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Program:

1. Linear partial differential operators:
Definitions and main examples. - Principal symbol of a linear differential operator. - Change
of independent variables. - Canonical form of linear differential operators of order 1 and of
order 2, with constant coeffcients. - Characteristics. Elliptic and hyperbolic operators. - Re-
duction to a canonical form of second order linear differential operators in a two-dimensional
space. Parabolic operators. - General solution of a second order hyperbolic equation with
constant coefficients in the two-dimensional space.

2. Wave equation:
Vibrating string. - Cauchy problem. D’Alembert formula. - Some consequences of the
D’Alembert formula. - Semi-infinite vibrating string. - Periodic problem for wave equation. -
Introduction to Fourier series. - Finite vibrating string. Standing waves. - Energy of vibrating
string. - Solutions in dimension 2 and 3. - Solutions of the inhomogeneous problem.

3. Laplace equation:
Ill-posedness of Cauchy problem for Laplace equation. - Dirichlet and Neumann problems
for Laplace equation on the plane. - Properties of harmonic functions: mean value theorem,
the maximum principle. - Harmonic functions on the plane and complex analysis.

4. Heat equation:
Derivation of heat equation. - Main boundary value problems for heat equation. - Fourier
transform. - Solution of the Cauchy problem for the heat equation on the line. - Mixed
boundary value problems for the heat equation. - More general boundary conditions. -
Solution of the inhomogeneous heat equation.

5. Statement of the Cauchy-Kowalewska theorem. Abstract Cauchy problem. One-
parameter evolution semigroups.

6. Notes on Schroedinger equation, Maxwell equation and Dirac equation.

The following Lecture Notes consist essentially of somewhat modified and corrected Sec-
tions 2-5 of the Lecture Notes by Boris Dubrovin http://people.sissa.it/̃ dubrovin/bd courses.html,
with the addition of the subsections 3.8 and 3.9 (in italian) based on ch. 2.4.1 and 2.4.2 in
L.C. Evans, Partial differential equations, Providence, AMS, 1998, section 5 based on ch. 1
of H.O. Fattorini, The Cauchy problem (Enc. Math. Appl.vol 18) Addison-Wesley, 1983 and
section 6 for which the suggested reference is W. Thirring, A course in mathematical physics,
vol. 3, Springer, 1981.
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1 Introduction

Le equazioni alle derivate parziali (PDE’s) legano una (o più) funzioni incognite di alcune
variabili e le loro derivate parziali. Le PDE’s servono tipicamente per formulare e risolvere
diversi problemi in fisica, tra cui la propagazione del suono, calore, elasticità, elettrostatica,
elettrodinamica (da raggi X, luce, microonde, onde radio, cellulari etc.), aerodinamica, flu-
idi, meccanica quantistica, biologia (crescita di popolazioni, cellule, etc.), mercati finanziari
(’opzioni’), e altro. La stessa equazione, ovvero ’evoluzione’, può descrivere fenomeni diversi
in diversi campi di applicazione.
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2 Linear differential operators

2.1 Definitions and main examples

The Euclidean coordinates on Rd will be denoted x1, . . . , xd. We use the notation

x · y = x1y1 + · · ·+ xd · yd, x, y ∈ Rd

for the usual pairing Rd × Rd → R. We shall sometimes write x2 := x · x.

Let Ω ⊂ Rd be an open subset. Denote C∞(Ω) the set of all infinitely differentiable
complex valued smooth functions on Ω. We will use short notations for the derivatives

∂k =
∂

∂xk
.

For f ∈ C∞(Ω), fx or ∇f will denote the gradient of f

fx =

(
∂f

∂x1
, . . . ,

∂f

∂xd

)
.

For a multiindex
p = (p1, . . . , pd)

denote

|p| = p1 + · · ·+ pd

p! = p1! . . . pd!

xp = xp11 . . . xpdd
∂p = ∂p11 . . . ∂pdd .

The derivatives define linear operators

∂p : C∞(Ω)→ C∞(Ω), u 7→ ∂pu =
∂|p|u

∂xp11 . . . ∂xpdd
.

More generally, we will consider linear differential operators of the form

A =
∑
|p|≤m

ap(x)∂p, where ap ∈ C∞(Ω), (2.1.1)

A : C∞(Ω)→ C∞(Ω), u 7→ Au.

We will define the order of the linear differential operator by

ordA = max|p| such that ap(x) 6= 0. (2.1.2)

We remark that even more generally one considers operators A whose action on u depends
also on u and its derivatives up to the order m and calls them nonlinear. If the depndence is
only on the derivatives of u up to the order m− 1, they are called quasilinear.

Main examples of A (with constant coefficients) are

1. Laplace operator in Rd
∆ = ∂21 + · · ·+ ∂2d (2.1.3)

2. Heat operator in R× Rd
∂

∂t
−∆ (2.1.4)
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3. Wave operator in R× Rd
∂2

∂t2
−∆. (2.1.5)

4. Schrödinger operator in R× Rd

i
∂

∂t
+ ∆. (2.1.6)

5. Dirac operator in Rd

−i
∑
j

γj ∂j , (2.1.7)

where γj ∈ Mat2[d/2] satisfy
γjγk + γkγj = 2δjk.

Here we used coordinates x = (x1, . . . , xd) in Rd and x = (t, x) in R× Rd.

2.2 Principal symbol of a linear differential operator

We can associate with A a form which is useful for its study. Symbol (called also total symbol)
of a linear differential operator (2.1.1) is a function a ∈ C∞(Ω× Rd) given by

a(x, ξ) =
∑
|p|≤m

i|p|ap(x)ξp, x ∈ Ω ⊂ Rd, ξ ∈ Rd. (2.2.1)

If the order of the operator is equal to m then the principal symbol is defined by

am(x, ξ) =
∑
|p|=m

i|p|ap(x)ξp. (2.2.2)

Here ξp = ξp11 . . . ξpdd and the symbol (2.2.1), (2.2.2) is a polynomial in d variables ξ1, . . . , ξd
with coefficients being smooth functions on Ω.

For the above examples we have the following symbols

1. For the Laplace operator ∆ the symbol and principal symbol coincide

a = a2 = −(ξ21 + · · ·+ ξ2d) ≡ −ξ2.

2. For the heat equation
a = i τ + ξ2, a2 = ξ2.

3. For the wave operator again the total and principal symbol coincide

a = a2 = −τ2 + ξ2.

4. For the Schrödinger operator

a = −(τ + ξ2), a2 = −ξ2.

5. For the Dirac operator

a = a1 =
∑
j

γjξj .

Lemma 2.2.1. 1 Formula for the symbol of a linear differential operator

a(x, ξ) = e−i x·ξA
(
ei x·ξ

)
. (2.2.3)
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Proof: Each ∂j applied to ei x·ξ produces ei x·ξ (which cancels e−i x·ξ) times iξj .

We will denote a(ξ) the symbol of a linear differential operator A with constant coefficients
(it does not depend on x).

Corollary 2.2.2. For a linear differential operator with constant coefficients the exponential
function

u(x) = ei x·ξ

is a solution to the linear differential equation

Au = 0

iff the vector ξ satisfies
a(ξ) = 0.

Proof: Notice that ei x·ξ is invertible and use (2.2.3).

Lemma 2.2.3. Let u(x), S(x) be a pair of smooth functions and A a linear differential
operator of order m. Then
i). the expression of the form

e−i λ S(x)A
(
u(x)ei λ S(x)

)
is a polynomial in λ of degree m;
ii) the leading coefficient of this polynomial has the following expression

e−i λ S(x)A
(
u(x)ei λ S(x)

)
= u(x)am(x, Sx(x))λm +O(λm−1). (2.2.4)

Here Sx is the gradient of the function S(x).

