ω)

δ
, 0

}
, φδ,−(x) = min

{
dist(x,Rd+1 \ Ω)

δ
, 1

}
.

These conditions will be essential to show that ρ(1,b)Hdx∂Ω is actually measuring the flow of ρ(1,b)
across ∂Ω. Since these sets are used to test the vector fields, we will not consider the most general
definition: we just want to have sufficiently many sets for testing purposes, and we prefer to avoid
unnecessary technicalities.

In the second part of this section we perturb these sets in order to take advantage of the fact that the
vector field has the form (1,b): the idea is to have the inflow and outflow occurring on time-constant
hyperplanes, i.e. regions of the boundary ∂Ω such that their outer normal is n = (±1, 0). Also this step
is done to avoid some technical computations later on.

4.1. Definition and basic properties of ρ(1,b)-proper sets. We start by giving the following defi-
nition.

Definition 4.1 (Proper sets). An open, bounded set Ω ⊂ Rd+1 is called ρ(1,b)-proper if:

(1) ∂Ω has finite Hd-measure and it can be written as

∂Ω =
⋃
i∈N

Ui ∪N,

where N is a closed set with Hd(N) = 0 and {Ui}i∈N are countably many C1-hypersurfaces
such that the following holds: for every (t, x) ∈ Ui, there exists a ball Bd+1

r (t, x) such that
∂Ω ∩Bd+1

r (t, x) = Ui;
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(2) if the functions φδ,± are given by

φδ,+(t, x) := max

{
1− dist((t, x),Ω)

δ
, 0

}
, φδ,−(t, x) := min

{
dist((t, x),Rd+1 \ Ω)

δ
, 1

}
, (4.1)

then

lim
δ↘0
|ρ(1,b) · ∇φδ,±| Ld+1 = |ρ(1,b) · n|Hdx∂Ω, w?-Mb(Rd+1).

In the following we will write proper instead of ρ(1,b)-proper when there is no ambiguity about the
vector field.

Proposition 4.2. Proper sets enjoy the following properties:

(1) the Lebesgue value ρ(1,b) · nx∂Ω belongs to L1(Hdx∂Ω);
(2) it holds

lim
δ↘0

ρ(1,b) · ∇φδ,±Ld+1 = ρ(1,b) · nHdx∂Ω, w?-Mb(Rd+1);

(3) |µ|(∂Ω) = 0, where µ = divt,x(ρ(1,b)).

Proof. Point (1) follows from the well known fact that weakly convergent sequences are uniformly
bounded.

To prove Point (2), let ξ+ be a weak limit (up to subsequences) of the sequence ρ(1,b) · ∇φδ,+Ld+1

and notice that, due to the weak l.s.c. of the norm, it holds

|ξ+| ≤ |ρ(1,b) · n|Hdx∂Ω.

For notational convenience we will write ξ+Hdx∂Ω. It is thus enough to prove the statement locally inside
each set Ui for a fixed i: in particular, since the definition is invariant under C1-diffeomorphisms as it can
be easily checked, we can think Ω to be locally the set {s < 0} in some coordinate system (s, y) ∈ R×Rd.
For a ∈ R, m ∈ N set

Ema =
{
y ∈ Ui :

∣∣ρ(1,b)− a
∣∣ < 2−m

}
.

Using the fact that Ld-a.e. point y ∈ Ema is a Lebesgue for ρ(1,b) w.r.t. the measure Ld+1, for every ε
we can find r̄ > 0 and a compact subset Km

a ⊂ Ema such that Ld(Ema \Km
a ) < ε and for every y ∈ Km

a ,
0 < r < r̄ it holds

1

r

ˆ r

0

1

rd

ˆ
Bdr (y)

∣∣ρ(1,b)(y′, s)− a
∣∣ dy′ds < (1 + ε)2−m.

Now, by Besicovitch’ Theorem [AFP00, Theorem 2.17], we cover Ka with finitely many closed balls
Bdr (yj), j = 1, . . . , Nr, of radius r < r̄ such that

Nrr
d ≤ CdLd(Km

a ).

Then, since ∇φδ,+ ' (1, 0) by the C1-regularity of the boundary, we have that
ˆ
Ui×R

∣∣(ρ(1,b)(s, y)− a
)
· ∇φδ,+(s, y)

∣∣ dyds
≤ O(1)

Nr∑
i=1

1

r

ˆ r

0

ˆ
Bdr (yj)

∣∣ρ(1,b)(s, y)− a
∣∣ dyds

+
1

r

ˆ r

0

ˆ
Ui\

⋃
j B

d
r (yj)

∣∣(ρ(1,b)(s, y)− a
)
· ∇φδ,+(s, y)

∣∣ dyds
≤ O(2−m)Nrr

d +
O(1)

r

ˆ r

0

ˆ
Ui\Km

a

[∣∣ρ(1,b)(s, y) · ∇φδ,+(s, y)
∣∣+ |a|

]
dyds

≤ O(2−m)Ld(Km
a ) +

O(1)

r

ˆ r

0

ˆ
Ui\Km

a

[∣∣ρ(1,b)(s, y) · ∇φδ,+(s, y)
∣∣+ |a|

]
dyds.
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Passing to the limit in r one concludes that for a test function ψ whose support is in Ui × (−c, c) with
c < r̄ it holds∣∣∣∣ˆ

s=0

ψ(0, y) ξ+(y)Ld(dy)−
ˆ
s=0

ψ(0, y) a · nLd
∣∣∣∣

≤ ‖ψ‖∞ lim inf
δ↘0

ˆ
Ui×R

∣∣∣(ρ(1,b)(s, y)− a
)
· ∇φδ,+(s, y)

∣∣∣ dyds
≤ O(2−m‖ψ‖∞)Ld(Km

a ) + ‖ψ‖∞
ˆ
Ui\Km

a

[∣∣ρ(1,b)(0, y) · n(y)
∣∣+ |a|

]
dy.

By considering a sequence of ψ ≤ 1 converging to 1Km
a

and whose support is a subset of V open, V ⊃ Km
a ,

the above inequality gives that for every open set∣∣∣∣ˆ
Km

a

(
ξ+(y)− a · n

)
Ld(dy)

∣∣∣∣ ≤ O(2−m)Ld(Km
a ) +

ˆ
V \Km

a

[∣∣ρ(1,b)(0, y) · n(y)
∣∣+ |a|

]
dy.

Letting now V ↘ Km
a and then ε→ 0, we obtain that∣∣ξ+(y)− ρ(1,b)(0, y) · n

∣∣ ≤ Cd21−m Hd-a.e. on Km
a .

In particular the same holds in Ema , by inner regularity of Radon measures. In particular by letting
m→∞ we conclude that ξ+(y) = ρ(1,b) · n(y) for Hd-a.e. y ∈ V .
The proof for the other case is completely similar.

The last point is a consequence of the second, as it holds

ξ+ = ξ− = ρ(1,b) · nHdx∂Ω,

thus |µ|(∂Ω) = 0, where ξ− is the weak limit of the sequence ρ(1,b) · ∇φδ,− as δ ↘ 0. �

Remark 4.3. It is possible to provide a more general class of proper sets as follows: let f : Rd+1 → R be
a Lipschitz function whose level sets Eh = f−1((h,+∞)) are compact: assume that there exists a closed
set N ⊂ Rd+1, with Hd(N) = 0, such that f ∈ C1(Rd+1 \N) and ∇f 6= 0 in Rd+1 \N . By the Coarea
Formula (Theorem 3.7) and the local invertibility of C1-functions outside critical points, it follows that
for L1-a.e. h the set Eh satisfies Point (1) and Point (??).

Define now the functions

φδ,+h =

[
1− 1

δ
[h− f ]+

]+

, φδ,−h = min

{
1,

1

δ
[f − h]+

}
.

Condition (2) of Definition 4.1 is then replaced by

lim
δ↘0

∣∣ρ(1,b) · ∇φδ,±h
∣∣Ld+1 =

∣∣∣∣ρ(1,b) · ∇t,xf
|∇t,xf |

∣∣∣∣Hdx∂Eh . (4.2)

in the weak∗-convergence of measures.
Being the map

R 3 h 7→
∣∣∣∣ρ(1,b) · ∇t,xf

|∇t,xf |

∣∣∣∣Hdx∂Eh∈Mb(Rd+1)

an integrable map, it follows that by Lusin’s Theorem that (4.2) holds for L1-a.e. h.

Proof. We give a proof of the above statement since in our case it is quite straightforward. The general
case can be obtained by applying [Fre06, Theorem 4.18J].

Consider the finite measure m on R defined by

m(dh) =

(ˆ
∂Eh

∣∣∣∣ρ(1,b) · ∇t,xf
|∇t,xf |

∣∣∣∣Hd)L1(dh).

If ψn ∈ C0(Rd+1,R), n ∈ N, is a dense sequence of test functions, then by the standard Lusin’s Theorem
in R we obtain that up to an open set Nn such that m(Nn) < ε2−n the function

h 7→ dψn(h) :=

ˆ
∂Eh

∣∣∣∣ρ(1,b) · ∇t,xf
|∇t,xf |

∣∣∣∣ψnHd
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is continuous. By closure of the set {ψn}n, it follows that

h 7→ dψ(h) :=

ˆ
∂Eh

∣∣∣∣ρ(1,b) · ∇t,xf
|∇t,xf |

∣∣∣∣ψHd
is continuous in R \ ∪nNn, and being

dψ L1 ≤ ‖ψ‖∞m

it follows that every Lebesgue density point of R \∪nNn w.r.t. the measure m is a Lebesgue point of dψ.
Being L1(∪nNn) < ε, the conclusion follows. �

Remark 4.4. By means of the notion of trace introduced in following Section 5, it is also possible to
refine the definition of proper sets as follows:

Definition 4.5 (Inner proper sets). An open, bounded set Ω ⊂ Rd+1 is called ρ(1,b)-inner proper if:

(1) ∂Ω has finite Hd-measure and it can be written as

∂Ω =
⋃
i∈N

Ui ∪N,

where N is a closed set with Hd(N) = 0 and {Ui}i∈N are countably many C1-hypersurfaces
such that the following holds: for every (t, x) ∈ Ui, there exists a ball Bd+1

r (t, x) such that
∂Ω ∩Bd+1

r (t, x) = Ui;

(2) the distributional inner normal trace Trin(ρ(1,b),Ω) · n of the vector field ρ(1,b) is a measure
and satisfies

Trin
(
ρ(1,b),Ω

)
· n� Hdx∂Ω.

As in the next section, in this case we will denote the trace as

Trin
(
ρ(1,b),Ω

)
· nHdx∂Ω,

i.e. as a function in L1(Hdx∂Ω);
(3) if

φδ,−(x) := min

{
dist(x,Rd+1 \ Ω)

δ
, 1

}
, (4.3)

then

lim
δ↘0

∣∣ρ(1,b) · ∇φδ,−
∣∣Ld+1 =

∣∣Trin (ρ(1,b),Ω
)
· n
∣∣Hdx∂Ω, w?-Mb(Rd+1).

A similar definition for ρ(1,b)-outer proper, i.e. Rd+1 \ clos Ω is ρ(1,b)-inner proper. If the outer and
inner normal traces coincide and the boundary ∂Ω is made of Lebesgue points, then Ω is ρ(1,b)-proper:
it is fairly easy to construct an example showing that Condition (??) of Definition 4.1 is not implied by
being inner and outer regular.

Remark 4.6. One can extend the definition of proper sets to sets with Lipschitz boundary (i.e. locally
graph of Lipschitz functions), being the relevant quantities (i.e. Conditions (??), (2) of Definition 4.1)
still meaningful. Also the use of Lebesgue points on ∂Ω is not needed, one can just take ρ(1,b) · n as its
inner/outer trace.

The ρ(1,b)-proper sets are used for testing purposes, so requiring additional regularity is not a problem
when we can prove that there are sufficiently many of these sets.

To show that there are sufficiently many proper sets and to construct perturbations of these sets which
are particularly suited for the study of the distribution ρ(1,b)xΩ, we consider the following family of sets.
As usual we assume that b is a Borel function, hence defined everywhere.

Definition 4.7. For every fixed (t, x) ∈ Rd+1 and r, L > 0, the cylinder of center (t, x) and sizes r, L
(see Figure )is defined by

Cylr,Lt,x =
{

(τ, y) : |τ − t| ≤ Lr,
∣∣y − x− b(t, x)(τ − t)

∣∣ < r
}
.

We now show that almost all balls and cylinders are proper sets: indeed, we have the following
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(t, x)

b(t, x)

2r

2rL
x

t

Figure 4. The cylinder Cylr,Lt,x .

Lemma 4.8. For every (t, x) consider the family of balls {Bd+1
r (t, x)}r>0 and the family of cylinders

{Cylr,Lt,x }r>0 with L > 0 fixed. Then for L1-a.e. r > 0 the ball Bd+1
r (t, x) and the cylinder Cylr,Lt,x are

proper sets.

Proof. The statement is a consequence of Remark 4.3, respectively using the Lipschitz functions

(τ, y) 7→
∣∣(τ, y)− (t, x)

∣∣, (τ, y) 7→ max
{∣∣y − x− b(t, x)(τ − t)

∣∣, |τ − t|/L}. �

Proposition 4.9. If Ω1,Ω2 are proper sets with

Hd
(

Fr
(
∂Ω1 ∩ ∂Ω2, ∂Ω1 ∪ ∂Ω2

))
= 0, (4.4)

then Ω := Ω1 ∪ Ω2 is proper.

Proof. Clearly, the set Ω is piecewise C1 and the set of Lebesgue points of ρ(1,b) has full measure. It
remains to prove Condition (2) of Definition 4.1. We will study only φδ,+.

If φδ,+i is the function given by the first formula of (4.3) for Ωi, with i = 1, 2, observe that

φδ,+ = max
{
φδ,+1 , φδ,+2

}
and we write for any continuous function ψˆ ∣∣ρ(1,b) · ∇φδ,+

∣∣ψLd+1

=

[ ˆ
A1

+

ˆ
A2

+

ˆ
A3

]∣∣ρ(1,b) · ∇φδ,+
∣∣ψLd+1

=

ˆ
A1

|ρ(1,b) · ∇φδ,+1 |ψLd+1 +

ˆ
A2

|ρ(1,b) · ∇φδ,+2 |ψLd+1 +

ˆ
A3

|ρ(1,b) · ∇φδ,+|ψLd+1

where

A1 =
{

(t, x) : dist
(
(t, x),Ω1

)
< dist

(
(t, x),Ω2

)}
,

A2 =
{

(t, x) : dist
(
(t, x),Ω2

)
< dist

(
(t, x),Ω1

)}
,

A3 =
{

(t, x) : dist
(
(t, x),Ω1

)
= dist

(
(t, x),Ω2

)}
.

We prove that ˆ
A1

∣∣ρ(1,b) · ∇φδ,+1

∣∣ψLd+1 →
ˆ
∂Ω1\clos Ω2

∣∣ρ(1,b) · n
∣∣ψHd. (4.5)

Consider the set int(A1, ∂Ω) which is relatively open by definition, so that by l.s.c. of the weak convergence
on open sets we deduce∣∣ρ(1,b) · n

∣∣Hdxint(A1;∂Ω)≤ lim inf
δ→0

∣∣ρ(1,b) · ∇φδ,+1

∣∣Ld+1xA1
.
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On the other hand,
clos(A1, ∂Ω) ⊂ int(A1, ∂Ω) ∪ Fr(A3, ∂Ω)

and
Fr(A3, ∂Ω) = Fr(∂Ω1 ∩ ∂Ω2, ∂Ω) = Fr(∂Ω1 ∩ ∂Ω2, ∂Ω1 ∪ ∂Ω2).

Being the latter sets Hd-negligible (by assumption) and using the u.s.c. of the weak convergence on closed
set (clos(A1, ∂Ω) in this case), we get

lim sup
δ→0

∣∣ρ(1,b) · ∇φδ,+1

∣∣Ld+1xA1
≤
∣∣ρ(1,b) · n

∣∣Hdxclos(A1,∂Ω)

≤
∣∣ρ(1,b) · n

∣∣Hdxint(A1,∂Ω)∪Fr(A3,∂Ω)

=
∣∣ρ(1,b) · n

∣∣Hdxint(A1,∂Ω).

This gives (4.5).
The proof for A2 is analogous, i.e.ˆ

A2

∣∣ρ(1,b) · ∇φδ,+2

∣∣ψLd+1 →
ˆ
∂Ω2\clos Ω1

∣∣ρ(1,b) · n
∣∣ψHd. (4.6)

Finally it holds

φδ,+xintA3= φδ,+1 xintA3= φδ,+2 xintA3 ,

and then in a completely similar way for A3ˆ
intA3

∣∣ρ(1,b) · ∇φδ,+1

∣∣ψLd+1 →
ˆ
∂Ω3\Fr(∂Ω1∩∂Ω2,∂Ω)

∣∣ρ(1,b) · n
∣∣ψHd. (4.7)

Concerning the set of point on ∂A3, it follows that for δ � 1ˆ
∂A3

∣∣ρ(1,b) · ∇φδ,+
∣∣ψLd+1 ≤

ˆ
O

∣∣ρ(1,b) · ∇φδ,+1

∣∣ψLd+1,

where O is an open neighborhood in Rd+1 of Fr(∂Ω1 ∩ ∂Ω2, ∂Ω) containing the support of ψ. Hence

lim sup
δ→0

ˆ
∂A3

∣∣ρ(1,b) · ∇φδ,+
∣∣ψLd+1 ≤

ˆ
O∩∂Ω

∣∣ρ(1,b) · n
∣∣|ψ|Hd ≤ ‖ψ‖∞ ˆ

O∩∂Ω

∣∣ρ(1,b) · n
∣∣Hd,

and by the assumption on the Hd-negligibility of Fr(∂Ω1 ∩ ∂Ω2, ∂Ω) one obtains that this integral is
arbitrarily small. Adding (4.5), (4.6) and (4.7) the conclusion follows. �

The above proposition allows to construct sufficiently many proper sets for our purposes, starting from
Lemma 4.8.

Corollary 4.10. The finite union of proper balls and proper cylinders is proper.

Proof. Indeed their intersection has the property (4.4) by elementary geometry. �

4.2. Perturbation of proper sets. Let Ω ⊂ Rd+1 be a ρ(1,b)-proper set.

Lemma 4.11. For every ε > 0 there exist a compact set Kε ⊂ ∂Ω \ N and α > 0 with the following
properties:

(1) α−1 < ρ, |(1,b) · n| and ρ, |b| < α for Hd-a.e. (t, x) ∈ Kε;
(2) the remaining set has small normal trace, i.e.ˆ

∂Ω\Kε

ρ|(1,b) · n|Hd < ε.

Proof. It is enough to observe that

lim
α→+∞

ˆ
∂Ω∩{α−1<ρ,|(1,b)·n|}∩{ρ,|b|<α}

ρ(t, x)|(1,b(t, x)) · n|Hd(dtdx) =

ˆ
∂Ω

ρ|(1,b) · n|Hd,

since ρ|(1,b) · n| is an L1-function w.r.t. Hdx∂Ω and

∂Ω ⊂
{
ρ, |(1,b) · n|, |b| = 0

}
∪
⋃
α

{
α−1 < ρ, |(1,b) · n|

}
∩
{
ρ, |b| < α

}
being Borel functions. �
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By simple geometric manipulation, it follows that for r sufficiently small and L > 2α2 (L > α2 would
be enough for most of the theorems, but later we need some extra room) the cylinder

Cylr,Lt,x =
{

(τ, y) : |τ − t| < Lr,
∣∣y − x− b(t, x)(τ − t)

∣∣ < r
}

has top and bottom faces contained one inside Ω and the other outside, for every point in (t, x) ∈ Kε:
more precisely, if (1,b) · n > 0 then{

(t+ Lr, y) :
∣∣y − x− Lb(t, x)r

∣∣ < r
}
⊂ Rd+1 \ clos Ω, (4.8a){

(t− Lr, y) :
∣∣y − x+ Lb(t, x)r

∣∣ < r
}
⊂ Ω. (4.8b)

The opposite relations hold for (1,b) ·n < 0. Moreover, being ∂Ω of class C1 in a neighborhood of ∩Kε,
we have

Bd+1
r/L (t, x) ∩ ∂Ω ⊂ Cylr,Lt,x ∩ ∂Ω ⊂ Bd+1

Lr (t, x) ∩ ∂Ω, (4.9a)

Hd(∂Cylr,Lt,x ∩ ∂Ω) = 0, (4.9b)

again by simple geometrical arguments.
We now recall the following elementary

Lemma 4.12. If (t, x) is a Lebesgue point for ρ(1,b), then for every L > 0 fixed it holds

lim
r→0

1

r

ˆ r

0

[
1

rd

ˆ
∂Cylr,Lt,x

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣Hd−1(dy)dτ

]
ds = 0.

Proof. We have, using Fubini’s Theorem,

1

r

ˆ r

0

[
1

rd

ˆ
∂Cylr,Lt,x

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣Hd−1(dy)dτ

]
ds

=
1

r

ˆ r

0

[
1

rd

ˆ t+Lr

t−Lr

ˆ
∂Bdr (x−b(t,x)(τ−t))

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣Hd−1(dy)dτ

]
ds

=
1

rd+1

ˆ t+Lr

t−Lr

ˆ
Bdr (x−b(t,x)(τ−t))

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣dydτ

≤ 1

rd+1

ˆ
Bd

(1+L|b|(t,x))r
(t,x)

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣dydτ

= ωd+1(1 + L|b|(t, x))d+1

 
Bd

(1+L|b|(t,x))r
(t,x)

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣dydτ → 0,

since (t, x) is a Lebesgue point for ρ(1,b). This implies the statement. �

Using Lemma 4.8 and 4.12, we have that for every fixed ε′ > 0, for any (t, x) ∈ Kε Lebesgue point for
ρ(1,b), we can choose the r < ε′ such that:

• Cylr,Lt,x is proper;
• it holds

1

rd

ˆ t+Lr

t−Lr

ˆ
∂Bdr (x−b(t,x)(τ−t))

∣∣ρ(1,b)(τ, y)− ρ(1,b)(t, x)
∣∣Hd−1(dy)dτ < ε′; (4.10)

• conditions (4.8) hold;

• Cylr,Lt,x ∩ ∂Ω is equivalent to a ball and its boundary is Hd negligible, i.e. (4.9) hold.

In the following we will call a cylinder satisfying the above condition ρ(1,b)-proper (ε′,Ω)-regular cylinder,
or for brevity proper regular whenever the vector field ρ(1,b) and dependence on the ε′ or Ω is clear from
the context or not essential to the computation.

We can proceed further by observing that 0 is a Lebesgue density point for the set satisfying (4.10)
for all ε′ > 0. On the other hand, it is easy to see that the other three properties are verified L1-a.e. r.
We state it in the following lemma.
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Lemma 4.13. If (t, x) ∈ Kε is a Lebesgue point for ρ(1,b), the set of r such that Cylr,Lt,x satisfies the

above condition has 0 as a Lebesgue point w.r.t. the measure L1:

lim
r↘0

1

r
L1
({
r′ ∈ (0, r) : Cylr

′,L
t,x is proper (ε′,Ω)-regular

})
= 1.

Thus we obtain the following extension of Lemma 4.11:

Lemma 4.14. For every ε′ > 0, there exists r̄ > 0 and a compact set Kε,ε′

r̄ ⊂ Kε made of Lebesgue
points of ρ(1,b) such that

(1) α−1 < ρ, |(1,b) · n| and ρ, |b| < α for Hd-a.e. (t, x) ∈ Kε,ε′

r̄ ;
(2) the remaining set has small normal trace,ˆ

∂Ω\Kε,ε′
r̄

ρ|(1,b) · n|Hd < 2ε,

and for every (t, x) ∈ Kε,ε′

r̄ , r′ ≤ r̄ there exists a proper (ε′,Ω)-regular cylinder Cylr,Lt,x with r′/2 < r < r′.

By (4.9) we get the next proposition.

Proposition 4.15. For every r′ ≤ r̄, there exists a finite covering of Kε,ε′

r̄ with cylinders {Cylri,Lti,xi}
Nr′
i=1

with L > 2α2 and r′/2 < ri < r′, such that

• they are all proper (ε′,Ω)-regular,
• it holds

Nr′(r
′)d ≤ CdLdHd(Kε,ε′

r̄ )

and

Nr′∑
i=1

ˆ ti+Lri

ti−Lri

ˆ
∂Bdri

(xi−b(ti,xi)(t−ti))

∣∣ρ(1,b) · n
∣∣Hd ≤ (1 + α)Cdε

′LdHd(Kε,ε′

r̄ ). (4.11)

Proof. By Lemma 4.13 for every point of Kε,ε′

r̄ , r′ ≤ r̄ we can find cylinders Cylr,Lt,x which are proper sets
with r′/2 < r < r′ and by (4.9a) their intersection with ∂Ω is equivalent to balls (by the assumption

L > 2α2), so that by Besicovitch Theorem [AFP00, Theorem 2.17] we can take a covering {Cylri,Lti,xi}
Nr′
i=1

satisfying

2−dNr′

(
r′

L

)d
≤

Nr′∑
i=1

Hd
(
Cylri,Lti,xi ∩ ∂Ω

)
≤ CdHd(Kε,ε′

r̄ ),

with Cd constant depending only on the dimension. The constant Ld is a consequence of (4.9a). The
other claim follows from (4.10), because of the triangle inequality

ˆ ti+Lri

ti−Lri

ˆ
∂Bdri

(x−b(ti,xi)(t−ti))
ρ
∣∣(1,b) · n

∣∣Hd
≤
ˆ ti+Lri

ti−Lri

ˆ
∂Bdri

(x−b(ti,xi)(t−ti))
ρ(τ, x)

∣∣b(τ, x)− b(ti, xi)
∣∣Hd−1(dx)dτ

≤
ˆ ti+Lri

ti−Lri

ˆ
∂Bdri

(x−b(ti,xi)(t−ti))

∣∣ρ(τ, x)b(τ, x)− ρ(ti, xi)b(t, x)
∣∣Hd−1(dx)dτ

+ |b(ti, xi)|
ˆ ti+Lri

ti−Lri

ˆ
∂Bdri

(x−b(ti,xi)(t−ti))

∣∣ρ(t, x)− ρ(ti, xi)
∣∣Hd−1(dx)dτ

≤ (1 + α)ε′rdi . �

We thus obtain the main result of this section.

Theorem 4.16. For every ε > 0 there exists a proper set Ωε such that

(1) Ω ⊂ Ωε ⊂ Ω +Bd+1
ε (0);
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x

t

Ω

S2

S1

S−3
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3

S4

S4

∂Ω \Kε

Figure 5. Perturbation of the proper set Ω constructed in Theorem 4.16.

(2) if

∂Ωε1 =
{

(t, x) ∈ ∂Ωε : n = (1, 0) in a neigborhood of (t, x)
}
,

then ∂Ωε1 is made of Lebesgue points of ρ(1,b) and∣∣∣∣ˆ
∂Ωε1

ρHd −
ˆ
∂Ω

ρ[(1,b) · n]+Hd
∣∣∣∣ < ε;

(3) if

∂Ωε2 =
{

(t, x) ∈ ∂Ωε : n = (−1, 0) in a neigborhood of (t, x)
}
,

then ∂Ωε2 is made of Lebesgue points of ρ(1,b) and∣∣∣∣ˆ
∂Ωε2

ρHd −
ˆ
∂Ω

ρ[(1,b) · n]−Hd
∣∣∣∣ < ε.

Additionally to the fact that proper sets can be perturbed, the advantage of the perturbations con-
sidered here is that essentially all inflow and outflow of ρ(1,b) are occurring on open sets which are
contained in countably many time-flat hyperplanes (see 5). Due to the special form of the vector field,
many computations occurring in the next sections are greatly simplified.

Proof. First we find a compact set Kε/7 such that Properties (1), (2) of the statement of Lemma 4.11
hold for ε/7. By inner regularity of the measure Hd, we can further find two disjoint compact sets Kε/6,±

such that Kε/6 := Kε/6,+ ∪Kε/6,− satisfies again Lemma 4.11 but

(1,b) · nxKε/6,±≷ 0.

Choose ε′ such that

(1 + α)Cdε
′(2α)dHd(∂Ω) <

ε

3
.
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We apply Lemma 4.14 in order to obtain a a compact set K
ε/6,ε′

r̄ ⊂ Kε/6 such thatˆ
∂Ω\Kε/6,ε′

r̄

ρ|(1,b) · n|Hd < ε

3
.

Next, by Proposition 4.15 with

r′ <
dist(Kε/6,+,Kε/6,−)

2(1 + 2α2)
such that |µ|

(
(Ω +Bd+1

r′ (0)) \ Ω
)
<
ε

3
, (4.12)

we conclude that there exists a covering ofK
ε/6,ε′

r̄ with finitely many ε′-proper regular cylinders {Cylri,2α
2

ti,xi }
N ′r
i=1,

with r′/2 < ri < r′ such that (4.11) holds. By the choice (4.12) it follows that the covering of

Kε/6,+ ∩Kε/6,ε′

r̄ and Kε/6,− ∩Kε/6,ε′

r̄ are disjoint.
Define

Ωε := Ω ∪
⋃
i

Cylri,2α
2

ti,xi .

By Proposition 4.9 and Corollary 4.10 the set Ωε is proper and Point (1) is clearly satisfied.
To prove Point (2), partition the boundary of Ωε \ Ω as

∂(Ωε \ Ω) =

[
∂Ωε ∩

⋃
(ti,xi)∈Kε/6,+

{
(ti + 2α2Lri, y) :

∣∣y − xi − 2α2b(ti, xi)
∣∣ < ri

}]

∪
[
∂Ωε ∩

⋃
(ti,xi)∈Kε/6,−

{
(ti − 2α2Lri, y) :

∣∣y − xi + 2α2b(ti, xi)
∣∣ < ri

}]

∪
[
∂Ω ∩

⋃
(ti,xi)∈Kε/6,+

Cylri,2α
2

ti,xi

]
∪
[
∂Ω ∩

⋃
(ti,xi)∈Kε/6,−

Cylri,2α
2

ti,xi

]
∪ S4

= S1 ∪ S2 ∪ S+
3 ∪ S

−
3 ∪ S4.

(4.13)

The set S4 satisfies

S4 ⊂
⋃
i

∂lCylri,2α
2

ti,xi :=
⋃
i

{
(τ, y) : |τ − ti| ≤ 2α2ri,

∣∣y − xi − b(ti, xi)(τ − t)
∣∣ = ri

}
,

so that from (4.11) ˆ
S4

ρ
∣∣(1,b) · n

∣∣Hd ≤ (1 + α)Cdε
′LdHd(∂Ω) <

ε

3
, (4.14)

by the choice of ε′.

The balance of the equation divt,x(ρ(1,b)) = µ for the covering of K
ε/6,ε′

r̄ ∩Kε/6,+ and the continuity
property (4.12) give∣∣∣∣ˆ

S1

ρHd −
ˆ
S+

3

ρ[(1,b) · n]Hd
∣∣∣∣ ≤ ˆ

S4

ρ|(1,b) · n|Hd + |µ|(Ωε \ Ω) <
2ε

3

and, from the properties of K
ε/6,ε′

r̄ , we eventually get∣∣∣∣ˆ
S+

3

ρ(1,b) · nHd −
ˆ
ρ[(1,b) · n]+Hd

∣∣∣∣ ≤ ˆ
∂Ω\Kε/6,ε′

r̄

ρ|(1,b) · n|Hd < ε

3
.

This concludes the proof of Point (2) because S1 ⊂ ∂Ωε1.
The proof of Property (3) is similar and it is omitted. �

5. Lagrangian representations and flow traces

In this section we study the effect of the functional operation

ρ(1,b)Ld+1 7→ ρ(1,b)Ld+1xΩ,

where Ω ⊂ Rd+1 is an open set and

divt,x(ρ(1,b)) = µ ∈Mb(I × Rd),
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from the point of view of a Lagrangian representation η. We will show that there is a strong relation
between the map γ 7→ γx(id,γ)−1(Ω), the trace operator and the construction of a Lagrangian representation
for ρ(1,b)xΩ starting from a Lagrangian representation η for ρ(1,b).

In this section we first show how one can use η to represent the trace of ρ(1,b) as a (possibly non-
absolutely convergent) sum of measures. The structure of the series is strongly related to the fact that
(R)]η is a Lagrangian representation for ρ(1,b)Ld+1xΩ: indeed, as shown in the second part of this section,
this turns out to be true for a generic Lipschitz set if b ∈ L1

t (BDx)loc and ρ ∈ L∞loc (see Proposition 5.12).
This will be proved using a chain rule formula for traces of BD functions (proved in [ACM05]).

5.1. Flow traces. The first step is to show that, using Lagrangian representations, it is possible to
represent the normal trace over a generic closed set of a vector field B = ρ(1,b) ∈ L1

loc(Rd+1,Rd+1) with
measure divergence as a (non absolutely convergent) sum of signed measures. In the case of a compact set
Ω ⊂ Rd+1 with Lipschitz boundary and when b ∈ L1

t (BDx)loc, ρ ∈ L∞loc(Rd+1) the series turns out to be
strongly convergent and thus gives back the usual definition of trace as a measure (absolutely continuous
w.r.t Hdx∂Ω). For general measure divergence vector fields, the same conclusion can be obtained when
the set Ω is ρ(1,b)-proper, and it will be addressed in the next section.

We start by recalling some well known definitions.

5.1.1. Definition of normal traces. Let Ω ⊂ Rd+1 be an open set and let B : Ω → Rd+1 be a locally
integrable vector field with measure divergence, i.e.

B ∈ L1
loc(Rd+1,Rd+1), divt,xB ∈Mloc(Rd+1).

Definition 5.1. The inner normal trace of B over ∂Ω is the distribution denoted by Trin(B,Ω) · n and
defined by 〈

Trin(B,Ω) · n, ψ
〉

:=

ˆ
Ω

ψ(t, x) (divB)(dt, dx) +

ˆ
Ω

B · ∇t,xψ(t, x)Ld+1(dt, dx)

for every compactly supported smooth test function ψ ∈ C∞c (Rd+1). Similarly, we define the outer normal
trace by

Trout(B,Ω) · n := −Trin(B,Rd+1 \ clos Ω) · n. (5.1)

Notice that〈
Trout(B,Ω) · n, ψ

〉
−
〈
Trin(B,Ω) · n, ψ

〉
=

ˆ
∂Ω

ψ (divB) +

ˆ
∂Ω

B · ∇ψLd+1.

In particular they coincide if ∂Ω is negligible w.r.t. both Ld+1 and divB.

Remark 5.2. Observe that in general n is not well defined without further assumptions on the set Ω:
we use it only to keep the notation similar to the smooth case, where the value of B on ∂Ω is defined.
Later on we will show that in the case of a proper set it coincides with the unit outer normal, and

Trin/out(ρ(1,b),Ω) will be the Lebesgue value of the vector field on ∂Ω, both defined Hd-a.e..

5.1.2. Traces for regular sets and vector fields. If the domain Ω is sufficiently regular and if B ∈ L∞(Rd+1)
or B = ρB′, with ρ ∈ L∞(Rd+1) and B′ ∈ BDloc(Rd+1), there are well known results that allows to
characterize the trace. We list here the main ones and we refer for more details to [Anz83] and [DL07,
Chapter 7].

Proposition 5.3. If Ω is of class C1 and B ∈ L∞(Rd+1,Rd+1), divB ∈ Mloc(Rd+1), then there exists
a unique g ∈ L∞(Hdx∂Ω) such that〈

Trin(B,Ω) · n, ψ
〉

=

ˆ
∂Ω′

gψHd, ∀ψ ∈ C∞c (Rd+1).

Sometimes we will refer to g as Trin(B,Ω) ·n ∈ L∞(Hdx∂Ω), with a slight abuse of notation. We collect
here other important results on Anzellotti’s weak traces:

Proposition 5.4. Under the same assumptions of Proposition 5.3, it holds:

• divB � Hd as measures in Rd+1;
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• if Σ is a C1 hypersurface then

divBxΣ=
(
Trout(B,Ω) · n− Trin(B,Ω) · n

)
HdxΣ,

where Ω a set whose oriented boundary is Σ.

The orientation of Σ does not play a role in the second formula, because of (5.1). Finally, we recall
the following proposition.

Proposition 5.5 (Fubini’s Theorem for traces). Let B be as above and let f ∈ C1(Rd+1). Then

Trin(B, {f > t}) · n = B · nHdx∂{f>t} for L1-a.e. t ∈ R,
where n denotes the exterior unit normal to {F > t}.

We remark that in the above results one can replace C1 regularity with Lipschitz, see for example
[ACM05, Remark 6.3].

5.1.3. The non smooth setting. We now drop the assumption that Ω has a regular boundary and we
assume only that divB is a measure. We are going to prove (using Lagrangian representations) that the
traces Tr−(B,K) · n can be represented by a countable sum of Radon measures.

The case of one hitting time. To begin with, let us consider a simplified setting, i.e. assume that
|µ|(∂Ω) = 0 and that there exists a well defined map

T : Γ ⊃ D(T) → I × ∂Ω
γ 7→ T(γ) := (tγ , γ(tγ))

(5.2)

such that γ(tγ) the unique point along the trajectory belonging to ∂Ω with (for the orientation)

(id, γ)([t−γ , tγ)) ∈ Ω, (id, γ)((tγ , t
+
γ ]) ∈ [0, T ]× Rd+1 \ clos Ω.

We assume moreover that a Lagrangian representation η is concentrated on D(T). In this case, we can
prove the following

Proposition 5.6. The distributions Trin(B,Ω) · n and Trout(B,Ω) · n are induced by a measure, i.e.

Trin(B,Ω) · n = Trout(B,Ω) · n = T]η,

where T is the map defined in (5.2).

Proof. By a direct computation, for any test function ψ ∈ C∞c ((0, T )× Rd) it holds〈
Trin(B,K) · n, ψ

〉
=

ˆ
Ω

ψ divB +

ˆ
Ω

B · ∇ψLd+1

=

ˆ
Ω

ψ div(ρ(1,b)) +

ˆ
Ω

ρ(1,b) · ∇ψLd+1

=

ˆ
ψ(t−γ , γ(t−γ )) η(dγ) +

ˆ [ˆ tγ

t−γ

(1,b(t, γ(t))) · ∇t,xψ(t, γ(t)) dt

]
η(dγ)

=

ˆ
ψ(tγ , γ(tγ)) η(dγ),

where we have used that η is a Lagrangian representation of ρ(1,b). �

The general case: multiple hitting times. In the general case consider the open set

O :=
{

(t, γ) : γ ∈ Γ, (t, γ(t)) ∈ Ω
}
⊂ R× Γ.

and decompose it as

O =
⋃
i,j∈N

{
|t− ti| < ri

}
×
{
‖γ − γj‖C0 < rj

}
=
⋃
i,j,∈N

B1
ri(ti)×Brj (γj).

For γ ∈ Brj (γj) let (ti,−γ , ti,+γ ) be the connected component of (id, γ)−1(Ω) such that

ti ∈
(
ti,−γ , ti,+γ

)
.

It is elementary to show that ti,+γ is l.s.c. and ti,−γ is u.s.c. on Brj (γj). We thus conclude that
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Lemma 5.7. There exists countably many Borel functions

Di 3 γ 7→ ti,−γ , ti,+γ

such that
(id, γ)−1(Ω) = (t−γ , t

+,0
γ ) ∪ (t−,0γ , t+γ ) ∪

⋃
i

(ti,−γ , ti,+γ ),

where the first two intervals may be empty.

Proof. The only additional step is to relabel the intervals of (id, γ)−1(Ω) which contains the initial time
t−γ and the final time t+γ as t+,0γ , t−,0γ , respectively. By the topology of Υ this relabeling is still Borel. �

Trivially it holds for any test function ψ ∈ C∞ˆ
(id,γ)−1(Ω)

d

dt
ψ(t, γ(t)) dt =

[
ψ(t+,0γ , γ(t+,0γ ))− ψ(t−γ , γ(t−γ ))

]
+
[
ψ(t+γ , γ(t+γ ))− ψ(t−,0γ , γ(t−,0γ ))

]
+
∑
i

[
ψ(ti,+γ , γ(ti,+γ ))− ψ(ti,−γ , γ(ti,−γ ))

]
,

where the sum converges (as it is written) due to the estimate∣∣∣ψ(ti,+γ , γ(ti,+γ ))− ψ(ti,−γ , γ(ti,−γ ))
∣∣∣ ≤ ‖∇t,xψ‖∞((ti,+γ − ti,−γ

)
+
∣∣γ(ti,+γ )− γ(ti,−γ )

∣∣)
≤ ‖∇t,xψ‖∞

ˆ ti,+γ

ti,−γ

(
1 + |γ̇(s)|

)
ds.

(5.3)

It thus follows thatˆ
Ω

B · ∇t,xψLd+1 +

ˆ
Ω

ψ divB

=

ˆ [ ˆ
(id,γ)−1(Ω)

d

dt
ψ(t, γ(t)) dt

]
η(dγ)

+

ˆ [
ψ(t−γ , γ(t−γ ))χΩ(t−γ , γ(t−γ ))− ψ(t+γ , γ(t+γ ))χΩ(t+γ , γ(t+γ ))

]
η(dγ)

=

ˆ [(
ψ(t+,0γ , γ(t+,0γ ))− ψ(t−,0γ , γ(t−,0γ )) +

∑
i

[
ψ(ti,+γ , γ(ti,+γ ))− ψ(ti,−γ , γ(ti,−γ ))

]]
η(dγ).

Thanks to (5.3), we can partition the last sum asˆ ∑
i

[
ψ(ti,+γ , γ(ti,+γ ))− ψ(ti,−γ , γ(ti,−γ ))

]
η(dγ) =

∑
i

ˆ [
ψ(ti,+γ , γ(ti,+γ ))− ψ(ti,−γ , γ(ti,−γ ))

]
η(dγ)

=
∑
i

〈
(Ti,+Ω )]η − (Ti,−Ω )]η, ψ

〉
,

where
T
i,±
Ω : γ 7→ (ti,±γ , γ(ti,±γ )) ∈ ∂Ω. (5.4)

We thus have obtained the following lemma.

Lemma 5.8. The distributional trace of B = ρ(1,b) can be represented as the countable sum of measures
supported on ∂Ω, namely

Trin(ρ(1,b),Ω) · n =

N∑
i=0

(Ti,+Ω )]η − (Ti,−Ω )]η (5.5)

and the series convergences in the sense of distributions.

Define now the restriction operators RiΩ, RΩ as

RiΩγ := γx(t−i (γ),t+i (γ)), RΩγ =
{
RiΩγ

}
i
, (5.6)

and the measures ηiΩ as

ηiΩ := (RiΩ)]η. (5.7)

See Figure 6.
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Ω = B2
r (t, x)

γ

RΩγ

t1,−γ

t1,+γ

t2,−γ

t2,+γ

t3,+γ
t3,−γ

t+γ

t−γ

t

x ∈ R

Figure 6. Restriction operator RΩ in the case Ω is a ball B2
r (t, x). The curve γ (depicted

in black) is cut into the three red pieces which make up RΩγ.

It is clear that if

ρiΩ(1,b)Ld+1 :=

ˆ
(id, γ)]

(
(1, γ̇)L1

)
ηiΩ(dγ), (5.8)

then in Ω
ρ(1,b) =

∑
i

ρiΩ(1,b)

and
Trin(ρiΩ(1,b),Ω) = (Ti,+Ω )]η

i
Ω − (Ti,−Ω )]η

i
Ω = divt,x

(
ρiΩ(1,b)

)
.

We remark that even if for ηiΩ the series in (5.5) reduces to a finite sum of measures, the measure ηiΩ is
not in general a Lagrangian representation of ρiΩ(1,b), unless

(Ti,+Ω )]η
i
Ω ⊥ (Ti,−Ω )]η

i
Ω.

Example 5.9. One can construct a vector field b ∈ L∞(R3) supported in [−1, 0] × [0, 1]2) with the
following properties:

(1) it is divergence-free, smooth outside {x1 = 1} and of the form (1, b̃(x1, x
⊥)), (x,x

⊥) ∈ R× R2;

(2) the flow X̃ generated by the ODE

dX̃

dx1
= b(x1, X̃), X̃(−1, x⊥) = x⊥,

has the property that it can be extended by continuity to x1 = 0 and it holds

(X̃(0))]
(
L2x(0,1/2)×(0,1)

)
= (X̃(0))]

(
L2x(1/2,1)×(0,1)

)
=

1

2
L2x(0,1)2 .

The above assumptions yields that there exists a solution to

divx
(
ρ̃(1, b̃)

)
= 0

which is w∗-continuous in L∞ w.r.t. x1 and such that

ρ̃(−1, x⊥) = 1(1/2,1)×(0,1)(x
⊥)− 1(0,1/2)×(0,1)(x

⊥), ρ̃(x1 < 0) ∈ {−1, 1}, ρ̃(x1 > 0) = 0.
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An example of a construction can be found in [ACM05, Example 3.8], see also [Dep03].
Define the vector field

b(x1, x
⊥) = (ρ̃b̃)(x1, x

⊥),

so that it is divergence free, and its trace on {x1 = 0} is 0. In particular ρ− := 1{x1<0} is a solution to
divt,x(ρ(1,b)) = 0.

Let η− be a Lagrangian representation for ρ−(1,b): due to the uniqueness of X̄, the set of curves on
which η is concentrated is the set of curves such that, if tγ is the time where γ(tγ) ∈ {x1 = 0}, then

γ(t) =

{
X̄
(
1 + (t− tγ), x⊥,−γ

)
t < tγ ,

X̄
(
1− (t− tγ),−x⊥,+γ

)
t > tγ ,

with x⊥,−γ ∈ (1/2, 1)× (0, 1), x⊥,+γ ∈ (0, 1/2)× (0, 1).
If now we extend the vector field b to the region x1 > 0 by symmetry

b(x1, x
⊥) = −b(−x1, x

⊥),

then a Lagrangian representation η is obtained by adding η− with

η+ = S]η
−,

where S(γ) is the symmetric curve w.r.t. {x1 = 0},

S(γ)(t) = (−γ1, γ
⊥)(t).

Now we can construct a new Lagrangian representation η′ for the extended (1,b) by piecing together
the curves γ and S(γ) in order to let both cross the surface: more precisely, defining the maps

X̄
(
1 + (t− tγ), x⊥,−γ

)
t < tγ

X̄
(
1− (t− tγ),−x⊥,+γ

)
t > tγ

}
= γ 7→ G1(γ) =

{
X̄
(
1 + (t− tγ), x⊥,−γ

)
t < tγ

(−X̄, X̄⊥)
(
1− (t− tγ),−x⊥,+γ

)
t > tγ

X̄
(
1 + (t− tγ), x⊥,−γ

)
t < tγ

X̄
(
1− (t− tγ),−x⊥,+γ

)
t > tγ

}
= γ 7→ G2(γ) =

{
(−X̄, X̄⊥)

(
1 + (t− tγ), x⊥,−γ

)
t < tγ

X̄
(
1− (t− tγ),−x⊥,+γ

)
t > tγ

the Lagrangian representation is given by

η′ = (G1)]η
− + (G2)]η

−.

A simple computation yields for η′ it holds

(T0,+
{x1<0})]η

′ = (T0,−
{x1<0})]η

′ = ‖η′‖,

while being Trin(b, {x1 < 0}) · n = 0 both terms should be 0.

A small variation of the above example (i.e. letting the curves cross the surface several times) shows
that the sum (5.5) is diverging in the general case.

5.2. Bounded variation vector fields. Before considering a general vector fields ρ(1,b) ∈ L1
loc(Rd+1),

we improve the regularity of ρ, b so that the restriction operator RΩ preserves the property of being a
Lagrangian representation if Ω has a Lipschitz boundary.

Let Ω ⊂ Rd+1 be an open set with a Lipschitz boundary ∂Ω and assume that b ∈ (L1
loc)t((BDloc)x). Let

ρ ∈ L∞ be a positive solution to divt,x(ρ(1,b)) = µ and let η be an associated Lagrangian representation.
We recall that BD-functions b have a full inner trace on open sets Ω ⊂ Rd with Lipschitz boundary,

i.e. there exists a vector valued measure which is a.c. w.r.t. Hd−1x∂Ω, which we we will denote it by

Trin(b,Ω)Hd,

with a slight abuse of notation, and such that

lim
r↘0

 
Bdr (x)∩Ω

∣∣b(τ, y)− Trin(b,Ω)
∣∣ dy = 0.

for Hd-a.e. x ∈ ∂Ω (see [Bab15]). The following result holds (see [ACM05, Theorem 4.2] and subsequent
remarks).



36 STEFANO BIANCHINI AND PAOLO BONICATTO

Theorem 5.10 (Change of variables for traces). Let Ω ⊂ Rd+1 be an open domain with a Lipschitz
boundary and let β ∈ Lip(R). Then the trace of ρ(1,b) is a.c. w.r.t. Hdx∂Ω and

Trin
(
β(ρ)b,Ω

)
· n = β

(
Trin(ρb,Ω) · n
Trin(b,Ω) · n

)
Trin

(
b,Ω

)
· n Hd-a.e. on ∂Ω,

where the ratio is arbitrarily defined at points where the trace Trin(b,Ω) · n vanishes.

Again we have written Trin
(
β(ρ)b,Ω

)
· n as the density of the inner trace w.r.t. Hd, no confusion

should occur.
Consider now Ω ⊂ Rd+1 with Lipschitz boundary, and let n be the outer normal defined HdxΩ-a.e..

Then the following slight extension of the above theorem holds.

Proposition 5.11. The trace of the vector fields ρ(1,b) is a.c. w.r.t. Hdx∂Ω and

Trin
(
β(ρ)(1,b),Ω

)
· n = β

(
Trin(ρ(1,b),Ω) · n
Trin((1,b),Ω) · n

)
Trin

(
(1,b),Ω

)
Hd-a.e. on ∂Ω.