Proof: (Hint) The top power m in λ appears only when all the derivatives act on ei λ S(x);
thus they do not act on u(x), which can be simply shifted in front of the l.h.s. Next, proceed
similarly as in the proof of Lemma (2.2.1), except that each ∂j produces ∂jS instead of ξj .

Exercise 2.2.4. Let A and B be two linear differential operators of orders k and l with the
principal symbols ak(x, ξ) and bl(x, ξ) respectively. Prove that the superposition C = A ◦B is
a linear differential operator of order ≤ k + l. Prove that the principal symbol of C is equal
to

ck+l(x, ξ) = ak(x, ξ) bl(x, ξ) (2.2.5)

in the case ordC = ordA + ordB. In the case of strict inequality ordC < ordA + ordB
prove that the product (2.2.5) of principal symbols is identically equal to zero.

The formula for computing the full symbol of the product of two linear differential opera-
tors is more complicated. We will give here the formula for the particular case of one spatial
variable x.

Exercise 2.2.5. Let a(x, ξ) and b(x, ξ) be the symbols of two linear differential operators A
and B with one variable. Prove that the symbol of the superposition A ◦B is equal to

a ? b =
∑
k≥0

(−i)k

k!
∂kξ a ∂

k
xb. (2.2.6)
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2.3 Change of independent variables

Let us now analyze the transformation rules of the principal symbol a(x, ξ) of an operator A
under smooth invertible changes of variables

yi = yi(x), i = 1, . . . , d. (2.3.1)

Recall that the first derivatives transform according to the chain rule

∂

∂xi
=

d∑
k=1

∂yk
∂xi

∂

∂yk
. (2.3.2)

The transformation law of higher order derivatives is more complicated. For example, apply-
ing the derivative to f(y(x)) and using the Leibniz formula for ∂i and (2.3.1)

∂2

∂xi∂xj
=

d∑
k,l=1

∂yk
∂xi

∂yl
∂xj

∂2

∂yk∂yl
+

d∑
k=1

∂2yk
∂xi∂xj

∂

∂yk
.

Similarly for other terms. However it is clear that after the transformation one obtains again
a linear differential operator of the same order m. More precisely define the operator

Ã =
∑

(−i)|p| ãp(y)
∂|p|

∂yp11 . . . ∂ypdd

by the equation (
Ã f̃
)
◦ y = Ãf ◦ y = Au,

where
f̃ ◦ y = f,

i.e. ∀x ∈ Ω
(f̃ ◦ y) (x) = f̃(y(x)) = f̃(y)|y=y(x) := f(x)

(depending on the preferred notation).

Warning: the coefficients ãp are usually different from ãp, i.e. the coefficients ap in
coordinates y !

In general the transformation law of the symbol may be complicated, but that of the
principal symbol is quite simple, as it follows from the following

Proposition 2.3.1. Let am(x, ξ) be the principal symbol of a linear differential operator A.
Denote ãm(y, ξ̃) the principal symbol of the same operator written in the coordinates y, i.e.
the principal symbol of the operator Ã. Then

ãm(y(x), ξ̃) = am(x, ξ) provided ξi =

d∑
k=1

∂yk
∂xi

ξ̃k, i.e. ξ̃k =

d∑
i=1

∂xi
∂yk

ξi. (2.3.3)

Proof: 1) (Brute force) To simplify the notation denote m = |p| and omit summation over
the repeated indices. We compute

∂m

∂xp11 . . . ∂xpdd
=
∂yk1
∂x1

. . .
∂ykm
∂xd

∂m

∂yk1 . . . ∂ykm
+ lower order terms.

The product of the first m factors on the right side is

∂yk1
∂x1

. . .
∂ykp1
∂x1

∂ykp1+1

∂x2
. . .

∂ykp1+p2
∂x2

. . .
∂ykp1+···+pd−1+1

∂xd
. . .

∂ykm
∂xd
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while

∂m

∂yk1 . . . ∂ykm
= (∂yk1 . . . ∂ykp1

)(∂ykp1+1
. . . ∂ykp1+p2

) . . . (∂ykp1+···+pd−1+1 . . . ∂ykm )

and thus the principal symbol can be written as

im(
∂y

∂x1
· ξ̃)p1 . . . ( ∂y

∂xd
· ξ̃)pd = ξp11 . . . ξpdd

(The functions ∂y
∂xj

should be considered as functions of y, i.e. evaluated at x = x(y) via the

inverse coordinate trnsformation). Taking into account the coefficients (and their transfor-
mation law) the statement follows.

2). Or use Lemma 2.2.3. Applying the formula (2.2.4) one easily derives the equality

am(x, Sx) = ãm(y, S̃y)|y=y(x),

where Sx and S̃y are gradients in coordinates x and y, respectively. Applying the chain rule

∂S

∂xi
=

d∑
k=1

∂yk
∂xi

∂S̃

∂yk

we arrive at the transformation rule (2.3.3) for the particular case

ξi =
∂S

∂xi
, ξ̃k =

∂S̃

∂yk
.

This proves the proposition since the gradients (at any fixed point) can take arbitrary values.

Mini-exercise 2.3.2. Check some simplest cases, e.g. Ω = R+ (d = 1) and y(x) = x2, and
others.

For a linear transformation
yk =

∑
j

Ckjxj (2.3.4)

we need C to be invertible, that is

0 6= det{∂yk
∂xj
} = det{Ckj}

in order y to be smooth coordinates. In such a case

ξj =
∑
k

Ckj ξ̃k (2.3.5)

is linear. Vice versa, any linear transformation of ξ is induced by some linear transformation
(2.3.4).

2.4 Canonical form of linear differential operators of order ≤ 2 with con-
stant coefficients

Consider a first order linear differential operator

A = a1
∂

∂x1
+ · · ·+ ad

∂

∂xd
(2.4.1)

7

Preliminary version – December 2, 2012



with constant coefficients a1, . . . , ad. One can find a linear transformation (2.3.4) of the
coordinates and (2.3.5) of ξ′s that maps the vector a = (a1, . . . , ad) to the unit coordinate
vector (0, . . . , 0, 1) of the axis yd (for example take C with Cdj =

aj
a·a and, for any fixed

i = 1, . . . , d − 1, Cij orthogonal to aj , i.e.
∑
Cijaj = 0). After such a transformation the

operator A becomes the partial derivative operator (we skip˜over A)

A =
∂

∂yd
.

Lemma 2.4.1. The general solution of the first order linear differential equation

Aϕ = 0

can be written in the form

ϕ(y1, . . . , yd) = ϕ0(y1, . . . , yd−1). (2.4.2)

Here ϕ0 is an arbitrary smooth function of (d − 1) variables (functions of class at least C1
can be also considered).

Corollary 2.4.2. The general solution to

Aϕ+ b ϕ = 0 (2.4.3)

with A of the form (2.4.1) and a constant b reads

ϕ(y1, . . . , yd) = ϕ0(y1, . . . , yd−1)e
−b yd

for an arbitrary smooth (or at least C1) function ϕ0(y1, . . . , yd−1).

Proof: Clearly, by Leibniz and (2.4.3)

A(ϕebyd) = −bϕebyd + ϕbebyd = 0,

hence ϕebyd =: ϕ0 must be independent of yd, and so ϕ = ϕ0e
−byd .