Proof. The proof proceeds as for the previous theorem, with some easy generalizations: we will only
sketch it. It is not restrictive to localize the problem in a large ball Bd+1

R (0, 0).
The fact that

Trin
(
(1,b),Ω

)
=

ˆ [
− ∂t1Ωxe1

]
Ld(dx) +

ˆ [
Trin(bt,Ωt)Hd−1x∂Ωt

]
dt� Hdx∂Ω

is a consequence of the linearity of trace, Fubini’s Theorem and Coarea Formula, while using the strong
convergence of traces for BD vector fields one can show that

Trin
(
ρ(1,b),Ω

)
· n = θTrin

(
(1,b),Ω

)
Hd,

with θ ∈ L∞(Hd) (actually ‖θ‖∞ ≤ ‖ρ‖∞). Recall that Ωt̄ = Ω ∩ {t = t̄}, Ωx̄ = Ω ∩ {x = x̄}.
Step 1. First note that by the classical computation for renormalized solutions it holds

∂tβ(ρ) + div
(
β(ρ)b

)
� |µ|+

ˆ
|Eb| dt,

with Eb the symmetric part of Db. Indeed, disintegrate

µ =

ˆ
µtm(dt), m = (pt)]|µ|,

and decompose m in its continuous mcont and atomic part matomic =
∑
imiδti . If ϕε ∈ C∞(Rd) is a

smooth compactly supported convolution kernel in Rd, then

∂ρε + div(ρb)ε =

ˆ
µεt m(dt),

where with the apex ε we mean the convolution with ϕε. The chain rule for one-dimensional BV functions
thus yields for β ∈ C1

∂tβ(ρε) + div
(
β(ρε)b

)
=

ˆ
β′(ρε(t))(µεt )m

cont(dt) +
∑
i

[
β
(
ρε(ti−) + ciµ

ε
ti

)
− β(ρε(ti−))

]
+ div

(
β(ρε)b

)
− β′(ρε)

(
div(ρb)

)ε
= µ̃ε + β(ρε) div b

+ β′(ρε)

ˆ
ρ(t, x− εy)

b(t, x)− b(t, x− εy)

ε
· ∇ϕ(y)Ld+1(dtdy),

with

µ̃ε =

ˆ
β′(ρε(t))(µεt )m

cont(dt) +
∑
i

(
β
[
ρε(ti−) + ciµ

ε
ti

)
− β(ρε(ti−))

]
.

Clearly |µ̃ε| ≤ ‖β′ ◦ ρ‖∞|µ|.
The last term of the r.h.s. is bounded by (assuming suppφε ⊂ Bd1 (0))

O(1)

ˆ
Bd1 (0)

∣∣∣∣bt(x)− bt(x− εy)

ε
· y
∣∣∣∣Ld(dy),
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which converges weakly to

O(1)

ˆ
|〈Ebtz, z〉| dt.

Since the constant depends only on ‖β′‖∞, the same estimate holds for β Lipschitz.
Step 2. The formula in the statement holds for ρ, b in W 1,1 ∩ L∞(Rd+1) by the strong continuity of

traces, so that it is enough to show that for all δ > 0 it is possible to extend ρ(1,b) in Rd+1 \ Ω with a
W 1,1 ∩ L∞-vector field (1,b′) and W 1,1 ∩ L∞-function ρ′ such that∥∥∥Trin (ρ′(1,b′),Rd+1 \ clos Ω

)
· n− Trin

(
ρ(1,b),Ω

)
· n
∥∥∥
L1(Hdx∂Ω)

< δ, (5.9a)∥∥∥Trin ((1,b′),Rd+1 \ clos Ω
)
− Trin

(
(1,b),Ω

)∥∥∥
L1(Hdx∂Ω)

< δ, (5.9b)

where the last formula means that the traces coincide as vectors, or equivalently in the sense of boundary
traces of BD functions.

Indeed, setting
ρ′′(1,b′′) := ρ(1,b)1Ω + ρ′(1,b′)1Rd\clos Ω,

by (5.9a) it follows that ∣∣ div
(
ρ′′(1,b′′)

)∣∣(∂Ω) < δ,

and (5.9b) yields that |Eb′′|(∂Ω) < δ. Thus by Step 1 the outer and inner trace of β(ρ)(1,b′′) differs
from the outer trace by O(1)δ in norm, where the W 1,1-computation can be performed. Letting δ → 0
and using a pointwise convergent subsequence ρ′,b′ in (5.9), one obtains the formula in the statement.

Step 3. Being Ω Lipschitz, it follows that for L1-a.e. t̄ ∈ R the set Ωt̄ is of Lipschitz regularity, and
thus by the surjectivity of traces of W 1,1 into L1 let b′t̄ be an extension on Rd \ Ωt̄ such that

Trin
(
b′, ∂(Rd \ clos Ωt)

)
= Trin

(
b, ∂Ωt

)
xTrin(b,∂Ωt)<2n L1-a.e. t.

By inspection of the proof of Gagliardo’s theorem [Gag57, Theorem 1.II], one can check that we can also
require that b′ ∈ L1

t,loc(BVx) ∩ L∞, because

Trin((1,b),Ω)xTrin(b,∂Ωt)<2n∈ L1
loc(Hdx∂Ω) ∩ L∞.

It is fairly easy to see from the definition of trace that (5.9b) holds.
Step 4. Being the function

θ =
Tr(ρ(1,b), ∂Ω)

Tr((1,b), ∂Ω)

in L∞(Hdx∂Ω), again by Gagliardo’s theorem there is w′ ∈W 1,1 ∩L∞(Rd+1 \Ω) such that (5.9a) holds.
Being b′ and ρ′ bounded functions, we are in the setting of Step 2 above. �

Using the above theorem we show that the restriction of a Lagrangian representation in the sense of
(5.6) is a Lagrangian representation of the vector field ρ(1,b)LdxΩ for vector fields in b ∈ L1

t (BDx) and
functions ρ ∈ L∞(Rd+1).

Proposition 5.12. The measure

(RΩ)]η :=
∑
i

ηiΩ =
∑
i

(RiΩ)]η

is a Lagrangian representation of ρ(1,b)Ld+1xΩ.

Proof. Let ρiΩ be defined as in (5.8); in particular, the distribution Trin(ρiΩ(1,b),Ω)·n is now representable

as sum of two Radon measures (Ti,±Ω )]η
i
Ω, being T

i,±
Ω defined as in (5.4).

By applying now Theorem 5.10 with β(·) = | · |, we deduce the following:

Trin
(
ρiΩ(1,b), ∂Ω

)
· n = Trin

(
|ρiΩ|(1,b), ∂Ω

)
· n =

∣∣∣∣Trin
(
ρiΩ(1,b), ∂Ω

)
· n

Trin
(
(1,b), ∂Ω

)
· n

∣∣∣∣Trin ((1,b), ∂Ω
)
· n

because ρiΩ ≥ 0. It thus follows that Trin(ρiΩ(1,b), ∂Ω) · n has the same sign of Trin((1,b), ∂Ω) · n, which

means that (Ti,±Ω )]η
i
Ω are orthogonal.

Hence there exists two disjoint Borel sets A± such that for all i ∈ N
Trin,±

(
ρiΩ(1,b), ∂Ω

)
· n =

(
(Ti,±Ω )]η

i
Ω

)
xA± ,
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where A± are determined by

Trin,±
(
(1,b), ∂Ω

)
· n = Trin

(
(1,b), ∂Ω

)
· nxA± ,

up to Trin((1,b), ∂Ω) · n-negligible sets. Here the apex ± means the positive/negative part of the trace.
Furthermore, repeating the argument for a finite sum of ηiΩ it follows

N∑
i

ρiΩ ≤ ρ,

and

N∑
i

Trin,±
(
ρiΩ(1,b), ∂Ω

)
· n =

N∑
i

Trin
(
ρiΩ(1,b), ∂Ω

)
· nxA±

=

( N∑
i

Trin
(
ρiΩ(1,b),Ω

)
· n
)
xA±

=

(
Trin

( N∑
i

ρiΩ(1,b),Ω

)
· n
)
xA±

= Trin,±
( N∑

i

ρiΩ(1,b),Ω

)
· n

≤ Trin,±
(
ρ(1,b),Ω

)
· n,

where we have used the monotonicity of the trace (consequence of Proposition 5.11). It follows that∑
i

Trin,±
(
ρiΩ(1,b),Ω

)
· n = Trin,±

(
ρ(1,b),Ω

)
· n < +∞,

where the equality follows from the weak convergence of the sum to the trace. �

Another consequence of Proposition 5.11 is the following (see also [ACM05, Theorem 6.2]. We consider
here the definition of inner proper, Definition 4.5, extended to Lipschitz sets as suggested in Remark 4.6.

Corollary 5.13. A Lipschitz open set Ω is inner proper for the vector fields ρ(1,b), with ρ ∈ L∞(Rd+1)
and b ∈ L1

t (BDx).

Proof. Indeed, the chain rule and the strong convergence of traces for BD vector fields yields that Con-
dition (3) of Definition 4.5 holds. �

6. Restriction operator R and proper sets

We now show that for generic vector fields ρ(1,b) ∈ L1
loc(Rd+1), if Ω is a ρ(1,b)-proper set, then the

reduction operator RΩ introduced in Proposition 5.12, namely

(RΩ)]η :=
∑
i

(RiΩ)]η, (6.1)

generates a Lagrangian representation of ρ(1,b)Ld+1xΩ. The idea of the proof is to show that there are
two disjoint sets where η-a.e. curve γ is only entering or exiting. We conclude this section with some
useful properties of the operator RΩ for proper sets.

We begin with the following elementary lemma.

Lemma 6.1. For every Lipschitz function 0 ≤ ψ ≤ 1 it holds

η
({
γ : Graph γ ∩ {ψ = 1} 6= ∅, Graph γ ∩ {ψ = 0} 6= ∅

})
≤
ˆ
ρ
∣∣(1,b) · ∇ψ

∣∣Ld+1.

Proof. Setting

A :=
{
γ : Graph γ ∩ {ψ = 1} 6= ∅, Graph γ ∩ {ψ = 0} 6= ∅

}
,
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one has for γ ∈ A ˆ t+γ

t−γ

∣∣(1,b) · ∇ψ
∣∣ dt = Tot.Var.ψ(γ) ≥ 1,

so that

η(A) ≤
ˆ
A

Tot.Var.
(
ψ ◦ γ

)
η(dγ) ≤

ˆ
ρ
∣∣(1,b) · ∇ψ

∣∣Ld+1

which concludes the proof. �

Applying Lemma 6.1 to a proper set Ω with the functions φδ,± and passing to the limit as δ → 0 we
obtain the following

Proposition 6.2. It holds

η
({
γ : Graph γ ∩ clos Ω 6= ∅,Graph γ ∩ Rd+1 \ clos Ω 6= ∅

})
≤
ˆ
∂Ω

ρ
∣∣(1,b) · n

∣∣Hd, (6.2)

and

η
({
γ : Graph γ ∩ Ω 6= ∅,Graph γ ∩ Rd+1 \ Ω 6= ∅

})
≤
ˆ
∂Ω

ρ
∣∣(1,b) · n

∣∣Hd. (6.3)

In particular, for every proper set we deduce that

η
({
γ : Graph γ ∩ ∂Ω 6= ∅,Graph γ * ∂Ω

})
≤ η

({
γ : Graph γ ∩ Ω 6= ∅,Graph γ ∩ Rd+1 \ Ω 6= ∅

})
+ η
({
γ : Graph γ ∩ clos Ω 6= ∅,Graph γ ∩ Rd+1 \ clos Ω 6= ∅

})
≤ 2

ˆ
∂Ω

ρ
∣∣(1,b) · n

∣∣Hd.
(6.4)

At the end of this section Corollary 6.9 gives that the constant 2 can be replaced with 1.

Let Ω be a proper set and let Ωε its perturbation constructed in Theorem 4.16: moreover, if Kε,ε′

r̄ ⊂ ∂Ω
is the compact set constructed in Lemma 4.11, w.l.o.g. we can assume that ρ(1,b)x

Kε,ε′
r̄

is continuous.

Recall the decomposition
∂
(
Ωε \ Ω

)
= S1 ∪ S2 ∪ S+

3 ∪ S
−
3 ∪ S4

given in (4.13), where S1, S2 are subset of finitely many hyperplanes {t = const}, and S4 is a subset of
the lateral faces of the cylinders given by Proposition 4.15.

Applying (6.4) to the lateral boundary of a cylinder

∂lCylri,2α
2

ti,xi =
{

(s, y) : |s− ti| ≤ 2α2ri, |y − xi − b(ti, xi)(s− ti)| = ri

}
,

and considering the trajectories restricted to

J iγ := [t−γ , t
+
γ ] ∩

[
ti − 2α2ri, ti + 2α2ri

]
,

we obtain

η
({
γ : Graph γ ∩ ∂lCylri,2α

2

ti,xi 6= ∅,Graph γ ∩ (J iγ × Rd) * ∂lCylri,2α
2

ti,xi

})
≤ η

({
γ : Graph γxJiγ∩Cylri,2α

2

ti,xi 6= ∅,Graph γxJiγ∩
(
Rd+1 \ Cylri,2α

2

ti,xi

)
6= ∅
})

+ η
({
γ : Graph γxJiγ∩ clos Cylri,2α

2

ti,xi 6= ∅,Graph γxJiγ∩
(
Rd+1 \ clos Cylri,2α

2

ti,xi

)
6= ∅

})
≤ 2

ˆ
∂Cyl

ri,2α
2

ti,xi

ρ
∣∣(1,b) · n

∣∣Hd.
(6.5)

Then we can prove the following.

Lemma 6.3. It holds

η
({
γ : Graph γ ∩ S4 6= ∅

})
≤ 2(1 + 2α)Cdε

′LdHd(∂Ω).
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Proof. We observe that{
γ : Graph γ ∩ S4 6= ∅

}
⊂
⋃
i

{
γ : Graph γxJiγ⊂ ∂

lCylri,2α
2

ti,xi

}
∪
{
γ : Graph γxJiγ∩∂

lCylri,2α
2

ti,xi 6= ∅,Graph γxJiγ∩
(
Rd+1 \ ∂lCylri,2α

2

ti,xi

)
6= ∅
}

The curves in the first set are curves are the ones which lie on the lateral boundaries of a cylinder for

a positive set of times: thus they have η measure 0 because Ld+1(∂lCylri,2α
2

ti,xi ) = 0 for every i ∈ N.
For the other set, the computation leading to (4.14) yields

η
(⋃

i

{
γ : Graph γxJiγ∩∂

lCylri,2α
2

ti,xi 6= ∅,Graph γxJiγ∩R
d+1 \ ∂lCylri,2α

2

ti,xi 6= ∅
})
≤ 2(1 + 2α)Cdε

′LdHd(∂Ω),

where we have used (6.5). �

We now estimate the flux across the region ∂Ω \Kε,ε′

r̄ .

Lemma 6.4. It holds for ε′ � 1

η
({
γ : Graph γ ∩ (∂Ω \Kε,ε′

r̄ )
})

< 5ε.

Proof. As before we observe that{
γ : Graph γ ∩

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

)
6= ∅
}

⊂
{
γ : Graph γ ⊂ ∂Ω \

⋃
i

Cylri,2α
2

ti,xi

}
∪
{
γ : Graph γ ∩ S4 6= ∅

}
∪
⋃
n∈N

{
γ : Graph γ ∩ ∂Ω \

⋃
i

Cylri,2α
2

ti,xi : Tot.Var.
(
φ2−n,+ ◦ γ

)
≥ 1

}
∪
⋃
n∈N

{
γ : Graph γ ∩ ∂Ω \

⋃
i

Cylri,2α
2

ti,xi : Tot.Var.
(
φ2−n,− ◦ γ

)
≥ 1

}
,

where the functions φ2−n,± have been introduced in (4.3).
For the first term, as in the proof of the previous lemma, we have that (having all curves in Γ a positive

length)

η

({
γ : γ ⊂ ∂Ω \

⋃
i

Cylri,2α
2

ti,xi

})
= η

({
γ : int

(
(id, γ)−1

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

))
6= ∅
})

= 0.

For the second term, by Lemma 6.3, we infer{
γ : Graph γ ∩ S4 6= ∅

}
≤ 2(1 + 2α)Cdε

′LdHd(∂Ω).

Finally, to settle the last terms we argue as in Proposition 4.9: using condition (4.9b) and the fact
that ∣∣ρ(1,b) ·

(
∇φ2−n,±)∣∣Ld+1 ⇀

∣∣ρ(1,b) · n
∣∣Hdx∂Ω,

we deduce that∣∣ρ(1,b) ·
(
∇φ2−n,±)∣∣Ld+1

(
Rd+1 \

⋃
i

Cylri,2α
2

ti,xi

)
→

ˆ
Rd+1\

⋃
i Cyl

ri,2α
2

ti,xi

∣∣ρ(1,b) · n
∣∣Hdx∂Ω.

Now we have ˆ
Rd+1\

⋃
i Cyl

ri,2α
2

ti,xi

∣∣ρ(1,b) · n
∣∣Hdx∂Ω≤

ˆ
∂Ω\Kε,ε′

r̄

∣∣ρ(1,b) · n
∣∣Hdx∂Ω< 2ε.
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Summing up, and using for the last term Lemma 6.1, we get

η

({
γ : Graph γ ∩

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

)})
≤ η

({
γ : Graph γ ∩ S4 6= ∅

})
+
∑
n∈N

η

({
γ : Graph γ ∩

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

)
: Tot.Var.

(
φ2−n,+ ◦ γ

)
≥ 1

})
+
∑
n∈N

η

({
γ : Graph γ ∩

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

)
: Tot.Var.

(
φ2−n,− ◦ γ

)
≥ 1

})
≤ 2(1 + 2α)Cdε

′LdHd(∂Ω) + 2

ˆ
∂Ω\Kε,ε′

r̄

|ρ(1,b) · n|Hdx∂Ω

≤ 2(1 + 2α)Cdε
′LdHd(∂Ω) + 4ε.

Choosing now ε′ � 1 we obtain that

η

({
γ : Graph γ ∩

(
∂Ω \

⋃
i

Cylri,2α
2

ti,xi

)
6= ∅
})
≤ 5ε.

Being a covering of Kε,ε′

r̄ we conclude that the statement holds. �

With the same tools we have also the following result.

Lemma 6.5. It holds∑
i

η
({
γ : ∃t, |s| ≤ α2ri :

(
γ(t) ∈ ∂Ω ∩ Cylri,2α

2

ti,xi ∧
∣∣γ(t+ s)− γ(t)− b(ti, xi)s

∣∣ > 4ri

)})
≤ (1 + α)Cdε

′(2α)2dHd(∂Ω).

Proof. By (half of) (6.3) we have

η
({
γ : Graph γxJiγ∩∂Ω ∩ Cylri,2α

2

ti,xi 6= ∅,Graph γxJiγ* Cylri,2α
2

ti,xi

})
≤
ˆ
∂Cyl

ri,2α
2

ti,xi

ρ
∣∣(1,b) · n

∣∣Hd.
Now, observe that{

γ : ∃t, |s| ≤ α2ri

(
γ(t) ∈ ∂Ω ∩ Cylri,2α

2

ti,xi ∧
∣∣γ(t+ s)− γ(t)− b(ti, xi)s

∣∣ ≥ 2ri

)}
⊆
{
γ : Graph γxJiγ∩∂Ω ∩ Cylri,2α

2

ti,xi 6= ∅,Graph γxJiγ* Cylri,α
2

ti,xi

}
.

Summing over i we get∑
i

η
({
γ : Graph γ ∩ ∂Ω ∩ Cylri,2α

2

ti,xi 6= ∅ : ∃|s| ≤ α2ri
(∣∣γ(t+ s)− γ(t)− b(ti, xi)s

∣∣ > 2ri
)})

≤
∑
i

ˆ
∂Cyl

ri,2α
2

ti,xi

ρ
∣∣(1,b) · n

∣∣Hd ≤ (1 + α)Cdε
′(2α)2dHd(∂Ω),

because of (4.11). �

From Lemma 6.5 we can prove the following weak differentiability of the curves:

Corollary 6.6. For all α > 0 it holds

lim
s→0

η

({
γ : γ(t) ∈ Kε,ε′

r̄ ,

∣∣∣∣γ(t+ s)− γ(t)

s
− b(t, γ(t))

∣∣∣∣ > 8

α2

})
= 0.

Proof. By Lemma 4.14, we can assume that s < r̄, and that there are regular cylinders in all points of

Kε,ε′

r̄ with radius r such that α2r
2 ≤ s ≤ α

2r. Then, using these cylinders for the covering {Cylri,2α
2

ti,xi }
Ns
i=1
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of Kε,ε′

r̄ ,{
γ : γ(t) ∈ Kε,ε′

r̄ ,

∣∣∣∣γ(t+ s)− γ(t)

s
− b(t, γ(t))

∣∣∣∣ > 8

α2

}
⊂

Ns⋃
i=0

{
γ : ∃t, α

2ri
2
≤ s ≤ α2ri :

(
γ(t) ∈ ∂Ω ∩ Cylri,2α

2

ti,xi ∧
∣∣γ(t+ s)− γ(t)− b(ti, xi)s

∣∣ > 4ri

)}
.

Applying Lemma 6.5 and then letting ε′ → 0 the proof is concluded. �

We now present the following proposition which plays the role of the first part of the proof of Propo-
sition 5.12. Recall the definition of the measures

ηiΩ = (RiΩ)]η, ρi(1,b)Ld+1 :=

ˆ
(id, γ)]

(
(1, γ̇)L1

)
ηiΩ(dγ),

given in (5.7), (5.8).

Proposition 6.7. If Ti,±Ω are the operators defined in (5.4), then it holds

(Ti,±Ω )]η
i
Ω ≤ ρ[(1,b) · n)]±Hdx∂Ω.

Proof. First of all observe that the results obtained in this section so far holds also for ηiΩ: indeed all
proofs depend only on the quantity ρ|(1,b) · n|, which is monotone in ρ.

By Lemma 6.4 it is enough to prove the statement in Kε,ε′

r̄ , and assume that the interval of definition
of γ has length at least 2τ . Hence for ri < τ/α2, up to a set of trajectories of ηiΩ-measure of the order of ε′

obtained by Lemma 6.3 when applied to Rd+1 \ clos Ω, all trajectories of ηiΩ starting from Kε,ε′

r̄ ∩Cylr,2α
2

t,x

exit the cylinder by crossing one of the flat bases. In particular we deduce that up to O(ε+ε′) trajectories,

(Ti,±Ω )]η
i
Ω is concentrated on Kε,ε′

r̄ ∩ {(1,b) · n ≷ 0}. Hence (Ti,±Ω )]η
i
Ω are orthogonal.

Since it holds

0 ≤
ˆ
ρi

(∣∣(1,b) · ∇t,xφδ,−
∣∣− (1,b) · ∇t,xφδ,−

)
Ld+1 ≤

ˆ
ρ
(∣∣(1,b) · ∇t,xφδ,−

∣∣− (1,b) · ∇t,xφδ,−
)
Ld+1,

using the weak convergence of ρ(1,b) · ∇t,xφδ,− and ρ|(1,b) · ∇t,xφδ,−| together with the fact ρi ≤ ρ we
obtain the statement. �

In particular the behavior (entering/exiting) of trajectories which crosses Ω does not depend on the
particular characteristic, but only on the sign of (1,b) · n. It follows from the trace analysis that the
same property of BD vector field holds also for proper sets.

Theorem 6.8. If Ω is a proper set, the restriction operator RΩ maps a Lagrangian representation of
ρ(1,b) to a Lagrangian representation of ρ(1,b)xΩ.

Proof. Using Proposition 6.7 we can define the sets

A± =
{

(t, x) ∈ ∂Ω : (1,b) · n(t, x) ≷ 0
}
.

Now it is sufficient to repeat the proof of Proposition 5.12. �

Corollary 6.9. A Lagrangian η of ρ(1,b)Ld+1 is concentrated on the set⋃
N∈N

{
γ : (id, γ)−1(Ω) =

N⋃
i=1

(
ti,−γ , ti,+γ

)
, (id, γ)−1(clos Ω) =

N⋃
i=1

[
ti,−γ , ti,+γ

]
with ti,+γ < ti+1,−

γ

}
.

Moreover, if ηε is a Lagrangian representation of ρ(1,b)Ld+1xΩε , then

lim
ε→0

ηε
({
γ : (id, γ)−1(Ω) is not an interval

})
= 0.

Proof. For the first part of the statement, observe that by the absolute convergence of the series
∑

(Ti,±Ω )]η
it follows that η is concentrated on the set⋃

N∈N

{
γ : (id, γ)−1(Ω) =

N⋃
i=1

(
ti,−γ , ti,+γ

)}
.
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On the other hand, since the set of curves which lie on ∂Ω for a positive amount of time is negligible, it
follows that

(id, γ)−1(clos Ω) =

N⋃
i=1

[
ti,−γ , ti,+γ

]
for η-a.e. curve such that (id, γ)−1(Ω) is made of finitely many open intervals. Finally, by Corollary 6.6
the set of curves which have ti,−γ = ti+1,−

γ is negligible.
The second part of the statement follows by observing that if a curve γ is such that Graph γ ∈ Ωε and

(id, γ)−1(Ω) is not an interval, then up to a measure of order ε′ it must re-enter in Ω (re-exit from Ω) in

the same cylinder Cylri,2α
2

ti,xi where it just exited (entered). By Proposition 6.7, this is controlled by the

entering (exiting) flow in a neighborhood of Kε,ε′

r̄ ∩ {(1,b) > 0}, this can be made arbitrarily small as
ε→ 0. �

To end this section we present the following

Proposition 6.10. Let Ω ⊂ Rd+1 be a proper set and N ⊂ Γ a Borel set. It holds

η
({
γ : ∃i s.t. RiΩγ = γx(ti−γ ,ti+γ )∈ N

})
≤ (RΩ)]η(N).

Proof. Let Ñ be the set given by

Ñ :=
{

(γ, i) ∈ Γ × N : RiΩγ = γx(ti−γ ,ti+γ )∈ N
}
,

which is a Borel set because the map RiΩ is Borel (see Lemma 5.7). Let

π1(Ñ) 3 γ 7→ i(γ)

be a Borel selection which exists because Ñ is countable union of Borel graphs. We estimate by using
the definition of RΩ

(RΩ)]η(N) =
∑
j

(RjΩ)]η(N)

≥
∑
j

(RjΩ)]η({γ : i(γ) = j})

=
∑
j

η({γ : i(γ) = j})

= η(π1(Ñ)). �

Together with Corollary 6.9 we deduce

Corollary 6.11. For all N ⊂ Γ is holds

lim
ε↘0

(RΩε)]η
({
γ : ∃i s.t. RiΩεγ ∈ N

})
= (RΩ)]η(N). (6.6)

Proof. Just observe that the equality in (6.6) above holds when (id, γ)−1(Ω) is a single interval, and apply
Corollary 6.9. �
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Part 2

Cylinders of approximate flow and untangling of
trajectories

This part deals with the main result of the paper:

give a local condition on the vector field in order to construct a partition of Rd+1 into disjoint trajectories
such that η-a.e. γ is a subset of these curves.

We call this property untangling : it is stronger than uniqueness for initial data at some given time t̄ (even
if it can be deduced from this uniqueness by the analysis below), because it implies that no crossings occur
on “bad” sets (i.e. non rectifiable, Cantor-like, in general sets on which one cannot assign meaningful
initial data).

The condition we give is quite general, and can be adapted to the particular case under consideration: it
can be resumed by saying that we control the measure of trajectories entering and exiting from arbitrarily
small cylinders around η-a.e. trajectory γ in terms of the Ld-measure of their base. This yields a control
of the amount of trajectories which bifurcate in the future or in the past from another given trajectory,
and it can be nicely expressed in terms of transference plans.

A duality result yields that a control on the flow across the boundary of these cylinders implies an
estimate of the amount of trajectories which have a common point but are not subsets of a unique
trajectory. This leads to the introduction of the untangling functional, which measures the minimal
amount of trajectories one has to remove in order to obtain a disjoint set of trajectories such that η-a.e.
γ is a subset of these. This functional turns out to be subadditive, allowing a natural condition in order
to extend a local estimate to a global one.

The last part shows that in the case of untangling the structure of the representation allows the
complete description of the disintegration of the PDE, in particular the computation of the chain rule.

7. Cylinders of approximate flow

7.1. Cylinders of approximate flow and transference plans. Consider a proper set Ω ⊂ Rd+1, and
let Ωε be the pertubed set constructed in Theorem 4.16. For convenience, in the first part of this section we
will drop the index ε and refer to Ωε directly as Ω. Furthermore, η will denote a Lagrangian representation
of div(ρ(1,b)) = µ in Ω (which can be taken as the restriction of a Lagrangian representation in Rd+1,
in view of Theorem 6.8).

Recall that the set S1 is defined in (4.13), so that essentially all inflow and outflow of ρ(1,b) are
occurring on open sets which are contained in finitely many time-flat hyperplanes {t = ti}. We can
assume without loss of generality that pt(S1) ⊂ {{t = ti} is locally proper}. Define now

ηin :=

ˆ
S1

ηin
z ρ(z)Hd(dz) = ηx{Graph γ∩S1 6=∅},

according to (3.3).
We assume that the following.

Assumption 7.1. There are constants M, $ > 0 and a family of functions {φ`γ}`>0,γ∈Γ such that:

(1) for every γ ∈ Γ, ` ∈ R+, the function φ`γ : [t−γ , t
+
γ ]× Rd → [0, 1] is Lipschitz;

(2) for t ∈ [t−γ , t
+
γ ], x ∈ Rd

1γ(t)+Bd
`/M

(0)(x) ≤ φ`γ(t, x) ≤ 1γ(t)+Bd
M`(0)(x);

(3) it holds
ˆ {

1

σ(φ`γ(t−γ ))

ˆ t+γ

t−γ

[ˆ
ρ(t)

∣∣(1,b) · ∇φ`γ(t)
∣∣Ld] dt} ηin(dγ) ≤ $, (7.1)

where

σ(f(t)) =

ˆ
f(t, x)ρ(t, x)Ld(dx), (7.2)

for every t ∈ p1(S1).
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t
z = φ`γ

t+γ

x

γ

Figure 7. A cylinder of approximate flow φ`γ .

From now onwards we will often refer to the family of functions {φ`γ}`>0,γ∈Γ as cylinders of approximate

flow : indeed, if γ is a characteristic of the vector field b, the function φ`γ can be thought as generalized,
smoothed cylinder centered at γ (see Fig. 7). In particular, Point (3) is saying that the flow through the
“lateral boundary of the cylinder” is controlled by the quantity $.

Introduce the set

W := W1 ∪W2 ⊂ Γ × Γ
where W1 is the open set

W1 :=
{

(γ, γ′) : Graph γ ∩Graph γ′ = ∅
}
,

while W2 is the closed set

W2 :=
{

(γ, γ′) : Graph γ ∩Graph γ′ = Graph
(
γx[max{t−γ ,t−γ′},min{t+γ ,t+γ′}]

)}
.

Thus the set W is a Borel set (we recall that Graph γ is the set of points (t, γ(t)) for t in the closed
interval [t−γ , t

+
γ ], see (3.4)).

Proposition 7.2. Under Assumption 7.1, it holdsˆ
S1

ηin
z ⊗ ηin

z (Γ 2 \W2)ρ(z)Hd(dz) ≤ $.

Proof. We split the proof in several steps.
Step 1. For fixed ` > 0 and γ ∈ Γ we introduce the following set

E`γ :=
{
γ′ : Graph γ′x[t−γ ,t+γ ]* suppφ`γ

}
⊂ Γ

and consider the functional

Φ`exit(γ) :=

ˆ
S1∩{t=t−γ }

ηin
z′
(
E`γ
)
φ`γ(t−γ , z

′)ρ(z′)Hd(dz′).

This functional computes the weighted amount of curves γ′ starting inside suppφ`γ ∩S1 and exiting from
the cylinder.
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Noticing that

Tot.Var.
(
φ`γ ◦ γ′x[t−γ ,t+γ ]

)
≥ φ`γ(z′) when γ′(t−γ = t−γ′) = z′, Graph γ′x[t−γ ,t+γ ]* suppφ`γ ,

we have

Φ`exit(γ) =

ˆ
S1∩{t=t−γ }

ηin
z′
(
E`γ
)
φ`γ(z′)ρ(z′)Hd(dz′)

=

ˆ
{γ′: t−γ =t−

γ′ ,Graph γ′x
[t
−
γ ,t

+
γ ]

*suppφ`γ ,φ
`
γ(γ′(t−

γ′ ))>0}
φ`γ
(
t−γ′ , γ

′(t−γ′)
)
ηin(dγ′)

≤
ˆ
{γ′: t−γ =t−

γ′ ,Graph γ′x
[t
−
γ ,t

+
γ ]

*suppφ`γ ,φ
`
γ(γ′(t−

γ′ ))>0}
Tot.Var.

(
φ`γ ◦ γ′x[t−γ ,t+γ ]

)
ηin(dγ′)

≤
ˆ

Tot.Var.
(
φ`γ ◦ γ′x[t−γ ,t+γ ]

)
η(dγ′)

≤
ˆ t+γ

t−γ

[ˆ
ρ(t, x)

∣∣(1,b)(t, x) · ∇t,xφ`γ(t, x)
∣∣Ld(dx)

]
dt,

so that using Point (3), we deduce
ˆ
Γ

1

σ(φ`γ(t−γ ))
Φ`exit(γ) ηin(dγ) ≤ $.

Step 2. Consider now a sequence `i → 0 such that

φ`iγ ≥ φ`i+1
γ . (7.3)

Due to Point (2), Assumption 7.1 this can be achieved if

`i+1 ≤
`i
M2
,

because with this choice

suppφ`i+1
γ (t) ⊂ γ(t) +BdM`i+1

⊂ γ(t) +Bd`i/M ⊂
{
φ`iγ (t) = 1

}
. (7.4)

Step 3. Thanks to the choice of the sequence `i in Step 2, we can estimate for j < i

$ ≥
ˆ

1

σ(φ
`j
γ (t−γ ))

Φ
`j
exit(γ) ηin(dγ)

=

ˆ
1

σ(φ
`j
γ (t−γ ))

{ˆ
S1∩{t=t−γ }

ηin
z′
(
E`jγ
)
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ)

(E`iγ ⊂ E`jγ ) ≥
ˆ

1

σ(φ
`j
γ (t−γ ))

{ˆ
S1∩{t=t−γ }

ηin
z′
(
E`iγ
)
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ).

Now, for fixed i, we pass to the limit as j → +∞ and we observe that

1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

ηin
z φ

`j
γ (z)ρ(z)Hd(dz) ⇀ ηin

γ(t−γ )
weakly∗

in duality w.r.t. continuous, bounded functions for ηin-a.e. γ. This follows from the fact that ρHd-a.e.
z′ ∈ S1 is a Lebesgue point for the map z′ 7→ ηin

z′ and the set of γ starting in a negligible set in S1 is
ηin negligible. Notice that for every i ∈ N the set E`iγ is open, so that thanks to the l.s.c. of the weak
convergence on open sets, we have

ηin
γ(t−γ )

(
E`iγ
)
≤ lim inf

j→∞

1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

φ`jγ (z′)ηz′
(
E`iγ
)
ρ(z′)Hd(dz′).
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Step 4. Using Fatou’s Lemma, we conclude that

$ ≥ lim inf
j→∞

ˆ
S1

{ ˆ
1

σ(φ
`j
γ (t−γ ))

[ˆ
suppφ

`j
γ (t−γ )

φ`jγ (z)ηz(E
`i
γ )ρ(z)Hd(dz)

]
ηz′(dγ)

}
ρ(z′)Hd(dz′)

≥
ˆ
S1

{ˆ
lim inf

j

1

σ(φ
`j
γ (t−γ ))

[ˆ
suppφ

`j
γ (t−γ )

φ`jγ (z)ηz(E
`i
γ )ρ(z)Hd(dz)

]
ηz′(dγ)

}
ρ(z′)Hd(dz′)

≥
ˆ
S1

{ˆ
ηz′(E

`i
γ ) ηz′(dγ)

}
ρ(z′)Hd(dz′)

=

ˆ
S1

ηz′ ⊗ ηz′
({

(γ, γ′) : γ′ ∈ E`iγ
})
ρ(z′)Hd(dz′).

(7.5)

Observe now that when i→∞ {
(γ, γ′) : γ′ ∈ E`iγ

}
↗ Γ 2 \W2.

By the Monotone Convergence Theorem, we then concludeˆ
S1

ηz′ ⊗ ηz′(Γ 2 \W2)ρ(z′)Hd(dz′) = lim
i

ˆ
S1

ηz′ ⊗ ηz′
({

(γ, γ′) : γ′ ∈ E`iγ
})
ρ(z′)Hd(dz′) ≤ $,

which concludes the proof. �

To analyze the trajectories which are entering into the cylinder φγ` , we have to introduce a new object.
Let π ∈ Adm(ηin, η) be an admissible plan between the measures ηin and η: this means that

(p1)]π = g1η
in, (p2)]π = g2η,

with 0 ≤ g1, g2 ≤ 1 are Borel functions. Observe that by disintegration we have

π =

ˆ
πγ η

in(dγ) =

ˆ
S1

[ˆ
πγ η

in
z (dγ)

]
ρ(z)Hd(dz),

with ‖πγ‖ = g1(γ), and similarly for the disintegration w.r.t. the second marginal η.
The following proposition is the analogue of Proposition 7.2 for the plan π.

Proposition 7.3. Under Assumption 7.1, it holdsˆ {ˆ
πγ′
({

(γ′, γ′′) : γ′′(t−γ′′) /∈ Graph γ,
(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2\W1

})
ηin
z ⊗ηin

z (dγdγ′)

}
ρ(z)Hd(dz) ≤ $.

Proof. We split the proof in several steps.
Step 1. For fixed ` > 0 and γ ∈ Γ we introduce the following set

A`γ :=
{

(γ′, γ′′) : φ`γ(γ′′(max{t−γ′′ , t
−
γ })) = 0,

(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2 \W1

}
, (7.6)

and consider the functional

Φ`enter(γ) :=

ˆ
S1∩{t=t−γ }

[ ˆ
πγ′(A

`
γ) ηin

z′ (dγ
′)

]
φ`γ(z′)ρ(z′)Hd(dz′).

This integral computes the weighted amount of curves γ′′ starting outside the cylinder φ`γ and touching

a curve γ′ which starts inside the cylinder in the time interval [t−γ , t
+
γ ].

We observe that for every (γ′, γ′′) ∈ A`γ it holds

Tot.Var.(φ`γ ◦ γ′x[t−γ ,t+γ ]) + Tot.Var.(φ`γ ◦ γ′′x[t−γ ,t+γ ]) ≥ φ
`
γ(z′), when γ′(t−γ′ = t−γ ) = z′. (7.7)

Then we have, by integration,

Φ`enter(γ) =

ˆ
S1∩{t=t−γ }

[ ˆ
πγ′(A

`
γ) ηin

z′ (dγ
′)

]
φ`γ(z′)ρ(z′)Hd(dz′)

=

ˆ
A`γ∩{(γ′,γ′′): t

−
γ =t−

γ′}
φ`γ(γ′(t−γ′))π(dγ′dγ′′)

=

ˆ
A`γ∩{(γ′,γ′′): t

−
γ =t−

γ′ , φ
`
γ(γ′(t−

γ′ ))>0}
φ`γ(γ′(t−γ′))π(dγ′dγ′′) ≤
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so that, taking into account (7.7), we get

≤
ˆ
A`γ∩{(γ′,γ′′): t

−
γ =t−

γ′ , φ
`
γ(γ′(t−

γ′ ))>0}

[
Tot.Var.(φ`γ ◦ γ′x[t−γ ,t+γ ]) + Tot.Var.(φ`γ ◦ γ′′x[t−γ ,t+γ ])

]
π(dγ′dγ′′)

=

ˆ
{γ′:t−γ =t−

γ′ ,φ
`
γ(γ′(t−

γ′ ))>0}
πγ′
(
A`γ
)
Tot.Var.(φ`γ ◦ γ′x[t−γ ,t+γ ]) η

in(dγ′)

+

ˆ
{γ′′:φ`γ(γ′′(max{t−γ ,t−γ′′}))=0}

πγ′′
(
A`γ ∩

{
γ′ : t−γ = t−γ′ , φ

`
γ(γ′(t−γ′)) > 0

})
Tot.Var.(φ`γ ◦ γ′′x[t−γ ,t+γ ]) η(dγ′′)

≤
ˆ
{γ′:t−γ =t−

γ′ ,φ
`
γ(γ′(t−

γ′ ))>0}
Tot.Var.(φ`γ ◦ γ′x[t−γ ,t+γ ]) η

in(dγ′)

+

ˆ
{γ′′:φ`γ(γ′′(max{t−γ ,t−γ′′}))=0}

Tot.Var.(φ`γ ◦ γ′′x[t−γ ,t+γ ]) η(dγ′′)

≤
ˆ

Tot.Var.(φ`γ ◦ γ′x[t−γ ,t+γ ]) η(dγ′)

≤
ˆ t+γ

t−γ

[ˆ
ρ(t, x)

∣∣(1,b(t, x)) · ∇t,xφ`γ(t, x)
∣∣Ld(dx)

]
dt.

Integrating in γ and using Point (3), we deduceˆ
1

σ(φ`γ(t−γ ))
Φ`enter(γ) ηin(dγ) ≤ $. (7.8)

Step 2. Consider now a sequence `i → 0 such that

{φ`iγ < a} ⊂ {φ`jγ = 0} (7.9)

for every i < j. For instance, the same choice as in Step 2 of Proposition 7.2 is sufficient for a = 1, thanks
to (7.4).
Step 3. We now pass to the limit. By (7.8), we have

$ ≥
ˆ

1

σ(φ
`j
γ (t−γ ))

Φ
`j
enter(γ) ηin(dγ)

=

ˆ
1

σ(φ
`j
γ (t−γ ))

{ˆ
S1∩{t=t−γ }

[ ˆ
πγ′(A

`j
γ ) ηin

z′ (dγ
′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ).

where we recall the set A`γ is defined in (7.6) as

A`γ =

{
(γ′, γ′′) : φ`γ(γ′′(max{t−γ′′ , t

−
γ })) = 0,

(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2 \W1

}
.

To overcome the difficulty given by the fact that A`γ is not open, we take into account Step 2 and define
the open set

A`,aγ :=

{
(γ′, γ′′) : φ`γ(γ′′(max{t−γ′′ , t

−
γ })) < a,

(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2 \W1

}
.

Notice so that, thanks to the (7.4), A`i,aγ ⊂ A`jγ for i < j and hence

1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

[ ˆ
πγ′(A

`j
γ ) ηin

z′ (dγ
′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

≥ 1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

[ˆ
πγ′(A

`i,a
γ ) ηin

z′ (dγ
′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

=
1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

{ˆ [
(πxΓ 2\W1(γ))γ′

({
γ′′ : φ`iγ (γ′′(max{t−γ′′ , t

−
γ })) < a

})︸ ︷︷ ︸
I(γ,γ′,`i)

]
ηin
z′ (dγ

′)

}
φ`jγ (z′)ρ(z′)Hd(dz′),
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where

Γ 2 \W1(γ) =
{

(γ′, γ′′) :
(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2 \W1

}
.

Step 4. Define for t1 < t2 the set

Γ 2 \W1(t1, t2) =
{

(γ′, γ′′) :
(
γ′x[t1,t2], γ

′′x[t1,t2]

)
∈ Γ 2 \W1

}
=
{

(γ′, γ′′) : Graph γ′x[t1,t2]∩Graph γ′′x[t1,t2] 6= ∅
}
,

and accordingly let

I(t1, t2, γ
′, `i) = (πxΓ 2\W1(t1,t2))γ′

({
γ′′ : φ`iγ (γ′′(max{t−γ′′ , t

−
γ })) < a

})
.

Now ρHd-a.e. z′ ∈ S1 is a Lebesgue point for the map

z′ 7→
ˆ [

(πxΓ 2\W1(t1,t2))γ′
]
ηin
z′ (dγ

′),

w.r.t. the weak∗ topology, and hence, arguing as in Proposition 7.2, passing to the limit in j and using
the l.s.c. on open sets (i.e. {γ′′ : φ`iγ (γ′′(max{t−γ′′ , t−γ })) < a}) we deduce

ˆ
I(t1, t2, γ

′, `i) η
in
γ(t−γ )

(dγ′)

≤ lim inf
j→+∞

1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

[ ˆ
I(t1, t2, γ

′, `i) η
in
z′ (dγ

′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

for ηin-a.e. γ.
Step 5. Take a partition of a set where ηin is concentrated into finitely many disjoint sets {Ain

k,n}
Nk
n=1 so

that

Ain
k,n ⊂

{
γ ∈ Γ : t−n − 2−k < t−γ < t−n , t

+
n ≤ t+γ ≤ t+n + 2−k

}
and a set Ain

k,0 whose measure is arbitrarily small for k →∞. Step 3 above gives

$ ≥
ˆ
Γ

1

σ(φ
`j
γ (t−γ ))

ˆ
S1∩{t=t−γ }

{ ˆ
I(γ, γ′, `i) η

in
z′ (dγ

′)

}
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ)

≥
Nk∑
n=1

ˆ
Ain
k,n

1

σ(φ
`j
γ (t−γ ))

{ ˆ
S1∩{t=t−γ }

[ˆ
I(t−n , t

+
n , γ

′, `i) η
in
z′ (dγ

′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ),

because I(γ, γ′, `i) ⊃ I(t−n , t
+
n , γ

′, `i) when γ ∈ Ain
k,n.

Using Fatou’s Lemma, we conclude that

$ ≥ lim inf
j→+∞

Nk∑
k=1

ˆ
Ain
k,n

1

σ(φ
`j
γ (t−γ ))

{ˆ
S1∩{t=t−γ }

[ ˆ
I(t−n , t

+
n , γ

′, `i) η
in
z′ (dγ

′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ)

≥
∑
k

ˆ
Ain
k,n

lim inf
j→+∞

1

σ(φ
`j
γ (t−γ ))

{ˆ
S1∩{t=t−γ }

[ ˆ
I(t−n , t

+
n , γ

′, `i) η
in
z′ (dγ

′)

]
φ`jγ (z′)ρ(z′)Hd(dz′)

}
ηin(dγ)

≥
∑
k

ˆ
Ain
k,n

[ˆ
I(t−n , t

+
n , γ

′, `i) η
in
γ(t−γ )

(dγ′)

]
ηin(dγ).

(7.10)

By taking t+n increasing and t+n decreasing for ηin-a.e. γ, when k →∞ we have for every γ′∑
n

I(t−n , t
+
n , γ

′, `i)1Ain
k,n
↗ I(γ, γ′, `i),

on a η-conegligible set, so that by passing to the limit in n we conclude by monotonicity that

$ ≥
ˆ
Γ

[ˆ
I(γ, γ′, `i) η

in
γ(t−γ )

(dγ′)

]
ηin(dγ). (7.11)
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γb γc

γa

Figure 8. The discrete case described in Example 7.4: η = ηin = aδγa + bδγb + cδγc ,
where a, b, c > 0 are positive real numbers. The red and blue curves (resp.
γb, γc are distinct but they have non trivial intersection, which coincides with
γa, the green curve. It is clear that ηin⊗ ηin(Γ 2 \W ) = bc+ cb = 2bc. On the
other hand, if e.g. b < c, we can construct a plan which moves bδγb to bδγc
and bδγc to bδγb (leaving the remaining (c − b)δγc fixed). For such a plan it
holds π(Γ 2 \W ) = b+ b = 2b = 2 min{b, c}.

Observe now that when i→ +∞{
(γ′, γ′′) : φ`iγ (γ′′(max{t−γ′′ , t

−
γ })) < a

}
↗ {(γ′, γ′′) : t−γ′′ ≤ t

+
γ , γ

′′(max{t−γ′′ , t
−
γ })) /∈ Graph γ})

= {(γ′, γ′′) : t−γ′′ ≤ t
+
γ , γ

′′(t−γ′′) /∈ Graph γ})

because for ηin-a.e. γ we have γ(t−γ ) ∈ S1. By Monotone Convergence Theorem, we then have

$ ≥
ˆ {ˆ [

πγ′
(
{(γ′, γ′′) : t−γ′′ ≤ t

+
γ , γ

′′(t−γ′′) /∈ Graph γ} ∩ Γ 2 \W1(γ)
)]
ηin
γ(t−γ )

(dγ′)

}
ηin(dγ)

≥
ˆ {ˆ [

πγ′
(
{(γ′, γ′′) : γ′′(t−γ′′) /∈ Graph γ} ∩ Γ 2 \W1(γ)

)]
ηin
z ⊗ ηin

z (dγdγ′)

}
ρ(z)Hd(dz),

(7.12)

which is what we wanted to prove taking into account the definition of Γ 2 \W1(γ). �

Example 7.4. In general Proposition 7.2 is sharp and it holds

ηin ⊗ ηin(Γ 2 \W ) < π(Γ 2 \W ),

so that we cannot expect a control on the quantity π(Γ 2 \W ). For example, consider three curves γa, γb
and γc starting at the same time (t = 0) such that

γa = γb ∩ γc, γb 6= γc,

with weight a, b, c. See Figure 8.
Then one has

ηin ⊗ ηin(Γ 2 \W ) = 2bc,

while by duality

maxπ(Γ 2 \W ) = 2 min{b, c}.

Remark 7.5. By inspection, one can observe that to deduce Propositions 7.2 and 7.3 one can relax
Point 2 to the following:

(2’) for ηin-a.e. γ there are two sequences of Lipschitz functions φ`iγ , φ
`i′
γ such that
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(a) (7.3) is satisfied by φ`iγ and

φ`iγ (Graph γ) = 1, lim
i→∞

suppφ`iγ = Graph γ, (7.13)

(b) (7.9) is satisfied by φ
`i′
γ and

φ`i′γ (Graph γ) = 1, lim
i′→∞

suppφ`i′γ = Graph γ, (7.14)

(c) it holds

lim
`i

σ((fφ`iγ )(t−γ ))

σ(φ`iγ (t−γ ))
= f(γ(t−γ )), lim

`i′

σ((fφ
`i′
γ )(t−γ ))

σ(φ
`i′
γ (t−γ ))

= f(γ(t−γ )),

for all integrable functions f and ηin-a.e. γ, where σ(·) is defined in (7.2).

On can further require that (7.3), (7.9) hold up to a set of trajectories which vanishes when computing
the limits (7.5), (7.10), and the same requirement for (7.13), (7.14).

Finally, in some cases it is easier to have replace φ`γ with the characteristic function of an inner/outer
proper set, replacing the integral of ρ|(1,b) · n| with the inner/outer trace as follows.

Assumption 7.6 (Inner proper cylinders). There are constants M, $ > 0 and a family of sets {Q`γ}`>0,γ∈Γ
such that:

(1) for every γ ∈ Γ, ` ∈ R+, the set Q`γ ⊂ Rd+1 is ρ(1,b)-inner proper;

(2) for t ∈ (t−γ , t
+
γ )

γ(t) +Bd`/M(0) ⊆ Qt ⊆ γ(t) +BdM`(0);

(3) it holds ˆ [
1

σ(1Q`γ (t−γ ))

ˆ
t∈(t−γ ,t

+
γ )

Tr
(
ρ(1,b), Q

)
Hdx∂Q

]
ηin(dγ) ≤ $, (7.15)

where σ is given by (7.2).

The key observation is that being inner proper, up to an arbitrarily small quantity one can replace
(7.15) with (7.1) because of Condition (3) of Definition 4.5. The two definitions are essentially equivalent
because of Remark 4.3.

The assumption in the case of outer proper cylinders is analogous, and one can image also combinations
of the two cases.

7.2. Forward uniqueness. We now turn our attention to the set of crossing trajectories, i.e. the
trajectories which enter from S1 and leave the domain Ω: set

Γ cr :=
{
γ : γ(t−γ ) ∈ S1, γ(t+γ ) ∈ ∂Ω

}
and define accordingly the measures

ηcr := ηxΓ cr , ηcr
z := ηzxΓ cr .