Consider now a second order linear differential operator of the form

A =

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
i=1

bi
∂

∂xi
+ c (2.4.4)

with constant coefficients. Without loss of generality one can assume the coefficient matrix
aij to be symmetric. Denote

Q(ξ) = −a2(ξ) =
d∑

i,j=1

aijξiξj (2.4.5)

the quadratic form coinciding with the principal symbol, up to an overall sign. Recall the
Sylvester theorem from linear algebra:

Theorem 2.4.3. There exists a linear (of course invertible) change of variables of the form
(2.3.4) reducing the quadratic form (2.4.5) to the form

Q = ξ̃21 + · · ·+ ξ̃2p − ξ̃2p+1 − · · · − ξ̃2p+q. (2.4.6)

The numbers p ≥ 0, q ≥ 0, p + q ≤ d do not depend on the choice of the reducing transfor-
mation.
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Corollary 2.4.4. A second order linear differential operator with constant coefficients can
be reduced to the form

A =
∂2

∂y21
+ · · ·+ ∂2

∂y2p
− ∂2

∂y2p+1

− · · · − ∂2

∂y2p+q
+

d∑
k=1

b̃kyk + c (2.4.7)

by a linear transformation of the form (2.3.4). The numbers p and q do not depend on the
choice of the reducing transformation.

E se coefficienti non sono costanti ?

2.5 Characteristics. Elliptic and hyperbolic operators.

Let am(x, ξ) be the principal symbol of a linear differential operator A.

Definition 2.5.1. Given a point x0 ∈ Ω, the vectors ξ satisfying

am(x0, ξ) = 0 (2.5.1)

(2.5.1) are called characteristic vectors of the operator A at the point x0. The hypersurface
in the ξ-space consisting of all characteristic vectors at the point x0 is called characteristic
cone at x0.

The name ”cone” comes from the fact that (2.5.1) is invariant with respect to rescalings

ξ 7→ λξ, ∀ λ ∈ R (2.5.2)

since the polynomial am(x0, ξ) is homogeneous of degree m:

am(x, λ ξ) = λmam(x, ξ).

Definition 2.5.2. It is said that the operator A : C∞(Ω)→ C∞(Ω) is elliptic if

am(x, ξ) 6= 0 for any ξ 6= 0, x ∈ Ω. (2.5.3)

The characteristic cone (at any x0) of an elliptic operator is degenerate (consists of just
one point ξ = 0).

For example the Laplace operator

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n

is elliptic on Ω = Rd. The Tricomi operator

A =
∂2

∂x2
+ x

∂2

∂y2
(2.5.4)

is elliptic on the right half plane x > 0. The Dirac operator is elliptic: it can be seen that
(a1(ξ))

2 = −ξ2.
Next two examples are not elliptic. For the wave operator

A =
∂2

∂t2
−∆, (2.5.5)

the characteristic cone at any x0 is given by the equation

τ2 − ξ21 − · · · − ξ2d = 0 (2.5.6)
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(it coincides with the standard cone in the pseudo-Euclidean space of signature (1, d)).

The characteristic cone of the heat operator

∂

∂t
−∆ (2.5.7)

is a line given by
ξ1 = · · · = ξd = 0, τ ∈ R. (2.5.8)

Definition 2.5.3. A hypersurface Σ in Rd is called characteristic surface or simply char-
acteristics for the operator A if at every point x of the surface the normal vector ξ is a
characteristic vector:

am(x, ξ) = 0.

Remark: In particular if a hypesurface Σ is given by equation

S(x) = 0 (2.5.9)

it is a characteristic surface if the smooth function S(x) satisfies the equation

am (x, Sx(x)) = 0, ∀x ∈ Σ. (2.5.10)

Here Sx = (∂1S, . . . , ∂dS) denotes the gradient of the function S: at any point it is normal
to Σ.

As it follows from the Proposition 2.3.1 the characteristics do not depend on the choice
of a system of coordinates.

Example. For a first order linear differential operator

A = a1(x)
∂

∂x1
+ · · ·+ ad(x)

∂

∂xd
, (2.5.11)

a(x, ξ) = a1(x, ξ) = a(x) · ξ,

where a(x) := (a1(x), . . . , ad(x)). Hence the function S(x) defining a characteristic hypersur-
face must satisfy the equation

a(x) · Sx(x) =
∑
j

aj(x) ∂jS(x) = 0. (2.5.12)

It is therefore a first integral of the following system of ODEs

ẋ1 = a1(x1, . . . , xd)

. . . (2.5.13)

ẋd = ad(x1, . . . , xd)

Namely, the function S(x) is constant along the integral curves of the system (2.5.13). Indeed
by (2.5.12)

Ṡ(x) =
∑
j

∂jS ẋj =
∑
j

aj(x) ∂jS = 0.

where ’dot’ indicates derivative with respect to parameter of the curve.

It is known from the theory of ordinary differential equations that locally, near a point
x0 such that

(
a1(x

0), . . . , ad(x
0)
)
6= 0 there exists a smooth invertible change of coordinates

yk = yk(x1, . . . , xd)
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such that, in the new coordinates the system (2.5.13) reduces to the form

ẏ1 = 0

. . . (2.5.14)

ẏd−1 = 0

ẏd = 1

(the so-called rectification of a vector field). For the particular case of constant coefficients
the needed transformation is linear (see above). In these coordinates Ã = ∂d and the general
solution to (2.5.12) reads

S(y1, . . . , yd) = S0(y1, . . . , yd−1). (2.5.15)

Note now that (2.5.12) is just the equation

AS(x) = 0

and (2.5.15) is its general solution too!

Consider now a linear differential operator A acting on smooth functions on Ω ⊂ R(d+1)

with Euclidean coordinates (t, x1, . . . , xd). As before, for τ ∈ R, ξ ∈ Rd, denote by
am(t, x, τ, ξ) the principal symbol of A.

Definition 2.5.4. A linear differential operator A in Ω ⊂ Rd+1 is called hyperbolic with
respect to the time variable t if for any fixed ξ 6= 0 and any (t, x) ∈ Ω the equation for τ

am(t, x, τ, ξ) = 0 (2.5.16)

has m pairwise distinct real roots

τ1(t, x, ξ), . . . , τm(t, x, ξ).

For brevity we will often say that a linear differential operator is hyperbolic if all its
characteristics are real and pairwise distinct. For elliptic operators the characteristics are
purely imaginary. The wave operator (2.5.5) gives a simple example of a hyperbolic operator.
Indeed, the equation

τ2 = ξ21 + · · ·+ ξ2d = ξ2

has two distinct roots
τ = ±

√
ξ2

for any ξ 6= 0, and so S(X) satisfies

∂S

∂t
= ±

√
(Sx)2,

which has two families of solutions

S(x, t) = t±
√
x2 + C.

Now for a general hyperbolic operator, by substituting (τ, ξ) = (∂tS, ∂xS) to τ = τj(t, x, ξ)
we see that finding the j-th characteristic hypersurface requires knowledge of solutions to the
following Hamilton–Jacobi equation for the functions S = S(x, t),

∂S

∂t
= τj

(
t, x,

∂S

∂x

)
. (2.5.17)
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From the course of analytical mechanics it is known that this problem is reduced to integrating
the Hamilton equations

ẋi = ∂H(t,x,p)
∂pi

ṗi = −∂H(t,x,p)
∂xi

 (2.5.18)

with the time-dependent Hamiltonian H(t, x, p) = τj(t, x, p). In the next section we will
consider the particular case d = 1 and apply it to the problem of canonical forms of the
second order linear differential operators in a two-dimensional space.

We close this section by noting that the heat operator (2.5.7) is neither hyperbolic nor
elliptic.