Remark 7.7. Notice that ‖ηcr
z ‖ may be less than 1, hence it is not the standard normalized disintegration

of ηcr w.r.t. ρHdxS1 . By projection, the corresponding density ρcr ≥ 0, defined by

ρcr(t, ·)Ld = (et)#η
cr

satisfies
div
(
ρcr(1,b)

)
= ρcrHdxS1

−ρcr[(1,b) · n]+Hdx∂Ω.

Furthermore, for Hd-a.e. z ∈ ∂Ω it holds

ρcr(z) = ‖ηcr
z ‖ρ(z).

We start by observing that if γ(t+γ ) ∈ ∂Ω, then one can replace the requirement(
γ′x[t−γ ,t+γ ], γ

′′x[t−γ ,t+γ ]

)
∈ Γ 2 \W1

with
(γ′, γ′′) ∈ Γ 2 \W1,

because in this case either γ′ 6= γ or (γ, γ′′) ∈ Γ 2 \W1: in particular (7.7) holds for all (γ′, γ′′) ∈ Γ 2 \W1

for `� 1. By restricting the estimate in Proposition 7.3 to ηcr, we then deduce the following.
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Corollary 7.8. For any transport plan π ∈ Adm(ηcr, ηin) it holds

π
({

(γ′, γ′′) : γ′′(t−γ′′) 6= γ′(t−γ′)
}
∩ Γ 2 \W1

)
≤ $. (7.16)

Proof. Starting from (7.12), using the observation above and integrating, we obtain

$ ≥
ˆ { ˆ [

πγ′
({

(γ′, γ′′) : γ′′(t−γ′′) /∈ Graph γ
}
∩ Γ 2 \W1

)]
ηin
γ(t−γ )

(dγ′)

}
ηin(dγ)

=

ˆ { ˆ [
πγ′
({

(γ′, γ′′) : γ′′(t−γ′′) 6= γ(t−γ )
}
∩ Γ 2 \W1

)]
ηin
γ(t−γ )

(dγ′)

}
ηin(dγ)

=

ˆ { ˆ [
πγ′
({

(γ′, γ′′) : γ′′(t−γ′′) 6= γ′(t−γ′)
}
∩ Γ 2 \W1

)]
ηin
z (dγ′)

}
ρ(z)Hd(dz)

= π
({

(γ′, γ′′) : γ′′(t−γ′′) 6= γ′(t−γ′)
}
∩ Γ 2 \W1

)
,

where we have used the observation that if γ, γ′′ start on ∂Ω then the condition γ′′(t−γ′′) /∈ Graph γ

reduces to γ′′(t−γ′′) 6= γ(t−γ ) = γ′(t−γ′) = z by the domain of integration. �

Our goal now is to estimate in a quantitative way how much ηcr differs from a superposition of Dirac
masses. This will be achieved using two main ingredients: on the one hand, we will use the estimates
given by Proposition 7.2 and Proposition 7.3; on the other hand we will get rid of the divergence µ inside
the domain Ω (which is the quantity which measures how many trajectories start or finish inside Ω)
playing with constants.

Lemma 7.9. It holds ˆ
S1

(
ρ(z)− ρcr(z)

)
Hd(dz) ≤ µ−(Ω).

Proof. The balance of the divergence givesˆ
S1

(
ρ(z)− ρcr(z)

)
Hd(dz) =

ˆ
S1

(
1− ‖ηcr

z ‖
)
ρ(z)Hd(dz)

=

ˆ
S1

ηz(Γ \ Γcr)ρ(z)Hd(dz) ≤ µ−(Ω),

because the curves which enter in S1 but do not exit from Ω necessarily have the final point γ(t+γ ) inside
Ω. �

Since clearly ηcr ≤ ηin, by Proposition 7.2 we deduce the estimateˆ
S1

ηcr
z ⊗ ηcr

z (Γ 2 \W2)ρ(z)Hd(dz) ≤ $. (7.17)

Observe now that, when we restrict to Γ cr, the following equality holds:

(Γ cr)2 \W2 =
{

(γ, γ′) ∈ (Γ cr)2 : γ 6= γ′
}
.

Thus, we can rewrite (7.17) asˆ
S1

ηcr
z ⊗ ηcr

z

({
(γ, γ′) ∈ (Γ cr)2 : γ 6= γ′

})
ρ(z)Hd(dz) ≤ $. (7.18)

To proceed further, we need the following elementary lemma.

Lemma 7.10. For any bounded, non negative measure m on a Polish space Y it holds

‖m‖
(
‖m‖ −max

y∈Y
m({y})

)
≤ m⊗m({(y, y′) : y 6= y′}).

In particular, for probability measures

1−max
y∈Y

m({y}) ≤ m⊗m({(y, y′) : y 6= y′}).
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Proof. Decompose

m = mcont +
∑
n

cnδyn ,

so that

m⊗m({(y, y′) : y 6= y′}) = ‖m‖2 −
∑
n

c2n.

Assume that

n 7→ cn

is decreasing, and estimate ∑
n

c2n ≤ c1
∑
n

cn ≤ c1‖m‖.

Hence

m⊗m({(y, y′) : y 6= y′}) ≥ ‖m‖(‖m‖ − c1),

with

c1 = max
n

cn

which is the claim. �

Combining Proposition 7.2 (which gives (7.18)) with Lemma 7.10, we deduce the following proposition.

Proposition 7.11. For any real constant C > 1, we have the estimateˆ
S1

(
‖ηcr
z ‖ −max

γ∈Γ
ηcr
z ({γ})

)
ρ(z)Hd(dz) < C$ +

µ−(Ω)

C − 1
.

Proof. Write for C > 1ˆ
S1

{
ηcr
z

‖ηcr
z ‖
⊗ ηcr

z

‖ηcr
z ‖
({

(γ, γ′) : γ 6= γ′
})}

ρcr(z)Hd(dz)

=

[ˆ
ρcr≥ρ/C

+

ˆ
ρcr<ρ/C

]{
ηcr
z

‖ηcr
z ‖
⊗ ηcr

z

({
(γ, γ′) : γ 6= γ′

})}
ρ(z)HdxS1

(dz)

≤ C
ˆ
ρcr≥ρ/C

{
ηcr
z ⊗ ηcr

z

(
(Γ cr)2 \W2

)}
ρ(z)HdxS1

(dz) +

ˆ
ρcr<ρ/C

ρcr(z)HdxS1
(dz)

< C$ +
1

C

µ−(Ω)

1− 1/C
,

where in the last passage we have used Lemma 7.9. Now the conclusion follows directly applying Lemma
7.10. �

From Proposition 7.11, we deduce that, up to a set of trajectories whose η-measure is controlled, the
measure ηcr is essentially a superposition of Dirac deltas. More precisely, we can find a family of crossing
trajectories Ξ ⊂ Γ cr such that

ηcr(Γ cr \Ξ) < C$ +
µ−(Ω)

C − 1

and

(ηΞ)z = ηcr
z xΞ := mzδγz , γz ∈ Γ cr. (7.19)

This additional piece of information can be combined together with Proposition 7.2 in the following way.
Consider an admissible plan π̃ ∈ Adm(ηΞ, ηin). We have the following lemma.

Lemma 7.12. Let

S :=
{

(γ, γ′) : γ(t−γ ) = γ′(t−γ′)
}
⊂ Γ 2,

i.e. the set of curves which start from the same point. Then

π̃xS
(
Γ 2 \W2

)
≤ $. (7.20)
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Proof. By Disintegration Theorem (applied w.r.t. the map S 3 (γ, γ′) 7→ γ(t−γ )), we have

π̃xS=

ˆ
S1

(
π̃xS

)
z
ρ(z)Hd(dz),

where (π̃xS)z ∈ Adm(ηΞ
z , η

in
z ) for Hd-a.e. z ∈ S1. Being ηΞ

z the Dirac delta mzδγz in view of (7.19), it
follows that every transference plan in π̃z ∈ Adm(ηΞ

z , η
in
z ) satisfies

π̃z ≤ ηΞ
z ⊗ ηin

z ≤ ηin
z ⊗ ηin

z ,

so that Proposition 7.2 directly implies the statement. �

By summing up the results in Lemma 7.12 and Corollary 7.8 we deduce the following corollary.

Corollary 7.13. For any admissible transport plan π ∈ Adm(ηcr, ηin), it holds

π(Γ 2 \W ) < 2$ + C$ +
µ−(Ω)

C − 1
.

Proof. For any plan π we have

π(Γ 2 \W ) = π
(
(Ξ × Γ ) \W

)
+ π

(
((Γ \Ξ)× Γ ) \W

)
≤ π((Ξ × Γ ) \W ) + ηcr(Γ \Ξ)

by (7.19) and Proposition 7.11 ≤ π((Ξ × Γ ) \W ) + C$ +
µ−(Ω)

C − 1

≤ 2$ + C$ +
µ−(Ω)

C − 1
,

where in the last line we have use the fact that πxΞ×Γ∈ Adm(ηΞ, ηin) so that (7.20) and (7.16) give the
estimate. �

Notice that we can rephrase Corollary 7.13 by saying that

sup
π∈Adm(ηcr,ηin)

π(Γ 2 \W ) ≤ 2$ + C$ +
µ−(Ω)

C − 1
. (7.21)

for all C > 1.
Invoking the deep duality results of [Kel84] recalled in Section 3.2, we can prove the following

Theorem 7.14. There exist Borel sets N1 ⊂ Γ cr, N2 ⊂ Γ in such that

ηcr(N1) + ηin(N2) ≤ 2$ + C$ +
µ−(Ω)

C − 1
,

and for every (γ, γ′) ∈ (Γ cr \N1)× (Γ in \N2) either Graph γ′ ⊂ Graph γ or Graph γ ∩Graph γ′ = ∅.

Equivalently we can say that
(Γ cr \N1)× (Γ in \N2) ⊂W.

Proof. Taking into account Theorem 3.2 and Proposition 3.3, we have that there exist Borel sets N1, N2

such that
1N1 + 1N2 ≥ 1(Γ cr×Γ )\W

and

ηcr(N1) + ηin(N2) = sup
π∈Adm(ηcr,ηin)

π(Γ 2 \W )
(7.21)

≤ 2$ + C$ +
µ−(Ω)

C − 1
,

which is exactly the claim. �

Recall now that, so far, we have been working with Ω = Ωε, being Ω a proper set and Ωε ⊃ Ω the
perturbed set constructed in Proposition 4.15. In some sense, we now want to pass to the limit the above
estimates as ε→ 0.

Let Ω ⊂ Rd+1 be a proper set and η be a Lagrangian representation of ρ(1,b)Ld+1. Set

Γ cr(Ω) :=
{
γ ∈ Γ : γ(t±γ ) ∈ ∂Ω

}
, Γ in(Ω) :=

{
γ ∈ Γ : γ(t−γ ) ∈ ∂Ω

}
.

Assume that Theorem 7.14 holds for a family of perturbations Ωεn with constant $.
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Theorem 7.15. There exist N1 ⊂ Γ cr(Ω), N2 ⊂ Γ in(Ω) such that

(RΩ)]η
cr(N1) + (RΩ)]η

in(N2) ≤ inf
C>1

{
2$ + C$ +

µ−(Ω)

C − 1

}
and for every (γ, γ′) ∈ (Γ cr \N1)× (Γ in \N2) either

Graph γ′xclos Ω⊂ Graph γxclos Ω or Graph γxclos Ω∩Graph γ′xclos Ω= ∅.

Proof. From Theorem 7.14 applied to every Ωεn , we obtain two sets Nεn
1 and Nεn

2 such that

(RΩεn )]η
cr(Nεn

1 ) + (RΩεn )]η
in(Nεn

2 ) ≤ 2$ + C$ +
µ−(Ωεn)

C − 1
,

and for every (γ, γ′) ∈ (Γ cr(Ωεn) \Nεn
1 )× (Γ in(Ωεn) \Nεn

2 ) either

Graph γ′xclos Ωεn⊂ Graph γxclos Ωεn or Graph γ′xclos Ωεn∩Graph γxclos Ωεn= ∅.
Now RΩ(Γ cr(Ωεn)) ⊂ Γ cr(Ω) and∣∣(RΩ)]η(Γ cr(Ω))− (RΩεn )]η(Γ cr(Ωεn))

∣∣ < O(εn)

from Theorem 4.16 and the estimates therein. In the same way, RΩ(Γ in(Ωεn)) ⊂ Γ in(Ω) and∣∣(RΩ)]η(Γ in(Ω))− (RΩεn )]η(Γ in(Ωεn))
∣∣ < O(εn).

If we now consider the sets

Ñεn
1 := RΩ(Nεn

1 ) ∪
(
Γ cr(Ω) \ RΩ

(
Γ cr(Ωεn)

))
and Ñεn

2 := RΩ(Nεn
2 ) ∪

(
Γ in(Ω) \ RΩ

(
Γ in(Ωεn)

))
,

we have by Corollary 6.11 as εn → 0 that

(RΩ)]η
cr(Ñεn

1 ) + (RΩ)]η
in(Ñεn

2 ) ≤ 2$ + C$ +
µ−(Ωεn)

C − 1
+ o(1) = 2$ + C$ +

µ−(Ω)

C − 1
+ o(1),

and for every (γ, γ′) ∈ (Γ cr(Ω) \ Ñεn
1 )× (Γ in(Ω) \ Ñεn

2 ) either

Graph γ′xclos Ω⊂ Graph γxclos Ω or Graph γ′xclos Ω∩Graph γxclos Ω= ∅.
In particular, it follows that

inf

{
(RΩ)]η

cr(N1) + (RΩ)]η
in(N2) : (Γ cr \N1)× (Γ in \N2) ⊂W

}
≤ 2$ + C$ +

µ−(Ω)

C − 1
,

and we apply again Proposition 3.3 in order to find two actual minimizers. �

8. Untangling functional and untangled Lagrangian representations

This section is divided into two parts. In the first part, following the analysis of Theorem 7.15, we
define two functionals on the family of proper sets which measure how much the trajectories used by a
Lagrangian representation η cross each other. The main result is that these functionals are subadditive,
so that it seems natural to compare them with a measure $τ . This is the main result of the second
part, which shows that if one can bound the untangling functional in sufficiently many sets by a given
measure, then we can have an estimate on how many trajectories one has to remove in order to obtain
an untangled set of trajectories, i.e. trajectories which do not cross each other.

8.1. Subadditivity of untangling functional. For Ω ⊂ Rd+1 proper set we give the following defini-
tion.

Definition 8.1. The untangling functional for ηin is defined as

F
in

(Ω) := inf
{

(RΩ)]η
cr(N1) + (RΩ)]η

in(N2) : (Γ \N1)× (Γ \N2) ⊂W
}
. (8.1)

Setting

(RΩ)]η
out :=

ˆ
∂Ω

ηzρ(z)[(1,b(z)) · n(z)]+Hd(dz),

we can define analogously the untangling functional for ηout.

Definition 8.2. The untangling functional for ηout is defined as

F
out

(Ω) := inf
{

(RΩ)]η
cr(N1) + (RΩ)]η

out(N2) : (Γ \N1)× (Γ \N2) ⊂W
}
. (8.2)
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As noticed before, the condition (γ, γ′) ∈ (Γ cr(Ω)× Γ in(Ω)) ∩W is equivalent to say that

either Graph γ′xclos Ω⊂ Graph γxclos Ω or Graph γxclos Ω∩Graph γ′xclos Ω= ∅,

and similarly for (γ, γ′) ∈ (Γ cr×Γ out)∩W . Recalling now Theorem 7.15 we can infer that the infima in
(8.1) and (8.2) are actually minima.

We now show the following remarkable property of the untangling functionals:

Proposition 8.3. The functionals F
in

and F
out

are subadditive on the class of proper sets. More pre-
cisely, if U,V ⊂ Rd+1 are proper sets whose union Ω := U ∪V is proper, then

F
in

(Ω) ≤ F
in

(U) + F
in

(V), F
out

(Ω) ≤ F
out

(U) + F
out

(V).

Proof. We prove the assertion only for the functional F
in

, being the other case completely similar. By
definition, there exist sets N1(U) ⊂ Γ cr(U) and N2(U) ⊂ Γ in(U) such that

F
in

(U) = (RU)]η
cr(N1(U)) + (RU)]η

in(N2(U))

and (
Γ cr(U) \N1(U)

)
×
(
Γ in(U) \N2(U)

)
⊂W.

Let N1(V), N2(V) be a corresponding couple of sets for V. Set

N1 :=
{
γ ∈ Γ cr(Ω) : ∃i

(
RiUγ ∈ N1(U)

)}
∪
{
γ ∈ Γ cr(Ω) : ∃i

(
RiVγ ∈ N1(V)

)}
and

N2 :=
{
γ ∈ Γ in(Ω) : ∃i

(
RiUγ ∈ N2(U)

)}
∪
{
γ ∈ Γ in(Ω) : ∃i

(
RiVγ ∈ N2(V)

)}
.

By Proposition 6.10

η(N1) + η(N2) ≤ η
({
γ ∈ Γ cr(Ω) : ∃i

(
RiU(γ) ∈ N1(U)

)})
+ η
({
γ ∈ Γ cr(Ω) : ∃i

(
RiU(γ) ∈ N2(U)

)})
+ η
({
γ ∈ Γ cr(Ω) : ∃i

(
RiV(γ) ∈ N1(V)

)})
+ η
({
γ ∈ Γ cr(Ω) : ∃i

(
RiV(γ) ∈ N2(V)

)})
≤ (RU)]η(N1(U)) + (RU)]η(N2(U)) + (RV)]η(N1(V)) + (RV)]η(N2(V))

= F
in

(U) + F
in

(V).

It remains to show (Γ cr(Ω) \N1)× (Γ in(Ω) \N2) ⊂W : this follows from the observation

RU(Γ cr(Ω)) ⊂ Γ cr(U),

and

RU(Γ in(Ω)) ⊂ Γ in(U)

and the same for V. Hence, if Graph γxclos Ω∩Graph γ′xclos Ω 6= ∅ then they must coincide either in clos U
or clos V and, by elementary arguments, in clos U ∪ clos V = clos Ω. �

We conclude this paragraph with the following lemma, which shows that F
in

and F
out

are related.

Lemma 8.4. It holds

F
in

(Ω)− µ−(Ω) ≤ F
out

(Ω) ≤ F
in

(Ω) + µ+(Ω)

where we recall that µ+, µ− are the positive/negative part of the measure µ = div(ρ(1,b)).

Proof. We prove only F
out

(Ω) ≤ F
in

(Ω) +µ+(Ω), the other case being analogous. Let η be a Lagrangian

representation of ρ(1,b)Ld+1xΩ, and N1, N2 a minimal couple for F
in

. Since

ηcr(N2) ≤ ηin(N2),

then it follows that (Γ cr(Ω) \ (N1 ∪N2))2 ⊂W . As already observed in Lemma 7.9,

‖ηout − ηcr‖ ≤ µ+(Ω),

so that the conclusion follows by considering the couple N ′1 = N1 ∪N2 and N ′2 = {γ : γ(t−γ ) ∈ Ω}. �
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8.2. Untangled Lagrangian representations. Assume the following:

Assumption 8.5. Let τ > 0 and C > 1 be such that

(1) there exist Kτ,± compact sets satisfying

µ±(Kτ,∓) = 0, µ±
(
Rd+1 \Kτ,±) < τ ;

(2) there exists a positive measure $τ such that
(a) for all (t, x) ∈ Kτ,− there exists a family of proper balls {Bd+1

r (t, x)}r with 0 as Lebesgue
density point and such that it holds

F
in

(Bd+1
r (t, x)) ≤ (C + 2)$τ (Bd+1

r (t, x)) +
µ−(Bd+1

r (t, x))

C − 1
,

(b) for all (t, x) ∈ Kτ,+ there exists a family of proper balls {Bd+1
r (t, x)}r with 0 as Lebesgue

density point and such that it holds

F
out

(Bd+1
r (t, x)) ≤ (C + 2)$τ (Bd+1

r (t, x)) +
µ+(Bd+1

r (t, x))

C − 1
,

(c) for all (t, x) ∈ Rd+1 \ (Kτ,− ∪Kτ,+) there exists a family of proper balls {Bd+1
r (t, x)}r with

0 as Lebesgue density point and such that it holds

min
{
F

in
(Bd+1

r (t, x)), F
out

(Bd+1
r (t, x))

}
≤ (C + 2)$τ (Bd+1

r (t, x)) +
|µ|(Bd+1

r (t, x))

C − 1
.

By the choice of the sets Kτ,± we can have in a sufficiently small ball the following estimate.

Proposition 8.6. For every (t, x) ∈ Rd+1 there exists rt,x such that for the families of balls {Bd+1
r (t, x)}r

as above and for r < rt,x it holds

F
in

(Bd+1
r (t, x)), F

out
(Bd+1

r (t, x)) ≤ (C + 2)$τ (Bd+1
r (t, x)) +

|µ|(Bd+1
r (t, x))

C − 1

+
C

C − 1
|µ|(Bd+1

r (t, x) \Kτ,+ ∪Kτ,−).

(8.3)

Proof. It (t, x) ∈ Kτ,−, then by Point (2a) of Assumption 8.5

F
in

(Bd+1
r (t, x)) ≤ (C + 2)$τ (Bd+1

r (t, x)) +
µ−(Bd+1

r (t, x))

C − 1
,

and since (t, x) ∈ Kτ,−, by Point (1) we can take r � 1 such that

µ+(Bd+1
r (t, x)) ≤ µ−(Bd+1

r (t, x))

C − 1
.

One thus applies the Lemma 8.4 above. A completely similar computation holds for K+.
For points in the open set Rd+1 \ (Kτ,− ∪Kτ,+) just take a ball Bd+1

r (t, x) ⊂ Rd+1 \ (Kτ,− ∪Kτ,+)
and combine Point (2c) and Lemma 8.4. �

For future reference let us define the measure

ζτC := (C + 2)$τ +
|µ|

C − 1
+

C

C − 1
|µ|xRd+1\Kτ,+∪Kτ,− .

A covering argument yields the following global estimate.

Corollary 8.7. If Ω ⊂ Rd+1 is a proper set with compact closure, then

F
in

(Ω), F
out

(Ω) ≤ CdζτC(clos Ω), (8.4)

where Cd is a dimensional constant.

Proof. Thanks to Proposition 8.6 and Vitali Theorem, for any ε > 0, we can cover the compact set clos Ω
with finitely many proper balls Bi such that the estimates (8.3) hold and∑

i

ζτC(Bi) ≤ CdζτC(clos Ω) + ε.
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Thanks to the subadditivity (and the monotonicity) of F
in

we can thus write

F
in

(Ω) ≤ F
in
(⋃

i

Bi

)
≤
∑
i

F
in

(Bi) ≤ CdζτC(clos Ω) + ε.

Sending ε→ 0 we obtain (8.4). The same proof holds for the functional F
out

. �

Let now N ⊂ Γ be a set such that

(Γ \N)2 ⊂ W̊ ,

where

W̊ =
{

(γ, γ′) : Graph γx(t−γ ,t+γ )∩Graph γ′
(t−
γ′ ,t

+

γ′ )
= ∅
}

∪
{

(γ, γ′) : Graph γ ∩Graph γ′ = Graph
(
γx[max{t−γ ,t−γ′},min{t+γ ,t+γ′}]

)}
.

In the last part of this section we want estimate the measure η(N) in terms of ζτC(Rd+1) = ‖ζτC‖. To this
aim, define the compact sets (recall we consider solutions in a bounded domain)

Kn :=
{
γ ∈ Γ : t+γ − t−γ ≥ 21−n}

and observe that, given ε > 0 there exists n� 1 such that

η(Γ \ Kn) ≤ ε.

If (γ, γ′) ∈ Γ 2 \ W̊ , then there exists n ∈ N such that γ, γ′ ∈ Kn and

Graph γx[t−γ +2−n,t+γ −2−n]∩Graph γ′ 6= ∅, (8.5a)

sup
{
|γ(t)− γ′(t)|, t ∈

[
max{t−γ + 2−n, t−γ′},min{t+γ − 2−n, t+γ′}

]}
> 0, (8.5b)

so that we can write

Γ 2 \ W̊ =
⋃
n

Zn

where

Zn :=
{

(γ, γ′) ∈ (Kn)2 : (8.5) holds
}
.

Now consider a covering of the compact set

Kn :=
⋃
γ∈Kn

Graph γx[t−γ +2−n,t+γ −2−n]

made up of finitely many proper balls Bi := Bd+1
ri (ti, xi) with radius less than 2−n, for which Proposition

8.6 holds together with ζτC(∂Bi) = 0, and define

On :=
⋃
i

Bi.

We now have the following lemma, whose proof is elementary.

Lemma 8.8. If (γ, γ′) ∈ Zn then

a) if Graph γ ∩Bi 6= ∅ then RBiγ ∈ Γ cr(Bi);
b) if Graph γ′ ∩Bi 6= ∅ then RBiγ ∈ Γ in(Bi) ∪ Γ out(Bi);
c) there exists i such that (RBiγ, RBiγ

′) /∈W .

Applying Corollary 8.7, we obtain Nn
1 ⊂ Kn and Nn

2 ⊂ Kn such that

η(Nn
1 ) + η(Nn

2 ) ≤ CdζτC(closOn) = Cdζ
τ
C(On)

and

RclosOn(Kn \Nn
1 )× RclosOn(Kn \Nn

2 ) ⊂ Γ 2 \ Zn.
Now send n→ +∞ with the same reasoning of Theorem 7.14 we finally obtain the following result.