2.6 Reduction to a canonical form of second order linear differential oper-
ators in a two-dimensional space

Consider a linear differential operator

A = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
, (x, y) ∈ Ω ⊂ R2. (2.6.1)

The characteristics of these operator are curves which can be parametrized by some
parameter. We assume for definiteness that the coefficient a(x, y) 6= 0 and that we can
choose this paramater to be just x (similar discussion appears if we choose y locally). A
tangent vector to the curve is then (1, ∂y∂x). Then (− ∂y

∂x , 1) is a normal vector, which in order
to be characteristic has to satisfy

a(x, y)

(
dy

dx

)2

− 2b(x, y)
dy

dx
+ c(x, y) = 0. (2.6.2)

This is a quadratic equation for dy/dx. Its discriminant is

δ(x, y) := b2(x, y)− a(x, y) c(x, y). (2.6.3)

It is immediate that the operator (2.6.1) is elliptic iff δ(x, y) < 0, while it is hyperbolic iff
δ(x, y) > 0. As said in the previous section, for a hyperbolic operator one has two families of
characteristics to be found from the (Hamilton-Jacobi) ODEs

dy

dx
=
b(x, y) +

√
b2(x, y)− a(x, y) c(x, y)

a(x, y)
(2.6.4)

dy

dx
=
b(x, y)−

√
b2(x, y)− a(x, y) c(x, y)

a(x, y)
. (2.6.5)

Let
φ(x, y) = c1, ψ(x, y) = c2 (2.6.6)

be the equations of the characteristics (thus a first integral for these ODE taking constant
values along the integral curves of this differential equation). Here c1 and c2 are two integra-
tion constants. Such curves pass through any point (x, y) ∈ Ω. Moreover, by hyperbolicity,
they are not tangent at every point. Let us introduce new local coordinates u, v by

u = φ(x, y), v = ψ(x, y). (2.6.7)
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Lemma 2.6.1. The change of coordinates

(x, y) 7→ (u, v)

is locally invertible. Moreover the inverse functions

x = x(u, v), y = y(u, v)

are smooth.

Proof: We have to check non-vanishing of the Jacobian

det

(
∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)
= det

(
φx φy
ψx ψy

)
6= 0. (2.6.8)

By definition the first derivatives of the functions φ and ψ correspond to two different roots
of the same quadratic equation

a(x, y)φ2x + 2b(x, y)φxφy + c(x, y)φ2y = 0, a(x, y)ψ2
x + 2b(x, y)ψxψy + c(x, y)ψ2

y = 0.

The determinant (2.6.8) vanishes iff the gradients of φ and ψ are proportional:

(φx, φy) ∼ (ψx, ψy),

that is the characteristics are tangent. This contradicts the requirement to have the roots
distinct.

Let us rewrite the linear differential operator A in the new coordinates:

A = ã(u, v)
∂2

∂u2
+ 2b̃(u, v)

∂2

∂u∂v
+ c̃(u, v)

∂2

∂v2
+ . . . (2.6.9)

where the dots stand for the terms with the low order derivatives.

Theorem 2.6.2. In the new coordinates A reads

A = 2b̃(u, v)
∂2

∂u ∂v
+ . . .

Proof: In the new coordinates the characteristic have the form

u = c1, or v = c2

for arbitrary constants c1 and c2. Their tangent vectors can be taken as (1, 0) and (0, 1) and
thus the normal vectors (0, 1) and (1, 0) must satisfy the equation for characteristics

0 + 0 + c̃(u, v) = 0 and ã(u, v) + 0 + 0 = 0.

This implies ã(u, v) = c̃(u, v) = 0.

For the case of elliptic operator (2.6.1) we have b2 − a c > 0 (we will often simplify the
notation as a = a(x, y), b = b(x, y), c = c(x, y)) and the analogue of the differential
equations (2.6.4), (2.6.5) are complex conjugated equations

dy

dx
=
b± i

√
a c− b2
a

. (2.6.10)
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Assuming analyticity of the functions a(x, y), b(x, y), c(x, y) one can prove existence of a
complex valued first integral

S(x, y) = φ(x, y) + i ψ(x, y) (2.6.11)

satisfying

aSx +
(
b+ i

√
a c− b2

)
Sy = 0, (2.6.12)

with
S2
x + S2

y 6= 0. (2.6.13)

Let us introduce new system of coordinates by

u = φ(x, y), v = ψ(x, y). (2.6.14)

Theorem 2.6.3. The transformation

(x, y) 7→ (u, v)

is locally smoothly invertible. The operator A in the new coordinates takes the form

A = ã(u, v)

(
∂2

∂u2
+

∂2

∂v2

)
+ . . . (2.6.15)

with some nonzero smooth function ã(u, v). Like above the dots stand for the terms with
lower order derivatives.

Proof: Substituting Sx = φx + iψx and Sy = φy + iψy to (2.6.12), and looking into the real
and imaginary part, we get

aφx + b φy −
√
a c− b2ψy = 0, a ψx + b ψy +

√
a c− b2φy = 0. (2.6.16)

Writting this as

aφx = −b φy +
√
a c− b2ψy, a ψx = −b ψy −

√
a c− b2φy, (2.6.17)

shows that the determinant of the Jacobian (2.6.8)

φxψy − ψxφy = a−1
√
a c− b2(ψ2

y + φ2y) 6= 0. (2.6.18)

Next, since S = u+ iv, so (Su, Sv) = (1, i) which must satisfy

ã× 1 +

(
b̃+ i

√
ã c̃− b̃2

)
× i = 0.

Hence b̃ = 0 and then ã =
√
ãc̃. It follows that c̃ = ã.

Let us now consider the case of linear differential operators of the form (2.6.1) with
identically vanishing discriminant

b2(x, y)− a(x, y) c(x, y) ≡ 0. (2.6.19)

Operators of this class are called parabolic. In this case we have only one characteristic to be
found from the equation

dy

dx
=
b(x, y)

a(x, y)
. (2.6.20)

14

Preliminary version – December 2, 2012



Let φ(x, y) be a first integral of this equation

aφx + b φy = 0, φ2x + φ2y 6= 0. (2.6.21)

Choose an arbitrary smooth function ψ(x, y) (always exist! ) such that

det

(
φx φy
ψx ψy

)
6= 0.

Thus
u = φ(x, y), v = ψ(x, y),

are coordinates in which we have

S = u, (Su, Sv) = (1, 0).

Substituting this to the equation for the characteristics we see that ã(u, v)×1+0+0 = 0 and
so ã(u, v) vanishes. But then the coefficient b̃(u, v) must vanish either because of vanishing
of the discriminant

b̃2 − ã c̃ = 0.

Thus we have shown

Theorem 2.6.4. The canonical form of a parabolic operator is

A = c̃(u, v)
∂2

∂v2
+ . . . (2.6.22)

where the dots stand for the terms of lower order.

2.7 General solution of a second order hyperbolic equation with constant
coefficients in the two-dimensional space

Consider again a hyperbolic operator

A = a
∂2

∂x2
+ 2b

∂2

∂x ∂y
+ c

∂2

∂y2
(2.7.1)

with constant coefficients a, b, c satisfying the hyperbolicity condition

b2 − a c > 0.

The equations for characteristics (2.6.4), (2.6.5) can be easily integrated

y = λ1,2x+ const,

where

λ1,2 =
b±
√
b2 − a c
a

.

This gives two linear first integrals

u = y − λ1x, v = y − λ2x. (2.7.2)

In the new coordinates the hyperbolic equation Aϕ = 0 reduces to (see Theorem 2.6.2)

∂2ϕ

∂u∂v
= 0. (2.7.3)
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The general solution to this equation can be written in the form

ϕ = f(y − λ1x) + g(y − λ2x) (2.7.4)

where f and g are two arbitrary smooth1 functions of one variable.

For example consider the wave equation

ϕtt = a2ϕxx (2.7.5)

where a is a positive constant. The general solution reads

ϕ(x, t) = f(x− a t) + g(x+ a t). (2.7.6)

Observe that f(x−a t) is a right-moving wave propagating with constant speed a. In a similar
way g(x + a t) is a left-moving wave. Therefore the general solution to the wave equation
(2.7.5) is a superposition (= sum) of two such waves.

2.8 Exercises to Section 2

Exercise 2.8.1. Reduce to the canonical form the following equations

uxx + 2uxy − 2uxz + 2uyy + 6uzz = 0 (2.8.1)

uxy − uxz + ux + uy − uz = 0. (2.8.2)

Exercise 2.8.2. Reduce to the canonical form the following equations

x2uxx + 2x y uxy − 3y2uyy − 2xux + 4y uy + 16x4u = 0 (2.8.3)

y2uxx + 2x y uxy + 2x2uyy + y uy = 0 (2.8.4)

uxx − 2uxy + uyy + ux + uy = 0 (2.8.5)

Exercise 2.8.3. Find general solution to the following equations

x2uxx − y2uyy − 2y uy = 0 (2.8.6)

x2uxx − 2x y uxy + y2uyy + xux + y uy = 0. (2.8.7)

1It suffices to take the functions of the C2 class.
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3 Wave equation

3.1 Vibrating string

We consider small oscillations of an elastic string on the (x, u)-plane. Let the x-axis be the
equilibrium state of the string. Denote u(x, t) the displacement of the point x at a time t. It
will be assumed to be orthogonal to the x-axis. Thus the shape of the string at the time t is
given by the graph of the function u(x, t). The velocity of the string at the point x is equal
to ut(x, t).

We will also assume that the only force to be taken into consideration is the tension
directed along the string. In particular the string will be assumed to be totally elastic.

Consider a small interval of the string from x to x + δx. We will write the equation of
motion for this interval. Denote T = T (x) the tension of the string at the point x. The
horizontal and vertical components of T at the points x and x+ δx are equal to

Thor(x) = T1 cosα, Tvert(x) = T1 sinα

Thor(x+ δx) = T2 cosβ, Tvert(x+ δx) = T2 sinβ

where T1 = T (x), T2 = T (x+ δx) (see Fig. 1).

Fig. 1.

The angle α between the string and the x-axis at the point x is given by tanα = ux, so
that

cosα =
1√

1 + u2x
, sinα =

ux√
1 + u2x

.

The oscillations are assumed to be small. More precisely this means that the term ux is
small. So at the leading approximation we can neglect the square of it to arrive at

cosα ' 1, sinα ' ux(x)

cosβ ' 1, sinβ ' ux(x+ δx)

So the horizontal and vertical components at the points x and x+ δx are equal to

Thor(x) ' T1, Tvert(x) ' T1ux(x)

Thor(x+ δx) ' T2, Tvert(x+ δx) = T2ux(x+ δ(x),

Since the string moves in the u-direction, the horizontal components at the points x and
x+ δx must coincide:

T1 = T (x) = T (x+ δx) = T2.
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Therefore T (x) ≡ T = const.

Let us now consider the vertical components. The resulting force acting on the piece of
the string is equal to

f = T2 sinβ − T1 sinα = T ux(x+ δx)− T ux(x) ' T uxx(x) δx.

On the other hand the vertical component of the total momentum of the piece of the string
is equal to

p ' ρ(x)ut(x, t) δx

where ρ(x) is the linear mass density of the string. The second Newton law

pt = f

in the limit δx→ 0 yields
ρ(x)utt = T uxx.

In particular in the case of constant mass density one arrives at the equation

utt = a2uxx (3.1.1)

where the constant a is defined by

a2 =
T

ρ
. (3.1.2)

�
Remark. Note that (see Corollary 2.2.2): the plane wave

u(x, t) = Aei(k x+ω t) (3.1.3)

satisfies the wave equation (3.1.1) if and only if the real parameters ω and k satisfy the
following dispersion relation

ω = ±a k. (3.1.4)

The parameter ω is called frequency 2 and k is called wave number of the plane wave. The
arbitrary parameter A is called the amplitude of the wave. It is clear that the plane wave is
periodic in x with the period (called wavelength)

L =
2π

|k|
(3.1.5)

since the exponential function is periodic with the period 2π i. The plane wave is also periodic
in t with the period

T =
2π

|ω|
. (3.1.6)

Due to linearity of the wave equation and real coefficients the real and imaginary parts of
the solution (3.1.3) solve the same equation (3.1.1). Assuming A to be real we thus obtain
the real valued solutions

Reu = A cos(k x+ ω t), Imu = A sin(k x+ ω t). (3.1.7)

2In physics usually −ω used with ω ≥ 0 called frequency.
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3.2 D’Alembert formula

Let us start with considering oscillations of an infinite string, that is the spatial variable x
varies from −∞ to ∞. The Cauchy problem for the equation (3.1.1) is formulated in the
following way: find a solution u(x, t) defined for t ≥ 0 such that at t = 0 the initial conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x) (3.2.1)

hold true.

Remark: In general, for a hyperbolic pde of order m in t, the Cauchy problem requires
the t = 0 the initial conditions for the the t-derivatives of u up to order m− 1.

For the wave equation the solution is given by the following D’Alembert formula:

Theorem 3.2.1. For arbitrary initial data φ(x) ∈ C2(R), ψ(x) ∈ C1(R) the solution u ∈
C2(R) to the Cauchy problem (3.1.1), (3.2.1) exists and is unique. Moreover it is given by the
formula

u(x, t) =
φ(x− a t) + φ(x+ a t)

2
+

1

2a

∫ x+a t

x−a t
ψ(s) ds. (3.2.2)

Proof: As we have proved in Section 2.7 the general solution to the equation (3.1.1) can be
represented in the form

u(x, t) = f(x− a t) + g(x+ a t). (3.2.3)

Let us impose on the functions f and g the initial conditions (3.2.1). We obtain the following
system:

f(x) + g(x) = φ(x)

(3.2.4)

a
[
g′(x)− f ′(x)

]
= ψ(x).

Integrating the second equation yields

g(x)− f(x) =
1

a

∫ x

x0

ψ(s) ds+ C

where C is an integration constant. So

f(x) =
1

2
φ(x)− 1

2a

∫ x

x0

ψ(s) ds− 1

2
C

g(x) =
1

2
φ(x) +

1

2a

∫ x

x0

ψ(s) ds+
1

2
C.

Thus

u(x, t) =
1

2
φ(x− a t) +

1

2
φ(x+ a t) +

1

2a

∫ x+a t

x0

ψ(s) ds− 1

2a

∫ x−a t

x0

ψ(s) ds.

This gives the necessary form (3.8.14) of a solution (and uniqueness). It remains to check
that, given a pair of functions φ(x) ∈ C2, ψ(x) ∈ C1 the D’Alembert formula indeed yields a
solution to (3.1.1). In fact the function (3.8.14) is twice differentiable in x and t. It remains
to substitute this function into the wave equation and check that the equation is satisfied
and the initial data. It is okay (a 6= 0) to check that 2au is a solution:

2autt(x, t) = a(−a)2φ′′(x− a t) + aa2φ′′(x+ a t) + a2ψ′(x+ a t)− (−a)2ψ′(x− a t) ds,
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which equals a2×

2auxx(x, t) = aφ′′(x− a t) + aφ′′(x+ a t) + ψ′(x+ a t)− ψ′(x− a t) ds.

It is also straightforward to verify validity of the initial data (3.2.1).

Example. For the constant initial data

u(x, 0) = u0, ut(x, 0) = v0

the solution has the form
u(x, t) = u0 + v0t.

This particular solution corresponds to the free motion of the string as a whole with the
constant speed v0.

We show now that the solution to the wave equation is stable with respect to small
variations of the initial data. Namely,

Proposition 3.2.2. For any ε > 0 and any T > 0 there exists δ > 0 such that if the initial
conditions satisfy

sup
x∈R
|φ̃(x)− φ(x)| < δ, sup

x∈R
|ψ̃(x)− ψ(x)| < δ, (3.2.5)

then the solutions u(x, t) and ũ(x, t) of the two Cauchy problems with initial conditions (3.2.1)
and

ũ(x, 0) = φ̃(x), ũt(x, 0) = ψ̃(x) (3.2.6)

satisfy
sup

x∈R, t∈[0,T ]
|ũ(x, t)− u(x, t)| < ε. (3.2.7)

Proof:
2a sup

x∈R, t∈[0,T ]
|ũ(x, t)− u(x, t)| ≤

sup
x∈R

a|φ̃(x−a t)−φ(x−a t)|+ sup
x∈R

a|φ̃(x+a t)−φ(x+a t)|+ sup
x∈R,t∈[0,T ]

∫ x+a t

x−a t
|ψ̃(s)−ψ(s)| ds

< 2aδ + δ sup
t∈[0,T ]

2at ≤ 2a(1 + T )δ.