A UNIQUENESS RESULT FOR THE DECOMPOSITION OF VECTOR FIELDS IN Rd 59

Theorem 8.9. There exists a set N ⊂ Γ such that

η(N) ≤ CdζCτ (Rd+1)

and

(Γ \N)2 ⊂ W̊ .

The following definition seems now natural:

Definition 8.10. A Lagrangian representation η is called untangled if there exists a set ∆ ⊂ Γ such that

a) ∆×∆ ⊂ W̊ and
b) η is concentrated on ∆.

By inner regularity we can assume ∆ to be σ-compact. We conclude by pointing out the following
important point.

Corollary 8.11. Suppose there exist sequences τi ↘ 0 and Ci ↗ +∞ such that Assumption 8.5 holds
for τi, Ci and moreover

Ci‖$τi‖ → 0.

Then η is untangled.

Proof. It is enough to observe that ζτiCi → 0. �

Notice that the assumptions of the above corollary are satisfied if one assumes that in each point of
the compact sets Kτ,± (of Point (1) of Assumption 8.5) there exists a family of proper balls Br such that
Assumption 7.1 or Assumption 7.6 holds in Br (with arbitrarily small τ): basically, we are replacing the
assumption of the control of the functionals with the existence of (local) cylinders of approximate flow.
The precise assumptions reads as follows:

Assumption 8.12. For all τ > 0

(1) there exist Kτ,± compact sets such that

µ±(Rd+1 \Kτ,±) < τ ;

(2) there exists a measure $τ of mass τ such that
(a) for all (t, x) ∈ Kτ,− there exists a family of proper balls {Bd+1

r (t, x)}r with 0 as Lebesgue
density point and such that Assumption 7.1 or Assumption 7.6 holds forward in Bd+1

r (t, x),
(b) for all (t, x) ∈ Kτ,+ there exists a family of proper balls {Bd+1

r (t, x)}r with 0 as Lebesgue
density point and such that Assumption 7.1 or Assumption 7.6 holds backward in Bd+1

r (t, x),
(c) for all (t, x) ∈ Rd+1 \ (Kτ,− ∪Kτ,+) there exists a family of proper balls {Bd+1

r (t, x)}r with
0 as Lebesgue density point and such that Assumption 7.1 or Assumption 7.6 holds either
backward or forward in Bd+1

r (t, x);
(3) it holds ‖$τ‖ ≤ τ .

Indeed, for all (t, x) ∈ K−, by Theorem 7.15 and monotonicity of F
in

, for L1-a.e. proper balls
Bd+1
r (t, x) of the family and for all C > 1 it holds

F
in

(Bd+1
r (t, x)) ≤ (C + 2)$τ (Bd+1

r (t, x)) +
µ−(Bd+1

r (t, x))

C − 1
.

The other cases are completely similar. The choice C = τ−1/2 thus suffices.

9. Partition via characteristics and consequences

In this section we use the assumption that the representation η is untangled to show that a partition
of Rd+1 made of characteristics ℘α such that each γ is a subset of these. By disintegrating w.r.t. this
partition one can show that the PDE reduces to a one-dimensional ODE with measure r.h.s., and thus a
complete description of the solution can be obtained. Moreover, if ρ′ ∈ L∞(ρLd+1) solves div(ρ′(1,b)) =
µ′, then the trajectories of its Lagrangian representation η′ are subsets of the same partition ℘α. In
particular the explicit form of distribution div(β(ρ)(1,b)) is obtained, settling the Chain Rule Problem.



60 STEFANO BIANCHINI AND PAOLO BONICATTO

γ̇(t) = b(t, γ(t))

x

t

(a) Initial configuration: the curves ay in-

tersect several times, overlap and bi-

furcate.

γ̇(t) = b(t, γ(t))

x

t

(b) Final configuration: after the untan-
gling, the curves are disjoint, thus

forming a partition {℘a}a of Rd+1 up

to a set ρLd+1-negligible.

Figure 9. Visual effect of the untangling of trajectories: we start by removing locally a
set of curves, whose η measure is controlled, in such a way that the curves are
disjoint in a small ball. Iterating this step - thanks to subadditivity - we end
up with a family of disjoint, untangled trajectories.

9.1. Construction of the partition and disintegration. Let η be an untangled Lagrangian repre-
sentation and ∆ a σ-compact set as in Definition 8.10, and consider the following relation ∆:

γ ∼ γ′ ⇐⇒ ∃N ∈ N, {γi}Ni=1 ⊂ ∆ :
(
γ = γ1, γN = γ′ ∧ ]

(
Graph γ ∩Graph γ′

)
> 1
)
.

It is standard to check that this is an equivalence relation: let Ea, a ∈ A, be the equivalence classes,
being A an appropriate set of indexes. Define now ℘a as the curve defined in an open interval of time
whose graph is

Graph℘a :=
⋃
γ∈Ea

Graph γx(t−γ ,t+γ ).

One can check that ℘a is an absolutely continuous curve in Γ for every a and furthermore it holds

Graph℘a ∩Graph℘a′ = ∅
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for every a 6= a′ (see also Figure 9). We now show that the partition induced by the equivalence classes
of this relation is a Borel partition, according to the following

Proposition 9.1. There exists a Borel map f : Rd+1 → R such that f−1(a) = Graph℘a.

Proof. It is enough to construct the map restricted to the set of curves ℘a whose interval of existence
contains a fixed time t̄: by repeating the process for a countable set of times one constructs the map in
the general case.

The equivalence classes intersecting A ⊂ {t = t̄} can be written as

S(A) =
⋃
n

Sn(A),

where S0(A) = A and recursively

Sn(A) =
{
γ ∈ ∆ : Graph γx(t−γ ,t+γ )∩ Sn−1(A)

}
.

Being the valuation map γ 7→ et(γ) = γ(t) continuous, it follows that each Sn(A) is Borel if A is Borel,
and then the conclusion follows. �

Using again that the evaluation map is Borel, we deduce also

Corollary 9.2. There exists a Borel map f̂ : ∆→ R such that f̂−1(a) = Ea.

9.1.1. Disintegration. Having at our disposal a partition of the space-time into trajectories, one can try
to disintegrate the equation div(ρ(1,b)) = µ over this partition obtaining a family of one-dimensional
equations: this is the aim of this paragraph.

First, using the fact that f̂ is a Borel map, we can disintegrate η w.r.t. the measure m := f̂]η, so that
we write:

η =

ˆ
A

ηam(da)

with the property that, for m-a.e. a ∈ A the measure ηa is concentrated on Graph℘a. Recall that, by
definition of Lagrangian Representation 3.1, it holds

ρLd+1 =

ˆ
Γ

(
(id, γ)]L1

)
η(dγ), µ =

ˆ
Γ

(
δ(id,γ)(t−γ ) − δ(id,γ)(t+γ )

)
η(dγ).

Thus, we have

ρLd+1 =

ˆ
A

[ˆ
Γ

(
(id, γ)]L1

)
ηα(dγ)

]
m(da),

µ =

ˆ
A

[ˆ
Γ

(
δ(id,γ)(t−γ ) − δ(id,γ)(t+γ )

)
ηα(dγ)

]
m(da).

Using the property that for m-a.e. a ∈ A the measure ηa is concentrated on Graph℘a we have, by Fubini
Theorem, for any bounded continuous function ϕ¨

R+×Rd
ϕ(t, x)ρ(t, x)Ld+1(dt dx)

=

ˆ
A

[ˆ
Γ

ˆ t+γ

t−γ

ϕ(t, γ(t))L1(dt) ηa(dγ)

]
m(da)

=

ˆ
A

[¨
R+×Γ

ϕ(t, γ(t))1(t−γ ,t
+
γ )(t)L

1 × ηa(dt dγ)

]
m(da)

=

ˆ
A

[ ˆ
R+

ϕ(t, ℘a(t))

(ˆ
Γ

1(t−γ ,t
+
γ )(t)ηa(dγ)

)
L1(dt)

]
m(da)

=

ˆ
A

[ˆ
R+

ϕ(t, ℘a(t))wa(t)L1(dt)

]
m(da)

where we have set

wa(t) :=

ˆ
Γ

1(t−γ ,t
+
γ )(t)ηa(dγ) = ηa

({
γ ∈ Γ : γ is defined in t, i.e. t ∈ (t−γ , t

+
γ )
})
.
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Thus, in view of the computation above we have obtained the following decomposition for ρLd+1:

ρLd+1 =

ˆ
A

(id, ℘a)](waL1)m(da). (9.1)

In a similar fashion, we define for µ

µa :=

ˆ
Γ

[
δ(id,γ)(t−γ ) − δ(id,γ)(t+γ )

]
ηa(dγ),

so that

µ =

ˆ
A

µam(da) (9.2)

Notice that the above formula is not a disintegration of µ because the sets of starting and ending points
may be not disjoint in general. However, there is no cancellation of mass, since it holds

|µ| =
ˆ
A

|µa|m(da),

consequence of the fact that µ± are orthogonal and η is a Lagrangian representation. By putting together
the equation div(ρ(1,b)) = µ with the decompositions (9.1) and (9.2), we thus have proved the following

Proposition 9.3. There exists a measure m on the set A such that the decompositions (9.1) and (9.2)
hold and

d

dt
wa = µa, for m-a.e. a ∈ A, (9.3)

where we consider wa extended to 0 outside the domain of ℘a.

Since it will be useful later, we want to give a special name to the partitions of the space-time on
which one can split the equation div(ρ(1,b)) = µ as in Proposition 9.3.

Definition 9.4. We will call a Borel map g : Rd+1 → A a partition via characteristics of ρ(1,b)Ld+1 if:

• ℘a := g−1(a) is a characteristic in some open domain Ia;
• if ĝ denotes the corresponding map ĝ : ∆→ A, ĝ(γ) := g(Graph γ), setting m := ĝ]η and letting
wa be the disintegration

ρLd+1 =

ˆ
A

(id, ℘a)](waL1)m(da)

then
d

dt
wa = µa ∈M(R), for m-a.e. a ∈ A,

where wa is considered extended to 0 outside the domain of ℘a;
• it holds

µ =

ˆ
A

(id, ℘a)]µam(da) and |µ| =
ˆ
A

(id, ℘a)]|µa|m(da).

We will say the partition is minimal if moreover

lim
t→t̄±

wa(t) > 0 ∀t̄ ∈ Ia.

Thus, one can rephrase Proposition 9.3 by saying that the map f is a partition via characteristics of
ρ(1,b). Moreover, taking into account the BV regularity of the functions wa (for m-a.e. a ∈ A, in view
of (9.3)), we have that f is also a minimal partition via characteristics.

Theorem 9.5. There exists a minimal partition via characteristics of ρ(1,b)Ld+1.

Proof. From Proposition 9.3, we get wa ∈ BV(R) for m-a.e. a ∈ A: hence, we can decompose R into

countably many open intervals Ina := (tn,−a , tn,+a ), with n ∈ N, such that wa > 0 in each Ina and

lim
t→(tn,+a )−

wa(t) = 0 or lim
t→(tn,−a )+

wa(t) = 0.

Accordingly, we can define a new partition by further decomposing ℘a into countably many curves
℘na := ℘a|Ina . By construction, this new partition is again a partition via characteristics of ρ(1,b) and it
is indeed minimal. �
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9.2. Uniqueness of partition via characteristics and consequences. Having proved existence of
a minimal partition via characteristics of a vector field of the form ρ(1,b), with div(ρ(1,b)) = µ ∈ M,
we now face the problem of uniqueness of such partition. In this Section, we will show that the partition
constructed in Theorem 9.5 is unique in a suitable sense, provided every Lagrangian representation of
ρ(1,b) is untangled. More precisely, assume that ρ(1,b)Ld+1 satisfies Assumption 8.12, and consider
ρ′ ∈ L∞(ρLd+1) with

div
(
ρ′(1,b)

)
= µ′.

Without loss of generality, being ρ′ ∈ L∞(ρLd+1), we can assume that |ρ′| ≤ ρ
2 so that

ρ

2
≤ ρ+ ρ′ ≤ 3ρ

2
. (9.4)

Let η′ be a Lagrangian representation of (ρ+ ρ′)(1,b), which exists because ρ+ ρ′ ≥ 0. We now repeat
the analysis above considering (ρ + ρ′)(1,b)Ld+1: notice that, in view of the bounds (9.4), the vector
field (ρ + ρ′)(1,b)Ld+1 still satisfies Point 2 of Assumption 8.12 if ρ(1,b)Ld+1 does: indeed, the lateral
flux of ρ+ ρ′ (in Assumption 7.1) is controlled by 3/2 of the lateral flux of ρ.

As before, we thus find a partition of Rd+1 (up to a ρLd+1-null set) into classes (℘̃b)b∈B. If now we
consider the function u ∈ L∞ such that uρ = ρ+ ρ′ we have

div
(
uρ(1,b)

)
= µ+ µ′ =: ν.

By applying Proposition 9.3 with the classes ℘̃b we deduce

uρLd+1 =

ˆ
(id, ℘̃b)]

(
u ◦ ℘̃bwb L1

)
m(db), ν =

ˆ
(id, ℘̃b)]νbm(db),

and
d

dt
(ubwb) = νb, where ub := u ◦ ℘b.

Notice that the density wb appearing in the disintegration is controlled (up to constants) from below and
from above by wa in view of (9.4). This means that the graph of the classes ℘b graph contains the graph
of the equivalence relation induced by ℘α, i.e. it has to hold

℘̃b = Nb ∪
⋃
n

℘ab
n
,

where Nb is a possibly non-empty closed set. Furthermore, it holds

wb =
∑
n

wab
n

and Tot.Var.(wb) =
∑

Tot.Var.(wab
n
)

because ℘a is a partition via characteristics. Then since ub ∈ L∞ and wb > 0 inside Iab
n
, it follows that

u ◦ ℘̃b is BV and at the endpoints

lim inf
t→t̄

|ubwb| ≤ ‖u‖∞ lim inf
t→t̄

|wb| = 0.

Then it is fairly easy to see that

Tot.Var.(ubwb) =
∑
n

Tot.Var.(ubwab
n
)

and thus we conclude with the following universality result.

Theorem 9.6. If ρ′ ∈ L∞(ρLd+1) then the map f is a partition via characteristics of ρ′(1,b)Ld+1.

In particular one can deduce that

Corollary 9.7. The minimal partition of characteristic is unique up to a η-negligible set of trajectories.

Proof. The set of equivalence classes must be the same up to η-negligible sets, because every represen-
tation is untangled. Being the µa determined up to m-negligible sets, it follows that ℘a are uniquely
determined too, and the in particular the intervals where wa > 0. �
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9.2.1. Chain rule. Using Vol’pert’s Chain Rule we obtain the following: for any β ∈ C1(R) with β(0) = 0
the distribution

µβa :=
d

dt

(
β(u)wa

)
is a measure given by

µβa :=
∑

ti jump

[
β(uα(t+i ))wα(t+i )− β(uα(t−i ))wα(t−i )

]
+ β′(uα)(Dcontuα)wα + β(uα)Dcontwα

=
∑

ti jump

[
β(uα(t+i ))wα(t+i )− β(uα(t−i ))wα(t−i )

]
+ β′(uα)(να)cont +

(
β(ua)− uαβ′(ua)

)
µcont
α .

(9.5)

A simple computations yields that

‖µβa‖ ≤ ‖β′‖∞‖νa‖+ ‖β′‖∞‖u‖∞‖µa‖.
The above estimate allows to conclude with the following proposition.

Proposition 9.8. For any β ∈ C1 the distribution

div
(
β(u)ρ(1,b)Ld+1

)
= µβ ,

where the measure µβ is given by

µβ :=

ˆ
µβa m(da),

with µβa defined in (9.5).

In particular, Proposition 9.8 establishes completely the chain rule formula (and, as a consequence,
renormalization property) for vector fields ρ(1,b) satisfying Assumption 8.12.
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Part 3

The L1
loc(R; BVloc(Rd)) case

The final part of the paper is devoted to prove that that for b ∈ L1
t (BVx) the vector field (1,b)Ld+1

satisfies Assumption 8.12, and then it has a minimal partition via characteristic. The construction of
the approximate cylinders of flow depends on the local structure of the vector fields, in particular for
the singular part of the derivative we strongly rely on the Rank-one Theorem in order to find an ODE
describing the main part of Db.

10. A covering of Dsingb

The aim of this section it to construct a decomposition of the set where the singular part of the
derivative of b lives into a family of Lipschitz surfaces: we approximate the component of b in a particular
direction with a function whose super-level sets are regular and share essentially a common direction.
This will be useful in the following sections to construct the cylinders of approximate flow in the L1

t (BVx)
setting.

The decomposition we present here relies essentially on Alberti’s Rank-One Theorem (and ultimately
on the properties of sets of finite perimeter, in particular the De Giorgi Rectifiability Theorem).

10.1. BV functions and cones. For e ∈ Sd−1, x ∈ Rd and 0 < a < 1, let

C(e, a;x) :=
{
y ∈ Rd : |(y − x) · e| ≥ a|y − x|

}
.

be the closed, convex cone around e of vertex x and opening a. We will often think x to be the origin,
so we will often write C(e, a) to denote C(e, a; 0). The following proposition is well known:

Proposition 10.1. [DL08, Prop. 5.1] Let C = C(e, a) be a closed convex cone and v ∈ BV(Rd;R). Set

G :=

{
x :

Dv

|Dv|
(x) ∈ C

}
.

For any closed convex cone C ′ := C(e, a′) with a′ < a there exists w ∈ BV(Rd;R) such that |Dv|xG� |Dw|
and

Dw

|Dw|
(x) ∈ C ′ for |Dw|-a.e. x ∈ Rd.

For our purposes, we need a slight modification of Proposition 10.1. More precisely, we show

Proposition 10.2. Let C = C(e, a) be a closed convex cone and v ∈ BV(Rd;R). Set

G :=

{
x :

Dv

|Dv|
(x) ∈ C

}
.

For any closed convex cone C ′ := C(e, a′) with a′ < a and for any ε > 0 there exist r̄ > 0 and
w ∈ BV(Rd;R) such that:

• |Dv|xG� |Dw| and
Dw

|Dw|
(x) ∈ C ′ for |Dw|-a.e. x;

• there exists a family of a′-Lipschitz functions (Li,j)i,j∈N such that, set Ehi,j := {Li,j > h}, then

|Dw| =
ˆ
R

∑
i,j

Hd−1x∂?Ehi,j dh.

Furthermore, there exist a family of compact sets (K ′i)i∈N ⊂ Rd such that for r < r̄ it holds∣∣∣∣DvxGi−ˆ
R

∑
i,j

νhi,j Hd−1xEhi,j dh

∣∣∣∣(Bdr (x)) < ε|Dv|(Bdr (x))

for every x ∈ K ′i, where νhi,j(·) denotes the outer measure theoretic normal to Ehi,j and Gi ⊂ G
are suitable subsets of G introduced in the proof.
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Following [DL08], we decide to present first the proof of Proposition 10.2 in special case, i.e. when v
is the characteristic function of a set (which therefore is a set of finite perimeter). This case turns out to
be the building block to prove the Proposition in its full generality, via Coarea formula.

10.2. Proof of Proposition 10.2 in the case of a set of finite perimeter.

Proposition 10.3. Let C = C(e, a) be a closed convex cone and E ⊂ Rd be a set of finite perimeter.
Set v = 1E and

G :=

{
x :

Dv

|Dv|
(x) ∈ C

}
.

For any a′ < a and for any ε > 0 there exist r > 0 and w ∈ BV(Rd;R) such that

• |Dv|xG� |Dw| and
Dw

|Dw|
(x) ∈ C ′ for |Dw|-a.e. x;

• there exist a family of open, C1 domains (Ωi,j)i,j∈N ⊂ Rd and real non-negative numbers λi,j ≥ 0
such that

|Dw| =
∑
i,j

λi,jHd−1x∂Ωi,j .

Furthermore, there exist compact sets Ki ⊂
⋃
j ∂Ωi,j such that for r < r̄ it holds∣∣∣D1ExGi−∑

j

νi,jHd−1x∂?Ωi,j

∣∣∣(Bdr (x)
)
≤ Cd−1ε|D1E |(Bdr (x))

for any x ∈ Ki, where νi,j(·) is the outer unit normal to Ωi,j and Gi ⊂ G are suitable subsets of
G introduced in the proof.

Proof. Let v,E be as in the statement. We denote by ∂?E the reduced boundary of E (see Subsection
3.3.1) and let ν be the approximate exterior unit normal to ∂?E, so that we can write

Dv = νHd−1x∂?E

and accordingly the set G is
G =

{
x ∈ ∂?E : ν(x) ∈ C

}
.

Being ∂?E rectifiable, in view of Theorem 3.9, we have that G can be decomposed as

G = G0 ∪
∞⋃
i=1

Gi

where:

• Hd−1(G0) = 0 and for i ≥ 1 each Gi is a subset of a (d− 1)-dimensional C1 manifold Mi;
• ν|Gi coincides with the normal vector ni to the manifold Mi.

We now split the argument into steps:
Step 1. For each i ≥ 1 we claim that there are C1 open sets {Ωi,j}j∈N such that, having set Si,j := ∂Ωi,j
the following conditions hold: the exterior normal to Si,j belongs Hd−1-a.e. to C ′ and {Sij}j∈N is a
covering of Gi.
Indeed, recall that C ′ = C(e, a′) and, up to a change of coordinates, we may assume that e = ed =
(0, 0, . . . , 1). For any x ∈ Gi, the normal ni(x) belongs to C(e, a), and thus it is transversal to e⊥d :=
span(e1, . . . , ed−1). This implies that we can choose an open ball Bdr (x) centered at x such that

Mi ∩Bdr (x) =
{

(x⊥, x) : x = fi(x
⊥))
}

i.e. Mi ∩Bdr (x) coincides with the graph of a C1 function fi : Oi ⊂ Rn−1 → R where Oi is some bounded
open set in Rd−1. Moreover, by continuity of the normal ni, we can choose Bdr (x) so that ni(y) ∈ C ′ for
every y ∈Mi ∩BdR(x). By defining

Ωx :=
{

(x⊥, x) : x < fi(x
⊥))
}

then Ωx turns to be a C1 open set, the normal to Sx := ∂Ωx belongs to the cone C ′ and Sx covers
Bdr (x) ∩Mi. Since we can cover Mi with a countable family of these balls Bdr (x), the corresponding Sx
form the desired countable covering Si,j .
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Step 2. We now consider the sets Si,j . They have all finite Hd−1 measure, which we denote by `i,j and
they cover Hd−1-a.e. G. Take any collection λi,j of positive real numbers such that

∑
i,j λi,j ≤ 1 and∑

i,j λi,j`i,j ≤ 1 and finally set

w :=
∑
i,j

λi,j1Ωi,j .

It is immediate to see that w is bounded and of bounded variation since

‖w‖∞ ≤
∑
i,j

λi,j ≤ 1, |Dw| =
∑
i,j

λi,jHd−1xSi,j≤ 1.

For more details, see [DL08].
Step 3. We now exploit some further properties of points in the reduced boundary. Recall that for sets
of finite perimeter for every x ∈ ∂?E it holds

lim
r→0

|D1E |(Bdr (x))

ωd−1rd−1
= 1. (10.1)

On the other hand, by Lebesgue’s differentiation theorem and Area formula, for every i, j ∈ N, Hd−1-a.e.
x ∈ Si,j is a Ld−1-density point for the corresponding open set Oi,j , given by

Oi,j =
(
id, fi,j

)−1
(Si,j) ⊂ Rd−1,

which explicitly means that

lim
r→0

Ld−1
(
Oi,j ∩Bd−1

r (x⊥)
)

ωd−1rd−1
= 1. (10.2)

We now apply Egorov’s Theorem to the two limits (10.1), (10.2) (for each i, j): for every ε > 0, there
exists r > 0 and a compact set Fi,j(ε, r) ⊂ Oi,j , covering Oi,j up to a set of Hd−1 measure less than ε,
such that for any r < r it holds ∣∣∣∣ |D1E |(Bdr (fi,j(x

⊥)))

rd−1
− ωd−1

∣∣∣∣ < ωd−1ε, (10.3a)∣∣∣∣ 1

rd−1
Ld−1

(
Oi,j ∩Bd−1

r (x⊥))
)
− ωd−1

∣∣∣∣ < ωd−1ε (10.3b)

for any x⊥ ∈ Fi,j(ε, r). We now introduce the following compact set:

Ki(ε, r̄) :=
⋃
j∈N

Graph
(
fi,jxFi,j(ε,r̄))

)
. (10.4)

For any x ∈ Ki(ε, r̄), thanks to (10.3a) it holds for r < r̄

ωd−1(1− ε)rd−1 ≤ |D1E |(Bdr (x)) ≤ ωd−1(1 + ε)rd−1

and, on the other hand, using (10.3b) and being the projection 1-Lipschitz

|D1E |xGi
(
Si,j ∩Bdr (x)

)
≥ Ld−1

(
Oi,j ∩Bd−1

r (x⊥)
)
≥ ωd−1(1− ε)rd−1

for every j. Thus we get that, for any x ∈ Ki(ε, r̄) and any r < r̄ we have

|D1E |xGi
(
Bdr (x) \ Si,j

)
≤ |D1E |

(
Bdr (x))− |D1E |xGi

(
Si,j ∩Bdr (x)

)
≤ ωd−1(1 + ε)rd−1 − ωd−1(1− ε)rd−1

= 2εωd−1r
d−1

≤ 2ε

1− ε
|D1E |(Bdr (x)).