Remark 3.2.3. The Cauchy problem (3.1.1), (3.2.1) which has this property is usually re-
ferred to as well posed. So the Cauchy problem for the wave equation is well posed. We will
discuss later this important property for other equations.

3.3 Some consequences of the D’Alembert formula

Let (x0, t0) be a point of the (x, t)-plane, t0 > 0. As it follows from the D’Alembert formula
the value of the solution at the point (x0, t0) depends only on the values of φ(x) at x = x0±a t0
and value of ψ(x) on the interval [x0 − a t0, x0 + a t0]. The triangle with the vertices (x0, t0)
and (x0 ± a t0, 0) is called the dependence domain of the segment [x0 − a t0, x0 + a t0]. The
values of the solution inside this triangle are completely determined by the values of the
initial data on the segment.
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Fig. 2. The dependence domain of the segment [x0 − a t0, x0 + a t0].

Another important definition is the influence domain for a given segment [x1, x2] consider
the domain defined by inequalities

x+ a t ≥ x1, x− a t ≤ x2, t ≥ 0. (3.3.1)

Changing the initial data on the segment [x1, x2] will not change the solution u(x, t) outside
the influence domain.

Fig. 3. The influence domain of the segment [x1, x2].

Remark. Il significato fisico è che il ’segnale’ non si propaga più velocemente di a, e che
vale principio di località e causalità (nessun ”evento causa” puo determinare ”effetto” fuori
dal proprio cono di dipendenza.

Remark 3.3.1. It will be convenient to slightly extend the class of initial data admitting
piecewise smooth functions φ(x), ψ(x) (all singularities of the latter must be integrable).
Notiamo che (3.8.14) può essere scritta

u(x, t) =
1

2
(φ(x+ a t) + φ(x− a t)) +

1

2a
(F (x+ a t)− F (x− a t)) , (3.3.2)

dove

F (x) =

∫ x

x0

ψ(s) ds (3.3.3)

è la primitiva di ψ. Segue che il valore u(x, t) è determinato da valori di φ e di F in punti
x± a t. Però le singolarità della primitiva F di ψ sono al massimo quelli (se integrabili !) di
ψ. Percio:
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If xj, j = 1, 2, . . . , are the singularities of φ and ψ, then the solution u(x, t) given by the
D’Alembert formula will satisfy the wave equation outside the lines

x = ±a t+ xj , t ≥ 0, j = 1, 2, . . .

The above formula says that the singularities of the solution propagate along the character-
istics.

Example. Let us draw the profile of the string for the triangular initial data φ(x) shown
on Fig. 4 and ψ(x) ≡ 0.

Fig. 4. The solution of the Cauchy problem for wave equation on the real line with a
triangular initial profile at few instants of time.

We have the following simple observation.

Lemma 3.3.2. Let u(x, t) be a solution to the wave equation. Then so are the functions

±c′u(±cx,±ct)

for arbitrary choices of all three signs and c, c′ > 0.

This means that the (linear) wave equation is invariant with respect to the spatial reflec-
tion

x 7→ −x,

time inversion
t 7→ −t

and rescaling
(x, t) 7→ (cx, ct).
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Mini-exercise 3.3.3. Verificare l’invarianza dell’equazione delle onde per traslazioni

x 7→ x+ x0, t 7→ t+ t0

e per trasformazioni di Lorentz (ovvero la relatività speciale)

x 7→ γ(x− vt), t 7→ γ(t− v

a2
x),

dove γ = (1 − v
a2

)−
1
2 . (Onde elettromagnetiche nel vuoto soddisfano l’equazione delle onde

con velocitá di propagazione a = c ' 300000km/sec). Verificare invece che l’equazione delle
onde non è invariante per trasformazioni di Galileo

x 7→ x− vt, t 7→ t.

Ricapitoliamo alcune proprietà salienti dell’equazione delle onde in R2:
- superposizioni/scomposizioni di soluzioni (in ’modi’ semplici)
- esistenza e unicità di soluzioni e problema di Cauchy ben posto
- velocitá finita (nonistantanea) di propagazione
- preservazione di singolarità (non vengono smorzate nel tempo)
- invarianza rispetto inversione di tempo, di spazio, l’omotetia (’riscalamento’), traslazioni e
trasformazioni di Lorentz.

3.4 Semi-infinite vibrating string

Let us consider oscillations of a string with a fixed point. Without loss of generality we can
assume that the fixed point is at x = 0. We arrive at the following Cauchy problem for (3.1.1)
on the half-line x > 0:

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x > 0. (3.4.1)

The solution must also satisfy the boundary condition

u(0, t) = 0, t ≥ 0. (3.4.2)

Of course we require that φ(0) = 0 and ψ(0) ≡ φ′(0) = 0. The problem (3.1.1), (3.4.1), (3.4.2)
is often called mixed problem since we have both initial conditions and boundary conditions.

The solution to the mixed problem on the half-line can be transformed to the problem on
the infinite line by means of the following method.

Lemma 3.4.1. Let the initial data φ(x), ψ(x) for the Cauchy problem (3.1.1), (3.2.1) be odd
functions of x. Then the solution u(x, t) is an odd function for all t.

Proof: Denote
ũ(x, t) := −u(−x, t).

According to Lemma 3.3.2 the function ũ(x, t) satisfies the same equation. At t = 0 we have

ũ(x, 0) = −u(−x, 0) = −φ(−x) = φ(x), ũt(x, 0) = −ut(−x, 0) = −ψ(−x) = ψ(x)

since φ and ψ are odd functions. Therefore ũ(x, t) is a solution to the same Cauchy problem
(3.1.1), (3.2.1). Due to the uniqueness ũ(x, t) = u(x, t), i.e. −u(−x, t) = u(x, t) for all x and
t.
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We are now ready to present a recipe for solving the mixed problem (3.1.1), (3.4.1), (3.4.2)
for the wave equation on the half-line. Let us extend the initial data onto entire real line as
odd functions. We arrive at the following Cauchy problem for the wave equation:

u(x, 0) =

{
φ(x), x > 0
−φ(−x), x < 0

, ut(x, 0) =

{
ψ(x), x > 0
−ψ(−x), x < 0

(3.4.3)

According to Lemma 3.4.1 the solution u(x, t) to the Cauchy problem (3.1.1), (3.4.3) given
by the D’Alembert formula will be an odd function for all t. Therefore

u(0, t) = −u(0, t) = 0 for all t,

and thus the restriction of u(x, t) to the nonnegative axis will be the required solution.

Example. Consider the evolution of a triangular initial profile on the half-line. The graph
of the initial function φ(x) is non-zero on the interval [l, 3l]; the initial velocity ψ(x) = 0.
The evolution is shown on Fig. 5 for few instants of time. Observe the reflected profile (the
dotted line) on the negative half-line.

Fig. 5. The solution of the Cauchy problem for wave equation on the half-line with a
triangular initial profile.
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In a similar way one can treat the mixed problem on the half-line with a free boundary.
In this case the vertical component T ux of the tension at the left edge must vanish at all
times. Thus the boundary condition (3.4.2) has to be replaced with

ux(0, t) = 0 for all t ≥ 0. (3.4.4)

There is a Lemma analogous to 3.4.1: for the initial data φ(x), ψ(x) for the Cauchy problem
(3.1.1), (3.2.1) given by even functions of x the solution u(x, t) is an even function for all t.
Therefore one can solve the mixed problem (3.1.1), (3.4.1), (3.4.4) by using even extension
of the initial data onto the negative half-line. We leave the details of the construction as an
exercise for the reader.