To sum up, the set Ki(ε, r̄) is the set of points x ∈ ∂?E for which it holds for r < r

|D1E |
(
Bdr (x) \ Si,j

)
≤ Cd−1ε|D1E |(Bdr (x))

and ∣∣∣Hd−1
(
Bdr (x) ∩ Si,j

)
− |D1E |

(
Bdr (x)

)∣∣∣ ≤ Cd−1ε|D1E |(Bdr (x)), (10.5)
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which comes from (10.3b). Finally, by integration of the normal vector, from (10.5), we obtain that for
every x ∈ Ki(ε, r̄) and r < r the desired estimate∣∣∣D1ExGi−∑

j

νi,jHd−1xSi,j

∣∣∣(Bdr (x)
)
≤ Cd−1ε|D1E |(Bdr (x))

holds and this concludes the proof. �

10.3. Proposition 10.2 in the general case. To prove the general case we exploit Coarea formula, as
done in [DL08].

Proof. For every h ∈ R we consider the function vh := 1{v>h} and, for future reference, we define the

measure M ∈ M(Rd × R) as M := |Dvh| ⊗ L1(dh), which explicitly means that, for every continuous

function φ : Rd × R→ R, it holdsˆ
R×Rd

φ(x, h)M (dhdx) =

ˆ [ˆ
φ(x, h)

∣∣D1{v>h}∣∣(dx)

]
L1(dh)

=

ˆ [ˆ
∂∗{v>h}

φ(x, h)Hd(dx)

]
L1(dh).

From Coarea formula 3.7 we have that:

• vh is a BV function for L1-a.e. h, i.e. {v > h} is a set of finite perimeter. Let νh be its exterior
unit normal;

• it holds

νh(x) =
Dv

|Dv|
(x)

for L1-a.e. h ∈ R and Hd−1-a.e. x ∈ ∂?{v > h}, i.e. for M-a.e. (x, h);
• it holds

|Dv| =
ˆ
R
|Dvh|L1(dh);

• it holds pRd
(
M
)

= |Dv|, hence M can be disintegrated as

M =

ˆ
M

x
|Dv|(dx), (10.6)

Therefore, for L1-a.e. h we can apply Proposition 10.3. We denote by wh the corresponding bounded,
BV function given by Proposition 10.3 and we set

w(x) :=

ˆ
R
wh(x) dh. (10.7)

Notice that, in order to write (10.7), we have to be sure that the map h 7→ wh enjoys some measurability
properties. To show the existence of such a selection, one can use the Aumann Measurable Selection
Theorem (for the precise argument we refer again the reader to [DL08]). Then it is immediate to see that
w satisfies |Dv|xG� |Dw| and

Dw

|Dw|
(x) ∈ C ′ for |Dw|-a.e. x.

Furthermore, denoting by Shi,j and Kh
i (ε, r̄) the corresponding sets for wh (obtained via Proposition 10.3),

we have that for any x ∈ Kh
i (ε, r̄) for r < r it holds

|Dvh|
(
Bdr (x) \ Shi,j

)
≤ Cd−1ε|Dvh|(Bdr (x))

and ∣∣∣Hd−1
(
Bdr (x) ∩ Shi,j

)
− |Dvh|

(
Bdr (x)

)∣∣∣ ≤ Cd−1ε|Dvh|(Bdr (x)).

By means of measurable selection, we can define now the measurable sets

K̃i(ε, r̄) := {(x, h) : x ∈ Kh
i (ε, r̄)} ⊂ Rd × R, i ∈ N
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so that for every h we have K̃i(ε, r̄;h) = Kh
i (ε, r̄); observe that, by construction, they cover Rd × R up

to a set of M - measure less than ε. In view of the disintegration (10.6) we thus can write for all R > 0

ˆ
BdR(0)

M
x

(
(Rd × R) \ K̃i(ε, r̄)

)
|Dv|(dx) < ε.

Thus, by Chebyshev inequality, we deduce that K̃i(ε, r̄) covers almost all the fiber of an arbitrary large
fraction of points x (in any ball BdR(0))): in other words, for every fixed δ > 0, there is a set N i

δ ⊂ BdR(0)
such that

|Dv|(N i
δ) <

ε

1− δ
and

M
x

(
K̃i(ε, r̄)

)
> 1− δ, ∀x ∈ BdR(0) \N i

δ. (10.8)

Taking a compact set K ′i ⊂ BdR(0) \ N i
δ ⊂ pRd(K̃i(ε, r̄)) we obtain that for every x ∈ K ′i and r < r it

holds ∣∣DwxGi−Dv∣∣(Bdr (x)
)
≤ Cd−1ε|Dv|(Bdr (x)),

which is the claim. �

It is now clear that we can repeat finitely many times the above constructions in order to cover all the
reduced boundary. More precisely, given any δc > 0, we pick a set of unit vectors {ns, s = 1, . . . , Jδc} ⊂ Rd
in such a way that

Bd1 (0) ⊂
Jδc⋃
s=1

C(ns, δc).

By choosing a′ = δc/2 and applying Proposition 10.2, we obtain the following

Corollary 10.4. Let v ∈ BV(Rd;R) and for every s = 1, . . . , Jδc set

Gs :=

{
x :

Dv

|Dv|
(x) ∈ C(ns, δc)

}
.

For every ε > 0 there exist r̄ > 0 and w ∈ BV(Rd;R) such that:

• |Dv|xGs� |Dw| for every s = 1, . . . , Jδc and

Dv

|Dv|
(x) ∈ C(ns, δc)⇒

Dw

|Dw|
(x) ∈ C

(
ns,

δc
2

)
for |Dw|-a.e. x;

• for every s = 1, . . . , Jδc there exists a family of C1 functions (Li,j,s) for i, j ∈ N, with Lipschitz
constant δc, such that, setting Ehi,j,s := {Li,j,s > h}, then

|Dw|xGs=
ˆ
R

∑
i,j

Hd−1x∂?Ehi,j,s dh.

Furthermore, there exists a family of compact sets (K ′s,i) ⊂ Rd with i ∈ N and s ∈ {1, . . . , Jδc}
such that for r < r̄ it holds∣∣∣∣DvxGsi−ˆ

R

∑
i,j

νj,sHd−1x∂?Ehi,j,s dh

∣∣∣∣(Bdr (x)) < ε|Dv|(Bdr (x))

for every x ∈ K ′s,i, where νhi,j,s(·) is the outer unit normal to Ehi,j,s and Gsi ⊂ Gs are suitable
subsets of Gs.
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10.4. Decomposition for vector fields L1
loc(BVloc(Rd,Rd)). We now consider the vector-valued case,

i.e. we take b ∈ L1
loc(R,BVloc(Rd,Rd)) and we are interested in covering the singular part of Db: in

order to achieve this, we have to exploit Alberti’s Rank one Theorem 3.8.
More precisely, let us denote by n,m the two unit vectors given by Rank one property, i.e. such that

Dsingb = m⊗ n|Dsingb|.

Consider the points (t̄, x̄) with the following properties:

• (t̄, x̄) is a point where the measure Db is essentially singular, i.e. it is a density point for Dsingb.
More precisely, (t̄, x̄) is such that for every ε > 0 there exists r̄(ε, t̄, x̄) > 0 such that for 0 < r < r̄
it holds

|Dsingb|(Bd+1
r (t̄, x̄)) > (1− ε)|Db|(Bd+1

r (t̄, x̄)); (10.9)

• (t̄, x̄) is a Lebesgue point of the matrix valued map (t, x) 7→ m⊗n(t, x), which is defined |Dsingb|-
a.e., that is to say for every ε > 0 there exists r̄′(ε, t̄, x̄) > 0 such that for 0 < r < r̄′ it holds

ˆ
Bd+1
r (t̄,x̄)

|m⊗ n−m⊗ n||Dsingb|(dtdx) < ε|Dsingb|(Bd+1
r (t̄, x̄)), (10.10)

having denoted by m⊗ n the Lebesgue value in (t̄, x̄).

By a standard application of Egorov Theorem, for every fixed ε > 0 we can find a sequence (r̄i)i∈N
(where r̄i depend only on ε) and a family of compact sets

(
G(ε, ri)

)
i∈N ⊂ Rd+1 covering almost all the

set where Dsingb is concentrated and such that the limits (10.9) and (10.10) are uniform on each G(ε, ri).
Moreover, we can further split the compact sets G(ε, ri) according to the direction: indeed, we denote by
G(ε, ri, s) the set of points (t, x) ∈ G(ε, ri) such that m(t, x) ∈ C(ns, δc), for s ∈ {1, . . . , Jδc}.

Now, we denote by bn := b · n the component of b along n. By Rank one, the (scalar) function bn has
polar vector m in (t̄, x̄). Thus, by Chebyshev inequality, we can say that for an arbitrary large fraction
(w.r.t Dsingb) of points (t, x) ∈ G(ε, ri, s) it holds

Dbn
|Dbn|

(t, x) = m ∈ C(ns, δc)

since m is close to m in view of (10.10). Therefore, we are in position to apply Corollary 10.4: there
are a BV function Un and C1 functions (with Lipschitz constant less than δc) (Ln

i,j,s) for i, j ∈ N and

s ∈ {1, . . . , Jδc} such that, set En,h
i,j,s := {Ln

i,j,s > h}, then the derivative of Un can be written as

|DUn|xGs=
ˆ
R

∑
i,j

Hd−1x∂?Es,n,hi,j
dh.

Furthermore, there exist r̄ > 0 and a family of sets (Kn
s )s ⊂ R× Rd such that for r < r̄ it holds∣∣∣∣Dbn − ˆ

R

∑
i,j

νn,hi,j,sH
d−1x∂?En,h

i,j,s
dh

∣∣∣∣(Bdr (x)) < ε|Dbn|(Bdr (x))

for every x ∈ Kn
s where νn,hi,j,s is the outer unit normal to En,h

i,j,s.
Finally if we multiply back times m we end up with a matrix valued measure which is the derivative of

an approximated BV vector field: this yields a sort of vectorial analog of Corollary 10.4. By expliciting

the normal to the set En,h
i,j,s, observing that the map (t, x, h) 7→ 1{bt·n>h}(x) is measurable and using

again a measurable selection argument, we can finally state the following

Corollary 10.5. Let b ∈ L1
loc(R,BVloc(Rd,Rd)). Then for every ε > 0 and δc > 0 there exists compact

sets Kε,j
δc,ri

the such that if (t̄, x̄) ∈ Kε,j
δc,ri

then there exist a family of C1 functions {ynj = Lt,h(y⊥nj )}t,h
with Lipschitz constant less than δc such that∣∣∣∣Db−

ˆ {[
m(t̄, x̄)⊗ (1,−∇y⊥n Lt,h)

]
δt ⊗

(
(id, Lt,h)]Ld−1

)}
dtdh

∣∣∣∣(Bd+1
r (t̄, x̄)

)
< Cε|Dsingb|

(
Bd+1
r (t̄, x̄)

)
.
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11. Construction of approximate cylinders of flow in the BV setting

The aim of this section is to construct locally some approximate flow cylinders, which maintain a quite
regular shape and have a small boundary flow. We want to verify that Assumption 7.1 or Assumption
7.6 holds in a neighborhood of every point (t, x), and that then Assumption 8.12 is valid.

As observed in Remark 4.6, one has to control the lateral flow either for a family of smooth Lipschitz
functions φ`γ or Lipschitz sets Q`γ , the two conditions being equivalent.

11.1. Estimates for the absolutely continuous part. Fix a matrix A. For γ ∈ Γ define the cylinder

φ`,δ1γ

(
t, γ(t) + eAty

)
=

[
1− 1

δ1`
dist

(
y,Bd` (0)

)]+

,

and the normalization constant

σ`,δ1 =

ˆ [
1− 1

δ1`
dist

(
x,Bd` (0)

)]+

Ld(dx).

A standard computation gives

1

σ`,δ1

ˆ t+γ

t−γ

ˆ ∣∣(1,b) · ∇t,xφ`,δ1γ

∣∣Ld+1

=
1

σ`,δ1

ˆ t+γ

t−γ

∣∣∣−∇xφ`,δ1γ ·
(
b(t, γ(t)) +AeAty

)
+ b(t, x) · ∇xφ`,δ1γ (t, x)

∣∣∣Ld+1

=

ˆ t+γ

t−γ

1

δ1`

ˆ
|y|∈`(1,1+δ1)

∣∣∣(b(t, γ(t) + eAty)− b(t, γ(t))−AeAty
)
· e−At y

σ`,δ1 |y|

∣∣∣etrAt Ld+1(dy),

so that if η is a Lagrangian representation for (1,b)Ld+1xΩ with Ω Lipschitz (because of Proposition
5.12)

ˆ
1

σ`,δ1

[ ˆ t+γ

t−γ

ˆ ∣∣(1,b) · ∇t,xφ`,δ1γ

∣∣Ld+1

]
η(dγ)

≤
ˆ [ ˆ t+γ

t−γ

1

σ`,δ1δ1`

ˆ
|y|∈`(1,1+δ1)

∣∣∣b(t, γ(t) + eAty
)
− b(t, γ(t))−AeAty

∣∣∣ |e−Aty||y|
etrAt Ld+1(dtdy)

]
η(dγ)

≤ 1

δ1ωd`d+1

ˆ
|e−Atz|∈`(1,1+δ1)

|e−2Atz|
|e−Atz|

ˆ
Ω

∣∣b(t, x+ z)− b(t, x)−Az
∣∣L2d+1(dtdxdz)

≤ 1

δ1ωd`d+1

ˆ
|e−Atz|∈`(1,1+δ1)

|e−2Atz|
|e−Atz|

|z|
∣∣Dbt −ALd

∣∣(Ωt +Bd(1+δ1)e‖A‖t`(0)
)
Ld+1(dtdx)

≤ Cd‖e2‖A‖t‖L∞(ptΩ)

∣∣Db−ALd+1
∣∣(Ω + {t = 0} ×Bd(1+δ1)‖e‖A‖t‖L∞(ptΩ)`

(0)
)
.

(11.1)

Letting `, δ1 → 0 and choosing the matrices A in order to approximate the a.c. part of Db, we conclude
with the following proposition.

Proposition 11.1. For every point (t, x) there exists r̄t,x such that for L1-a.e. 0 < r < r̄t,x the ball
Bd+1
r (t, x) is (1,b)-proper and Assumption 7.1 holds with constant $r(t, x) such that

$r(t, x) ≤

{
τ |Db|(Bd+1

r (t, x)) (t, x) Lebesgue point for |Da.c.b|,
Cd|Db|(Bd+1

r (t, x)) otherwise.

The proof is just an application of the Radon-Nikodym theorem, and it will be omitted.

11.2. Estimates for the singular part. Fix 0 < τ � 1, and set

δc =
τ2

2

By Corollary 10.5 of Section 10, there exists a compact set Kτ
δc,r̄

such that
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(1) its complement has small measure

|Dsingb|
(
Rd+1 \Kτ

δc,r̄

)
< τ ;

(2) each (t̄, x̄) ∈ Kτ
δc,r̄

is a Lebesgue point for m⊗ n: denote by

m⊗ n = m⊗ n(t̄, x̄)

its value, and for every r < r̄ it holds

|Da.c.b|(Bd+1
r (t̄, x̄)),

ˆ
Bd+1
r (t̄,x̄)

|m⊗ n−m⊗ n||Dsingb|(dtdx) < τ2|Dsingb|(Bd+1
r (t̄, x̄)); (11.2)

(3) for every (t̄, x̄) ∈ Kj,τ , r < r̄ there exists a compact family of δc-Lipschitz functions {yn =
Lt,h(y⊥n )}h∈H such that defining the function U by

U(t, x̄) = 0, DU(t) =

ˆ
H

{[
m⊗ (1,−∇y⊥n Lt,h)

]
δt ⊗

(
(id, Lt,h)]Ld−1

)}
dtdh,

then it holds

|DU −Db|(Bd+1
r (t̄, x̄)) < τ2|Db|(Bd+1

r (t̄, x̄)). (11.3)

This compact set is obtained by the union of the compact sets Kτ,j
δc,r̄

of Corollary 10.5, with r̄ � 1.

11.2.1. Construction of the approximate cylinders of flow. We can assume that n = e1, and write y =
(y1, y

⊥) ∈ R× Rd−1 for the corresponding coordinates. Set

¯̀
1 := τ`, δ1 := τ2, ` > 0, (11.4)

and let η be a Lagrangian representation of ρ(1,b)Ld+1xBd+1
r̄ (t̄,x̄).

We consider three cases.

Case 1: m1 = m · n = m · e1 < −τ . For every γ ∈ Γ , define the functions `±1,γ : [t−γ , t
+
γ ]× Bd−1

` → R by
solving the following ODEs:

∂t`
−
1,γ(t, y⊥) = −U1

(
t, γ(t) + (−`−1,γ(t, y⊥)+, y⊥)

)
+ U1

(
t, γ(t) + ((−δ1 − δc)`+, 0)

)
, (11.5a)

∂t`
+
1,γ(t, y⊥) = U1

(
t, γ(t) + (`+1,γ(t, y⊥)−, y⊥)

)
− U1

(
t, γ(t) + ((δ1 + δc)`−, 0)

)
, (11.5b)

with initial data `±1,γ(t−γ , y
⊥) = ¯̀

1. We recall that U1 = U · e1 = U · n, and we have denoted with ± the

right/left limits of 1-d BV functions.

Lemma 11.2. The solutions to (11.5) satisfy

(1) [t−γ , t
+
γ ] 3 t 7→ `±1,γ(t, y⊥) is decreasing;

(2) Bd−1
` (0) 3 y⊥ 7→ `±1,γ(t, y⊥) is δc-Lipschitz continuous;

(3) δ1` ≤ `±1,γ(t, y⊥) ≤ ¯̀
1 for all (t, y⊥) ∈ [t−γ , t

+
γ ]×Bd−1

` (t̄, x̄).

Proof. We prove the lemma for `+1,γ , being the analysis of `−1,γ equivalent. The existence of a unique

solution which is decreasing in time is standard, see for example [BG11]: indeed for fixed (t, y⊥)

y1 7→ U1(t, (y1, y
⊥))

is decreasing because m1 < 0, and then classical results on the flow of monotone operators apply.
The fact that the level sets of U1 are δc-Lipschitz in the coordinates (y1, y

⊥) implies that

U1

(
t, γ(t) + (δ1`+ δc(`− |y⊥|)−, y⊥)

)
≥ U1

(
t, γ(t) + ((δ1 + δc)`−, 0)

)
,

so that the solution starting from ¯̀
1 = τ` > (δ1 + δc)` satisfies

`+1,γ(t, y⊥) ≥ δ1`+ δc(`− |y⊥|) ≥ δ1
when |y⊥| < `.

For ȳ⊥ fixed, again from the δc-Lipschitz regularity of the level sets of U , it is easy to see that the cone∣∣y1 − `±1,γ(t, ȳ⊥)
∣∣ ≤ δc|y⊥ − ȳ⊥|

is invariant for the flow of the ODEs (11.5), so that for any fixed time t it holds that `+1,γ(t, y⊥) is
δc-Lipschitz. �
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`1

`

y⊥ ∈ R

y ∈ R

(a) The base of the cylinder, i.e. the set Q̄.

y ∈ R

`−1 (t, y⊥)

`

y⊥ ∈ R

L+
1,γ(t)

L−1,γ(t)

L2,γ(t)

L2,γ(t)

`+1 (t, y⊥)

(b) The base of the cylinder at a time t,

i.e. the set Q(t).

Figure 10. Time sections of the cylinder of approximate flow in the singular, 2D case.

Case 2: m1 > τ . Define the functions `±1,γ : [t−γ , t
+
γ ]×Bd−1

` → R by solving the ODEs (11.5a) backward

in time with final data `±1,γ(t+γ , y
⊥) = ¯̀

1. As in Lemma 11.2, one can check that

(1) [t−γ , t
+
γ ] 7→ `±1,γ(t, y⊥) is increasing;

(2) Bd−1
r (0) 3 y⊥ 7→ `±1,γ(t, y⊥) is δc-Lipschitz continuous;

(3) δ1` ≤ `±1,γ(t, y⊥) ≤ ¯̀
1.

Case 3: |m1| < τ . In this case set `±1,γ(t) = ¯̀
1 constant.

Define (see Figure 10b and 11b)

Q`γ(t) = Q`±1,γ ,`
= Q`−1,γ ,`

+
1,γ ,`

(t) :=
{
y = (y1, y

⊥) : −`−1 (t, y⊥) ≤ y ≤ `+1 (t, y⊥), |y⊥| ≤ `
}
.

For future reference we call

Q̄ :=
{
y = (y, y⊥) : −¯̀

1 ≤ y ≤ ¯̀
1, |y⊥| ≤ `

}
,

see also Figure 10a and 11a. Define the lateral sides of Q`±1,γ`
(t) as

L±1,γ(t) := ±Graph `±1,γ(t), L2,γ(t) =
{

(y1, y
⊥),−`−1,γ(t, y⊥) ≤ y1 ≤ `+1,γ(t, y⊥), |y⊥| = `

}
.
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y
⊥ ∈

R
d−

1

y ∈ R

`
`1

(a) The base of the cylinder, i.e. the set Q̄.

y
⊥ ∈

R
d−

1

y ∈ R

`

`+1 (t, y⊥)

`−1 (t, y⊥)

(b) The base of the cylinder at a time t, i.e. the set Q(t).

Figure 11. Time sections of the cylinder of approximate flow in the singular, d-
dimensional case.
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t

y1

y⊥

Q̄

Q(t)

γ
p

Figure 12. Evolution in time of the cylinder of approximate flow in the singular, 2D case.

After some standard computations, we have that the lateral inner flow across Q`±1,γ .`
is given by

ˆ
t∈(t−γ ,t

+
γ )

∣∣Trin ((1,b), Q`±1,γ ,`
(t)
)
· n(t)

∣∣Hdx∂Q
`
±
1,γ ,`

= I2,γ + I+
1,γ + I−1,γ ,

where

I2,γ :=

ˆ t+γ

t−γ

ˆ
L2,γ(t)

∣∣(γ̇(t)− b−
)
· e⊥

∣∣Hd−1dt (11.6)

and

I+
1,γ :=

ˆ t+γ

t−γ

ˆ
L+

1,γ(t)

∣∣(∂t`+1,γe1 + γ̇ − b−
)
· n
∣∣Hd−1dt, (11.7a)

I−1,γ :=

ˆ t+γ

t−γ

ˆ
L−1,γ(t)

∣∣(− ∂t`−1,γe1 − γ̇ + b−
)
· n
∣∣Hd−1dt. (11.7b)

To simplify notations we put an apex − to denote the inner trace of b on the boundary of a Lipschitz
set, and we recall that n = (1,−∇y⊥`±1,γ(t))/|(1,−∇y⊥`±1,γ(t))|.

11.2.2. Estimates on the flux. The following lemmas will be proved in the next section.

Lemma 11.3 (Transversal flux). For all (t̄, x̄) ∈ Kτ
δc,r̄

, r < r̄ it holdsˆ
1

Ld(Q̄)
I2,γ η(dγ) ≤ Cd−1τ |Db|

(
Bd+1
r+2`(t̄, x̄)

)
.

Lemma 11.4 (Non-transversal flux). For all (t̄, x̄) ∈ Kτ
δc,r̄

, r < r̄ it holdsˆ
1

Ld(Q̄)
I±1,γ η(dγ) ≤ Cd−1τ |Db|

(
Bd+1
r+2`(t̄, x̄)

)
.
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From these results we deduce the following proposition.

Proposition 11.5. For every point (t̄, x̄) ∈ Kτ
δc,r̄

and ε > 0, there exists a family of (1,b)-proper balls

{Bd+1
r (t̄, x̄)}r, with r < r̄ having 0 as a Lebesgue point, such that Assumption 7.6 holds with constant

$r(t̄, x̄) ≤ Cd−1τ |Db|
(
Bd+1
r+ε (t̄, x̄)

)
.

Proof. First of all, by the regularity assumptions on b, it follows that the lateral boundary of Q`±1,γ ,`
is

inner regular, so that Point (1) of Assumption 7.6 is verified. Moreover by construction Point (2) holds
with constant M = δ1, being δ1` ≤ `±1,γ . Finally for 2` < ε one applies the above Lemmas to recover

Point (3). �

By the above proposition and Proposition 11.1 we thus conclude that

Theorem 11.6. Assumptions 8.12 holds for a vector field b ∈ L1
loc(R,BVloc(Rd,Rd)).

Proof. By choosing the local balls accordingly to Proposition 11.5 on Kτ
δc,r̄

and according to Proposition
11.1 in the remaining points, one sees that the measure $τ can be taken to be

$τ = Cd−1τ |Db|xKa.c.∪Kτ
δc,r̄

+Cd|Db|xRd+1\(Ka.c.∪Kτ
δc,r̄

),

where Ka.c. is a compact set made of Lebesgue points for Da.c.b. In particular the measure $τ can be
made arbitrarily small by letting first τ → 0 and then r̄ → 0, so to have Ka.c. ∪Kτ

δc,r̄
↗ Rd+1. �

12. Flux estimates and proof of Lemmata 11.3 and 11.4

Here we prove the two lemmata that allow to control the boundary flux of (1,b) on Q`±1,γ ,`
. We will

just prove the case m1 < −τ , being the second case completely analogous by inverting time and the case
`±1,γ = ¯̀

1 a simple variation of the first situation.

Observe that for a given positive Borel function f(x, y) it holdsˆ
Γ

ˆ
L2,γ(t)

f(γ(t), y)Hd−1(dy)η(dγ) ≤
ˆ
Γ

ˆ
L̄2

f(γ(t), y)Hd−1(dy)η(dγ)

=

ˆ
(Bd+1
r̄ (t̄,x̄))t

ˆ
L̄2

f(x, y)Hd−1(dy)Ld(dx),

(12.1)

where we used the notation

L̄2 :=
{

(y1, y
⊥), |y1| ≤ ¯̀

1, |y⊥| = `
}
,

and (Bd+1
r̄ (t̄, x̄))t is the t-time section of the ball where (pt,x)]η is concentrated.