3.5 Periodic problem for wave equation. Introduction to Fourier series

Let us look for solutions to the wave equation (3.1.1) periodic in x with a given period L > 0.
Thus we are looking for a solution u(x, t) of the mixed problem

u(x+ L, t) = u(x, t) for any t ≥ 0, (3.5.1)

u(x, 0) = φ(x), ut(x, 0) = ψ(x), (3.5.2)

where the initial data of the Cauchy problem must also be L-periodic functions.

Theorem 3.5.1. Given L-periodic initial data φ(x) ∈ C2(R), ψ(x) ∈ C1(R) the periodic
Cauchy problem (3.5.1), (3.5.2) for the wave equation (3.1.1) has a unique solution (L-
periodic).

Proof: According to the results of Section 3.2 the solution u(x, t) to the Cauchy problem
(3.1.1), (3.5.2) on −∞ < x < ∞ exists, is unique and is given by the D’Alembert formula.
Denote

ũ(x, t) := u(x+ L, t).

Since the coefficients of the wave equation do not depend on x the function ũ(x, t) satisfies
the same equation. The initial data for this function have the form

ũ(x, 0) = φ(x+ L) = φ(x), ũt(x, t) = ψ(x+ L) = ψ(x)

because of periodicity of the functions φ(x) and ψ(x). So the initial data of the solutions
u(x, t) and ũ(x, t) coincide. From the uniqueness of the solution we conclude that ũ(x, t) =
u(x, t) for all x and t, i.e. the function u(x, t) is periodic in x with the same period L.

Notare che dalla prove si vede che periodicità di u è garantita (cosa non ovvia a priori)
richiedendo solo la periodicità di φ e ψ.
We make now few simple observations. Clearly the complex exponential function eikx is
L-periodic iff the wave number k has the form

k =
2πn

L
, n ∈ Z. (3.5.3)

In the particular case L = 2π the complex exponential

e
2πinx
L

reduces to einx.

Note that the solution of the periodic Cauchy problem with the Cauchy data

u(x, 0) = einx, ut(x, 0) = 0 (3.5.4)
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is given by the formula

u(x, t) =
1

2
(ein(x−at) + ein(x+at)) = einx cosnat. (3.5.5)

Instead the solution of the periodic Cauchy problem with the Cauchy data

u(x, 0) = 0, ut(x, 0) = einx (3.5.6)

is given by the formula

u(x, t) =
1

2a

∫ x+a t

x−a t
eins ds =

{
1

2ina(ein(x+at) − ein(x−at)), n 6= 0
2at
2a , n = 0

(3.5.7)

=

{
einx sinnat

na , n 6= 0
t, n = 0.

(3.5.8)

Using the theory of Fourier series we can represent any solution to the periodic problem
to the wave equation as a superposition of the solutions (3.5.5), (3.5.7). Let us first recall
some basics of the theory of Fourier series.

Definition Let f(x) be a 2π-periodic continuous complex valued function on R. The Fourier
series of f is defined by the formula∑

n∈Z
cne

inx, (3.5.9)

cn =
1

2π

∫ 2π

0
f(x)e−inxdx. (3.5.10)

Sara molto interessante sapere se, in che senso, e a che limite, la serie di Fourier di f
converge. Per dire qualcosa ...
We start with recalling some basic material of functional analysis.

Let us introduce Hermitean inner product in the space of complex valued 2π-periodic
continuous functions:

(f, g) =
1

2π

∫ 2π

0
f̄(x)g(x) dx. (3.5.11)

Here the bar stands for complex conjugation. This inner product satisfies the following
properties:

(g, f) = (f, g) (3.5.12)

(λf1 + µf2, g) = λ̄(f1, g) + µ̄(f2, g)

(f, λg1 + µg2) = λ(f, g1) + µ(f, g2)
∀λ, µ ∈ C (3.5.13)

(f, f) > 0 for any nonzero continuous function f(x). (3.5.14)

The real nonnegative number (f, f) defines the L2-norm of f ,

‖f‖ :=
√

(f, f). (3.5.15)

Recall the famous Schwarz inequality
Lemma

|(f, g)| ≤ ‖f‖ ‖g‖.
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Proof: if (g, g) = 0, the inequality reads 0 ≥ 0, which is true. Assume thus that (g, g) > 0.
Clearly ∀λ ∈ C,

0 ≤ (f + λg, f + λg) = (f, f) + λ(f, g) + λ̄(g, f) + λλ̄(g, g).

Now multiply by (g, g) and substitute λ = − (g,f)
(g,g) (so λ̄ = − (f,g)

(g,g) ) to get

0 ≤ ‖f‖2 ‖g‖2 − |(f, g)|2

from which the statement follows.

Corollary 3.5.2. The L2-norm satisfies the triangle inequality:

‖f + g‖ ≤ ‖f‖+ ‖g‖. (3.5.16)

Proof:

‖f + g‖2 = (f + g, f + g) ≤ ‖f‖2 + ‖g‖2 + 2|(f, g)| ≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖ = (‖f‖+ ‖g‖)2 .

Mini-exercise 3.5.3. Check that the complex exponentials einx form an orthonormal system
with respect to the inner product (3.5.11):

(
eimx, einx

)
= δmn =

{
1, m = n
0 m 6= n

(3.5.17)

(her and later on we sometimes write explicitly the variable x in the exponent).

Note that the Fourier coefficients (3.5.10) of a continuous 2π-periodic function f(x) can
be written as

cn = (einx, f), n ∈ Z . (3.5.18)

This gives a simple interpretation of the Fourier coefficients as the coefficients of decompo-
sition of the function f with respect to the orthonormal system made from exponentials.
Observe also that the partial sum of the Fourier series

SN (x) =
N∑

n=−N
cne

inx (3.5.19)

can be interpreted as the orthogonal projection of the vector f onto the (2N+1)-dimensional
linear subspace

VN = span
(
1, e±ix, e±2ix, . . . , e±iNx

)
(3.5.20)

consisting of all trigonometric polynomials

PN (x) =
N∑

n=−N
pne

inx (3.5.21)

of degree N . Here p0, p±1, . . . p±N are arbitrary complex numbers.

Lemma 3.5.4. Bessel inequality holds true:

N∑
n=−N

|cn|2 ≤ ‖f‖2. (3.5.22)
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Proof: We have

0 ≤ ‖f(x)−
N∑

n=−N
cne

inx‖2 =

(
f(x)−

N∑
n=−N

cne
inx, f(x)−

N∑
n=−N

cne
inx

)

= (f, f)−
N∑

n=−N

[
cn
(
f, einx

)
+ c̄n

(
einx, f

)]
+

N∑
m,n=−N

c̄mcn
(
eimx, einx

)
.

Using (3.5.18) and orthonormality (3.5.17) we recast the right hand side of the last equation
in the form

(f, f)−
N∑

n=−N
|cn|2.

This proves Bessel inequality.

Note that the proof shows also the equality

‖f − SN‖2 = (f, f)−
N∑

n=−N
|cn|2 (3.5.23)

and that geometrically the Bessel inequality says that the square length of the orthogonal
projection of a vector onto the linear subspace VN cannot be longer than the square length
of the vector itself.

Corollary 3.5.5. For any continuous 2π-periodic function f(x) the series of squares of
absolute values of Fourier coefficients converges:∑

n∈Z
|cn|2 <∞ , (3.5.24)

that is {cn} ∈ l2(Z).

The following extremal property says that the N -th partial sum of the Fourier series gives
the best L2-approximation of the function f(x) among all trigonometric polynomials of degree
N .