12.1. Proof of Lemma 11.3. We recall that the quantity I2,γ was defined in (11.6) as

I2,γ =

ˆ t+γ

t−γ

ˆ
L2,γ(t)

∣∣(γ̇(t)− b(t, γ(t) + y−)
)
· e⊥

∣∣Hd−1(dy)dt.

Since this quantity is defined for a curve γ and then integrated in γ, by the a.c. of the projection of η on
{t} × Rd we will consider b defined on suitable planes passing through γ(t). We will also avoid putting
the − sign to remember that we are taking the inner trace: for this term indeed, begin the surface L2,γ

a subset of γ + {|y1| < ¯̀
1} ×Bd−1

` (0), one can assume that it is made of Lebesgue points.

Proof of Lemma 11.3. Observe first that, for fixed t, adding and subtracting the term b(t, (γ1(t) +
y1, γ

⊥(t))) and using the triangular inequality, we can writeˆ
L2,γ(t)

∣∣∣(γ̇(t)− b(t, (γ1(t) + y1, γ
⊥(t) + y⊥))

)
· e⊥

∣∣∣Hd−1(dy)

≤
ˆ
L2,γ(t)

∣∣∣[b(t, (γ1(t) + y1, γ
⊥(t) + y⊥

))
− b

(
t,
(
γ1(t) + y1, γ

⊥(t)
))]
· e⊥

∣∣∣Hd−1(dy)

+

ˆ
L2,γ(t)

∣∣∣[b(t, (γ1(t) + y1, γ
⊥(t)

))
− γ̇(t)

]
· e⊥

∣∣∣Hd−1(dy).

(12.2)
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Integrating (12.2) in η and dividing by Ld(Q̄) = 2ωd−1`
d−1 ¯̀

1, we have that

1

Ld(Q̄)

ˆ
Γ

ˆ
L2,γ(t)

∣∣(γ̇(t)− b(t, (γ1(t) + y1, γ
⊥(t) + y⊥))

)
· e⊥

∣∣Hd−1(dy)η(dγ)

≤ 1

Ld(Q̄)

ˆ
Γ

ˆ
L2,γ(t)

∣∣∣b⊥(t, (γ1(t) + y1, γ
⊥(t) + y⊥)

)
− b⊥

(
t, (γ1(t) + y1, γ

⊥(t))
)∣∣∣Hd−1(dy)η(dγ)

+
1

Ld(Q̄)

ˆ
Γ

ˆ
L2,γ(t)

∣∣∣b⊥(t, (γ1(t) + y1, γ
⊥(t))

)
− (γ̇(t))⊥

∣∣∣Hd−1(dy)η(dγ)

=: SBV
2 (t) + Sav

2 (t).

We now proceed to estimate the two terms separately.

Step 1: estimate of the term SBV
2 (t). By (12.1) we have

SBV
2 (t) =

1

Ld(Q̄)

ˆ
Γ

ˆ
L2,γ(t)

∣∣∣b⊥(t, (γ1(t) + y1, γ
⊥(t) + y⊥)

)
− b⊥

(
t, (γ1(t) + y1, γ

⊥(t))
)∣∣∣Hd−1(dy)η(dγ)

≤ 1

Ld(Q̄)

ˆ
(Bd+1
r̄ (t̄,x̄))t

ˆ
L̄2

∣∣∣b⊥(t, (x1 + y1, x
⊥ + y⊥)

)
− b⊥

(
t, (x1 + y1, x

⊥)
)∣∣∣Hd−1(dy)Ld(dx).

By Fubini and the one dimensional slicing of BV functions [Zie89, Theorem 5.3.5], we deduce

SBV
2 (t) ≤ 1

Ld(Q̄)

ˆ
L̄2

[ ˆ
(Bd+1
r̄ (t̄,x̄))t

∣∣D⊥b⊥t
∣∣(x1 + y1,

(
x⊥, x⊥ + y⊥

))
Ld(dx)

]
Hd(dy)

≤ 1

Ld(Q̄)

ˆ
L̄2

`
∣∣D⊥b⊥t

∣∣((Bd+1
r̄+`+¯̀

1
(t̄, x̄))t

)
Hd(dy)

≤ 1

2ωd−1`d−1 ¯̀
1
· 2(d− 1)ωd−1`

d−2 ¯̀
1 · `|D⊥b⊥t |

(
(Bd+1

r̄+(1+τ)`(t̄, x̄))t
)

≤ Cd−1|D⊥b⊥t |
(
Bd+1
r+2`(t̄, x̄))t

)
.

Finally, integrating in time and using (11.2), we obtainˆ
SBV

2 (t)L1(dt) ≤ Cd−1|D⊥b⊥|
(
Bd+1
r̄+2`(t̄, x̄)

)
≤ Cd−1τ |Db|

(
Bd+1
r̄+2`(t̄, x̄)

)
. (12.3)

Step 2 Estimate of the term Sav
2 (t). We have using again (12.1)

Sav
2 (t) =

1

Ld(Q̄)

ˆ
Γ

ˆ
L2,γ(t)

∣∣∣b⊥(t, (γ1(t) + y1, γ
⊥(t)

))
− (γ̇(t))⊥

∣∣∣Hd−1(dy)η(dγ)

≤ 1

Ld(Q̄)

ˆ
(Bd+1
r (t̄,x̄))t

ˆ
L̄2

∣∣∣b⊥(t, (x1 + y1, x
⊥))− b⊥(t, x)

∣∣∣Hd−1(dy)Ld(dx),

and arguing as before, using Fubini and the one dimensional slicing of BV functions, we obtain

Sav
2 (t) ≤ 1

Ld(Q̄)

ˆ
L̄2

ˆ
(Bd+1
r (t̄,x̄))t

∣∣∣b⊥(t, (x1 + y1, x
⊥))− b⊥(t, x)

]
· e⊥

∣∣∣Ld(dx)Hd−1(dy)

≤ 1

Ld(Q̄)

ˆ
L̄2

¯̀
1|D1bt|

(
(Bd+1

r̄+¯̀
1
(t̄, x̄))t

)
Hd−1(dy)

≤ 1

2ωd−1`d−1 ¯̀
1
· 2(d− 1)ωd−1`

d−2 ¯̀
1 · ¯̀1|D1bt|

(
(Bd+1

r+¯̀
1
(t̄, x̄))t

)
≤ Cd−1

¯̀
1

`
|D1bt|

(
(Bd+1

r+¯̀
1
(t̄, x̄))t

)
≤ Cd−1τ |D1bt|

(
(Bd+1

r+¯̀
1
(t̄, x̄))t

)
.

Integrating in time we obtain ˆ
Sav

2 (t)L1(dt) ≤ Cd−1τ |Db|
(
Bd+1
r+¯̀

1
(t̄, x̄)

)
. (12.4)



78 STEFANO BIANCHINI AND PAOLO BONICATTO

Summing up (12.3) and (12.4) we finally deduce, for τ � 1,

1

Ld(Q̄)

ˆ
Γ

I2,γ η(dγ) =
1

Ld(Q̄)

ˆ
Γ

ˆ t+γ

t−γ

ˆ
L2,γ(t)

∣∣(γ̇(t)− b(t, x+ y)
)
· e⊥

∣∣Hd−1(dy)L1(dt)η(dγ)

≤
ˆ
SBV

2 (t)L1(dt) +

ˆ
Sav

2 (t)L1(dt)

≤ Cd−1τ |Db|
(
Bd+1
r+2`(t̄, x̄)

)
.

which is the claim. �

12.2. Proof of Lemma 11.4. The proof of Lemma 11.4 depends heavily on the shape of the cylinders,
which cancel the effect of the divergence thanks to the choice of `±1,γ(t, y⊥). The goal is to show Lemma
11.4, i.e.

1

Ld(Q̄)

ˆ
I±1,γ η(dγ) ≤ Cd−1τ |Db|

(
Br+2`

)
.

We will prove only the estimate for I1,+
γ being the other case identical.

Proof of Lemma 11.4 for I+
1,γ . Recall that the quantity I+

1,γ was defined in (11.7) as

I+
1,γ =

ˆ t̄+r̄/2

t̄−r̄/2

ˆ
L+

1,γ(t)

∣∣( ˙̀+
1,γe1 + γ̇ − b−

)
· n
∣∣Hd−1(dy)dt

≤
ˆ t̄+r̄/2

t̄−r̄/2

ˆ
|y⊥|<`

∣∣ ˙̀+
1,γ + γ̇1 − b1

(
t, γ(t) + (`+1,γ(t), y⊥)

)∣∣Ld−1(dy⊥)dt

+

ˆ t̄+r̄/2

t̄−r̄/2

ˆ
|y⊥|<`

∣∣(γ̇⊥ − b⊥
(
t, γ(t) + (`+1,γ(t), y⊥)

))
· ∇y⊥`+1,γ(t, y⊥)

∣∣Ld−1(dy⊥)dt

≤
ˆ t̄+r̄/2

t̄−r̄/2

ˆ
|y⊥|<`

∣∣∣b1

(
t, γ(t) + (`+1,γ(t), y⊥))− b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− ˙̀+

1 (t)
∣∣∣Ld−1(dy⊥)dt

+

ˆ t̄+r̄/2

t̄−r̄/2

ˆ
|y⊥|<`

∣∣b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− γ̇1(t)

∣∣Ld−1(dy⊥)dt

+

ˆ t̄+r̄/2

t̄−r̄/2

ˆ
|y⊥|<`

∣∣(γ̇⊥ − b⊥
(
t, γ(t) + (`+1,γ(t), y⊥)

))
· ∇y⊥`+1,γ(t, y⊥)

∣∣Ld−1(dy⊥)dt.

Integrating at a fixed time t the above equation in γ and dividing by the area of Q̄, we have that

1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|<`

∣∣( ˙̀+
1,γe1 + γ̇ − b−

)
· n
∣∣Ld−1(dy⊥)η(dγ)

≤ 1

Ld(Q̄)δ1`

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣b1

(
t, γ(t) + (`+1,γ(t, y⊥), y⊥)

)
− b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− ˙̀+

1 (t)
∣∣∣Ld−1(dy⊥)η(dγ)

+
1

Ld(Q̄)δ1`

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− γ̇1(t)

∣∣∣Ld−1(dy⊥)η(dγ)

+
1

Ld(Q̄)δ1`

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣(b⊥(t, γ(t)
)
− b⊥

(
t, γ(t) + (`+1,γ(t), y⊥)

))
· ∇y⊥`+1,γ(t, y⊥)

∣∣∣Ld−1(dy⊥)η(dγ)

=: SRL
1 (t) + Sav

1 (t) + Str
1 (t).

We now proceed to estimate the terms separately.
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Step 1: estimate of the term Sav
1 (t). We have

Sav
2 (t) =

1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|≤`

∣∣∣b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− γ̇1(t)

∣∣∣Ld−1(dy⊥)η(dγ)

=
1

2¯̀
1

ˆ
(Bd+1
r (t̄,x̄))t

ˆ
|y⊥|≤`

∣∣∣b1

(
t, x+ ((δ1 + δc)`, 0)

)
− b1(t, x))

∣∣∣Ld(dx)

≤ (δ1 + δc)`

2¯̀
1
|Dbt|

(
(Bd+1

r̄+` (t̄, x̄))t
)

≤ τ |Dbt|
(
(Bd+1

r̄+` (t̄, x̄))t
)

by Fubini and the one dimensional slicing of BV.

Step 2: estimate of the term SRL
1 (t). By the definition of `+1,γ(t, y⊥) through the ODE (11.5b) we obtain

SRL
1 (t) =

1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣b1

(
t, γ(t) + (`+1,γ(t, y⊥), y⊥)

)
− b1

(
t, γ(t) + ((δ1 + δc)`, 0)

)
− ˙̀+

1 (t, y⊥)
∣∣∣Ld−1(dy⊥)η(dγ)

=
1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣(b1 − U1)
(
t, γ(t) + (`+1,γ(t, y⊥), y⊥)

)
− (b1 − U1)

(
t, γ(t) + ((δ1 + δc)`, 0)

)∣∣∣Ld−1(dy⊥)η(dγ)

≤ 1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣(b1 − U1)
(
t, γ(t) + (`+1,γ(t, y⊥), y⊥)

)
− (b1 − U1)

(
t, γ(t) + ((δ1 + δc)`, y

⊥)
)∣∣∣Ld−1(dy⊥)η(dγ)

+
1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|<`

∣∣∣(b1 − U1)
(
t, γ(t) + (δ1 + δc, y

⊥)
)
− (b1 − U1)

(
t, γ(t) + ((δ1 + δc)`, 0)

)∣∣∣Ld−1(dy⊥)η(dγ)

≤ 1

Ld(Q̄)

ˆ
Γ

|Db−DU|
(
γ(t) +

{
|y⊥| < `, δ1` < y1 < ¯̀

1

})
η(dγ)

+
1

Ld(Q̄)

ˆ
(Bd+1
r (t̄,x̄))t

ˆ
|y⊥|<`

∣∣∣(b1 − U1)
(
t, x+ (δ1 + δc, y

⊥)
)
− (b1 − U1)

(
t, x+ ((δ1 + δc)`, 0)

)∣∣∣Ld−1(dy⊥)Ld(dx)

≤ 1

2ωd−1`d−1 ¯̀
1
· 2ωd−1`

d−1 ¯̀
1 · |Dbt −DU|

(
(Bd+1

r̄+2`(t̄, x̄))t
)

+
1

2ωd−1`d−1 ¯̀
1
· 2ωd−1`

d−1` · |D⊥bt −D⊥U|
(
(Bd+1

r̄+2`(t̄, x̄))t
)

≤ Cd−1

(
τ +

`τ2

¯̀
1

)
|Dbt|

(
(Bd+1

r̄+2`(t̄, x̄))t
)
≤ Cd−1τ |Dbt|

(
(Bd+1

r̄+2`(t̄, x̄))t
)
,

where we applied (11.3) and (11.2) to control the normal derivative.

Step 3: estimate of the term Str
1 (t). For the last term, recalling that y⊥ 7→ `+1,γ is δc-Lipschitz by Lemma

11.2, we have

Str
1 (t) =

1

Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|≤`

∣∣(γ̇⊥ − b⊥
(
t, γ(t) + (`+1,γ(t, y⊥), y⊥)

))
· ∇y⊥`+1,γ(t, y⊥)

∣∣Ld−1(dy⊥)η(dγ)

≤ δc
Ld(Q̄)

ˆ
Γ

ˆ
|y⊥|≤`

∣∣∣b⊥(t, γ(t) + (`+1,γ(t, y⊥), y⊥)
)
− b⊥

(
t, γ(t)

)∣∣∣Ld−1(dy⊥)η(dγ).

Again enlarging the set Q`±1,γ ,`
(t) to Q̄ we obtain

Str
1 (t) ≤ δc

Ld(Q̄)

ˆ
|y⊥|≤`

(
`|D⊥b|+ ¯̀

1|D1b|
)(

(Bd+1
r+`+`1

(t̄, x̄))t
)
Ld−1(dy⊥)

≤ δc
2ωd−1`d−1 ¯̀

1
· ωd−1`

d−1 · (τ + 1)`|Db|
(
(Bd+1

r̄+2`(t̄, x̄))t
)

≤ Cd−1τ |Db|
(
(Bd+1

r̄+2`(t̄, x̄))t
)
,

by the choice of δc ≤ τ2.

Integrating in time and summing up the three terms we conclude the proof of Lemma 11.4. �
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Glossary

C(X,Y ): space of continuous functions over X. 16

A: generic set. 15
A b B: set A whose compact closure is contained in B. 15
Ax: x section of A ⊂ X × Y . 15
Adm(µi): sets of admissible transference plans. 19
A`γ: set of intersecting curves. 47

A±: subset of ∂Ω where trajectories are exiting or entering, respectively. 42ffl
A
f µ: average integral on the sets A. 17

A(x): x section of A ⊂ X × Y . 15

B: generic vector field in Rd+1. 15
b = (bi)

d
i=1: vector. 15

Bdr (x): balls of radius r centered at x ∈ Rd. 15
O(f): notation for constant of the order f . 17
∂Ω: frontier of a set in Rd. 15
bt: equivalent to b(t) for time dependent vector fields. 15
BVloc: space of locally BV functions. 16

C: generic constant. 17
Cd: dimensional constant. 17
1A: characteristic function of the set A. 15
Ck(Rd,Rd′): space of functions on Rd with continuous derivatives up to order k. 16
clos(A,B): relative closure of the set A in B. 15
closA: closure of the set A. 15
∗: convolution in Rd. 17
Cylr,Lt,x : ρ(1,b)-proper cylinder. 24

Def : directional derivative of f along e. 16
Da.c.b: absolutely continuous part of Df . 19
Dcantorb: Cantor part of Dsingf . 19
δx: Dirac mass at x. 16
δ1: maximal shrinking coefficient of an approximate cylinder of flow. 72
Df : differential of the function f . 15
µ =

´
µα f]µ(dα): disintegration of µ w.r.t. the partition {Aα}α. 16

div b: divergence of the vector field b. 15
Djumpb: jump part of Dsingf . 19
D(f): domain of the function f . 16
Dsingb: singular part of Df . 19

e: unit vector. 16
Eb: symmetric part of the derivative Db. 19
Ea: equivalence classes of ∼. 60
E`γ: set of curves not contained in suppφ`γ . 45

Efh : upper level set of the function f . 20
Eh: upper level set of a function. 20
¯̀
1: starting shape of the approximate cylinder of flow in the BV case. 72
`±1,γ: evolution of the e1-boundary of the approximate cylinder. 72
η: Lagrangian representation. 17
ηcr: restriction fo η to ΓCr. 51
ηiΩ: push forward of η by RiΩ. 33
ηΞ : restriction of η to Ξ. 53

f : generic function. 15
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φ: particular functions used in the paper, usually with an index/apex. 17
φδ,±: inner/outer distance functions from a set. 22
Φ`enter(γ): functional computing intersecting curves across φ`γ . 47

Φ`exit(γ): functional computing the curves exiting the cylinder φ`γ . 45

φ`γ: approximate cylinder of flow. 44

F
in

(Ω): untangling functional for ηin. 55

F
out

(Ω): untangling functional for ηout. 55
A: suitable set of indexes. 60
fxA: restriction of the function f to the set A. 16
frx : rescaled f about x ∈ Rd. 16
f]µ: push-forward of the measure µ through f . 16
f(x̄±): right left limit of a 1d function at x̄. 17

γ: curve define in an interval of time. 17
γ ∼ γ′: equivalent relation among untangled trajectories. 60
g ◦ f : composition of two functions. 16
Graph f : graph of the function f . 16
Graph γ: Graph of the a.c. curve γ in the closed interval of definition. 18

f̂: quotient map for {Ea}a. 61
Hd: d-dimensional Hausdorff measure. 16

I2,γ: flow across L2,γ . 73
id: identity function. 17
Iγ = (t−γ , t

+
γ ): interval of definition of the curve γ. 17

I−1,γ: flow across L−1,γ . 75
intA: interior of the set A. 15´
f dx: integral of a Borel function f w.r.t. Ld. 16´
f µ: integral of a Borel function f w.r.t. µ. 16

I+
1,γ: flow across L+

1,γ . 75

J : jump set of a BV function. 19

Kε,ε′

r̄ ⊂ Kε: compact subset of ∂Ω defined in Lemma 4.14. 28
Kn: projection of Kn. 58
Kτ
δc,r̄

: compact set with suitable local covering. 71

Kτ,±: compact sets where the untangling functionals are controlled. 57, 59

L: scale constant. 17
L1(µ, Y ): space of functions whose modulus is µ-integrable. 16
L̄2: lateral boundary of Q̄ with normal e⊥1 . 76
L2,γ: lateral boundary of Q`±1,γ ,`

with normal e⊥1 . 73

〈f, ψ〉: distribution f evaluated on ψ. 15
Ld: Lebesgue measure in Rd. 16
L∞(µ, Y ): space of functions with µ-essentially bounded Y -norm. 16
L±1,γ: lateral boundary of Q`±1,γ ,`

given by the graph of `±1,γ . 73

M(X): set of Radon measures. 16
m: image measure f̂]η. 61
m: direction of the variation in the rank-one property. 20
Kn: compact subset of Γ of trajectories with existence interval ≥ 21−n. 58
S: sets of curves with the same initial point. 53
Mb(X): set of bounded Radon measures. 16
m: direction of the variation in the rank-one property at the point (t̄, x̄). 71
M+(X): set of positive Radon measures. 16
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M: deformation factor. 44, 51
µ: generic signed Radon measure. 16
µβ: measure div(β(ρ)(1,b)). 64

µβa : disitegration of the measure div(β(ρ)(1,b)). 63
|µ|: total variation measure of µ. 16
µrx: rescaled µ about x ∈ Rd. 16
µxA: restriction of the measure µ to the set A. 16
M(x): matrix derivative of the absolutely continuous part of a BV vector field. 20

N : negligible set w.r.t. some measure. 17
n: normal to the rank-one property. 15, 20
n: normal to the rank-one property at the point (t̄, x̄). 71
‖ · ‖: norm in a generic Banach space. 15
| · |: norm in Rd. 15
νa.c.: absolutely continuous part of ν. 16
ν � µ: ν is absolute continuous w.r.t. µ. 16
ν⊥: orthogonal component of ν w.r.t. to another given measure. 16

ωd: volume of the unit ball in Rd. 15
Ωε: perturbation of a proper set constructed in Theorem 4.16. 28
µ ⊥ ν: orthogonal measures. 16

∂lQ: lateral boundary of the set Q. 17
∂Ωε1: subset of ∂Ω defined in Theorem 4.16. 29
∂Ωε2: subset of ∂Ω defined in Theorem 4.16. 29
∂?F : reduced boundary of the set of finite perimeter F . 20
∂xif : spatial partial derivative along the i-th direction. 15
∂tft: time partial derivative. 15
π: transference plan. 19
ψ: smooth test function. 17
pX : projection on the space X. 15

Q: sets of particular shape, with some index/apex. 17
Q̄: base of the cylinder Q`±1,γ ,`

. 73

Q`γ: cylinders of approximate flow. 51

Q`−1,γ ,`
+
1,γ ,`

: approximate cylnder with shape determined by `±1,γ , `. 73

R: real numbers. 15
dν
dµ : Radon-Nikodym derivative of ν w.r.t. µ ≥ 0. 16

R(f): range of the function f . 16
Rd: d-dimensional real vector space. 15
Fr(A,B): relative frontier of A in B. 15
int(A,B): relative interior of the set A in B. 15
ρ: positive solution to transport equation. 17
ρiΩ: evaluation of the measure ηiΩ. 34

W̊ : trajectories with good intersetion properties in the open graph. 58
RiΩ: i-th restriction operator. 33
ρcr: ((t, x)-evaluation of ηCr. 51
RΩ: restriction operator. 33
(RΩ)]η

out: restrition of (RΩ)]η to the exiting trajectories. 55

S1: subset of ∂(Ωε \ Ω) defined in Theorem 4.16. 30
S2: partition of the set ∂(Ωε \ Ω), Theorem 4.16. 30
S−3 : partition of the set ∂(Ωε \ Ω), Theorem 4.16. 30
S+

3 : partition of the set ∂(Ωε \ Ω), Theorem 4.16. 30
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S4: partition of the set ∂(Ωε \ Ω), Theorem 4.16. 30
Sd: unit sphere of dimension d. 15
σ(f(t)): evaluation of the function f w.r.t. the measure ρ(t)Ld. 44
o(f): notation for constant infinitesimal w.r.t. f . 17
supp f : support of a function f . 16

T: hitting point map. 32
t: time coordinate. 15
ti,−γ : entrance time of γ in Ω. 33

ti,+γ : exit time of γ in Ω. 33

T
i,±
Ω : mapping of γ to its Ω entering/exiting point. 33

Trin(B,Ω) · n: distributional inner normal trace. 31
Trout(B,Ω) · n: distributional outer normal trace. 31

Trin(b,Ω): inner trace of the vector fields b. 35
f: quotient map for {℘a}a. 61

u: L∞-solution to div(uρ(1,b)) ∈M. 63
Ux: neighborhood of x. 15
U : function locally approximating b. 72

∆: set of untangled trajectories. 59
Γ : space of characteristics. 17
Γ cr: set of trajectories crossing a domain. 51
Γ cr(Ω): set of Ω-crossing trajectories. 54
Γ in(Ω): set of Ω-entering trajectories. 54
ϕ: Convolution kernel. 17
$: constant controlling the flux across the lateral boundary of approximate cylinders of flows. 44
$τ : measure controlling the untangling functional. 57, 59
ςx: local representation of a Lipschitz boundary. 17
Υ : product space of intervals in R and curves in Rd. 17
Ξ: set of uniqueness of η. 53

W : set of trajectories with good intersection properties. 45
W1: set of disjoint trajectories. 45
W2: set of trajectories whose intersection is still a trajectory. 45
wa(t): density of the disintegration of Ld+1 w.r.t. {℘a}a. 61
℘a: evaluation of the equivalence class Ea. 60

X: generic metric space. 15
x: generic point in the metrix space X. 15
x: space coordinate. 15
xn: coordinate along n. 15
x⊥n : coordinates orthogonal to n. 15

ζτC : measure locally controlling the untangling functionals. 57
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[Dep03] N. Depauw. Non-unicité du transport par un champ de vecteurs presque BV. In Seminaire: Équations aux
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