Lemma 3.5.6. For any trigonometric polynomial PN (x) of degree N the following inequality
holds true

‖f − SN‖ ≤ ‖f − PN‖. (3.5.25)

Here SN (x) is the N -th partial sum (3.5.19) of the Fourier series of the function f . The
equality in (3.5.25) takes place iff the trigonometric polynomial PN coincides with SN , i.e.
iff

pn =
1

2π

∫ 2π

0
f(x)e−inxdx, n = 0,±1,±2, . . . ,±N,

Proof: From (3.5.18) we derive that for any QN =
∑
qne

inx ∈ VN ,

(f − SN , QN ) =
∑

(c̄n − c̄n)qn = 0 .

Hence

‖f − PN‖2 = ‖(f − SN ) + (SN − PN )‖2 =

= (f − SN , f − SN ) + 0 + 0 + (QN , QN ) ≥ ‖f − SN‖2.
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Here QN = SN − PN and so the mixed terms vanish. Clearly the equality takes place iff
QN = 0, i.e. PN = SN .

We present now a beautiful reinforcement of Bessel inequality:

Lemma 3.5.7. For any continuous 2π-periodic function the following Parseval equality holds
true: ∑

n∈Z
|cn|2 = ‖f‖2. (3.5.26)

The Parseval equality can be considered as an infinite-dimensional analogue of the Pythago-
ras theorem: of a vector on the coordinate axes is equal to the square length of the vector. The
Parseval equality is also referred to as completeness of the trigonometric system of functions

1, e±ix, e±2ix, . . . .

For an infinite-dimensional space equipped with a Hermitean (or Euclidean) inner product,
an orthonormal system with the property of completeness is the right analogue of the notion
of an orthonormal basis of the space.

For the proof of the Parseval equality we shall need a very general result about uniform
approximation of continuous functions on a compact K in a metric space.
Let A ⊂ C(K) be a subset of functions in the space of continuous real- or complex-valued
functions on a compact K such that:
1. A is a subalgebra in C(K), i.e. for f, g ∈ A, α, β ∈ R (or α, β ∈ C) the linear combination
and the product belong to A:

α f + β g ∈ A, f · g ∈ A.

2. The functions in A separate points in K, i.e., ∀x, y ∈ K, x 6= y there exists f ∈ A such
that

f(x) 6= f(y).

3. The subalgebra is non-degenerate, i.e., ∀x ∈ K there exists f ∈ A such that f(x) 6= 0.

4. The subalgebra A is said to be self-adjoint if for any function f ∈ A the complex conjugate
function f̄ also belongs to A.

Theorem 3.5.8 (Stone – Weierstrass). Given an algebra of functions A ⊂ C(K) that sep-
arates points, is non-degenerate and is self-adjoint then A is an everywhere dense subset in
C(K).

Recall that ’everywhere dense’ means that for any F ∈ C(K) and arbitrary ε > 0 there exists
f ∈ A such that

supx∈K |F (x)− f(x)| < ε,

or that any F ∈ C(K) can be uniformly (in x) approximated by elements in A. In the
particular case of algebra of polynomials one obtains the classical Weierstrass theorem about
polynomial approximations of continuous functions on a finite interval. For the needs of
the theory of Fourier series one applies the Stone–Weierstrass theorem to the subalgebra of
trigonometric polynomials in the space of continuous 2π-periodic functions. Such functions
can be thought as functions on [0, 2π]/”0 ∼ 2π” or on S1 = {z ∈ C| |z| = 1}, and z = eix

separates points of S1.

Proof: of Lemma 3.5.7 [Parseval]
According to Stone – Weierstrass theorem any continuous 2π-periodic function can be uniformly
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approximated by Fourier polynomials

PN (x) =

N∑
n=−N

pne
inx. (3.5.27)

That means that for a given function f(x) and any ε > 0 there exists a trigonometric poly-
nomial PN (x) of some degree N such that

supx∈[0,2π] |f(x)− PN (x)| < ε.

Then

‖f − PN‖2 =
1

2π

∫ 2π

0
|f(x)− PN (x)|2dx < ε2.

Therefore, due to the extremal property (see Lemma 3.5.6), we obtain

‖f − SN‖2 < ε2.

But using (3.5.23) we get

‖f‖2 −
N∑

n=−N
|cn|2 < ε2

and so we arrive at the proof of Lemma.

Corollary. SN → f in ‖ ‖L2(I) iff f ∈ L2(I).

Corollary 3.5.9. Two continuous 2π-periodic functions f(x), g(x) with all equal Fourier
coefficients identically coincide.

Proof: Indeed, the difference h(x) = f(x) − g(x) is continuous function with zero Fourier
coefficients. The Parseval equality implies ‖h‖2 = 0. So h(x) ≡ 0 a.e., and by continuity
everywhere

We can state now a fundamental result of the theory of Fourier series.

Theorem 3.5.10. For any 2π-periodic continuously differentiable complex valued function
f ∈ C1(R,C) the Fourier series is uniformly convergent to the function f(x).

In particular we conclude that any C1-smooth 2π-periodic function f(x) can be represented
as a sum of uniformly convergent Fourier series

f(x) =
∑
n∈Z

cne
inx, cn =

1

2π

∫ 2π

0
f(x)e−inxdx. (3.5.28)

Proof: Denote c′n the Fourier coefficients of the derivative f ′(x). Integrating by parts we
derive the following formula:

cn =
1

2π

∫ 2π

0
f(x)e−inx dx = − 1

2πin
f(x)e−inx

∣∣2π
0 +

1

2πin

∫ 2π

0
f ′(x)e−inx dx = − i

n
c′n.

This implies convergence of the series
∑

n∈Z |cn|. Indeed,

|cn| =
|c′n|
n
≤ 1

2

(
|c′n|2 +

1

n2

)
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(usare 0 ≤ 1
2

(
|c′n| − 1

n

)2
). The series

∑
|c′n|2 converges according to the Corollary 3.5.5;

convergence of the series
∑ 1

n2 is well known. Using Weierstrass theorem we conclude that
the Fourier series converges absolutely∑

n∈Z

∣∣cneinx∣∣ =
∑
n∈Z
|cn| <∞

and by inspection we see that also uniformly. This last property assures that the sum of this
series, which we denote g(x) is a continuos function. The Fourier coefficients of g coincide
with those of f :

(
einx, g

)
= cn. Hence, by Corollary 3.5.9, f(x) ≡ g(x).

For the specific case of real valued function the Fourier coefficients satisfy the following
property.

Lemma 3.5.11. A 2π-periodic function f ∈ C1 is real valued iff its Fourier coefficients
satisfy

c̄n = c−n for all n ∈ Z. (3.5.29)

Proof: Reality of the function can be written in the form

f̄(x) = f(x).

Since
einx = e−inx

we have

c̄n =
1

2π

∫ 2π

0
f̄(x)einxdx = c−n.

Inverting this reasoning and using Theorem 3.5.10, we get the inverse implication.

Note that the coefficient

c0 =
1

2π

∫ 2π

0
f(x) dx

is always real if f(x) is a real valued function.

Let us establish the correspondence of the complex form (3.5.28) of the Fourier series of
a real valued function with the real form.

Lemma 3.5.12. Let f(x) be a real valued 2π-periodic smooth function. Denote cn its Fourier
coefficients (3.5.10). Introduce coefficients

an = cn + c−n =
1

π

∫ 2π

0
f(x) cosnx dx, n = 0, 1, 2, . . . (3.5.30)

bn = i(cn − c−n) =
1

π

∫ 2π

0
f(x) sinnx dx, n = 1, 2, . . . (3.5.31)

Then the function f(x) is represented as a sum of uniformly convergent Fourier series of the
form

f(x) =
a0
2

+
∑
n≥1

(an cosnx+ bn sinnx) . (3.5.32)

Proof:

c0 +
∑
n>0

(cn + c−n) cos(nx) + i(cn − c−n) sin(nx) = c0 +
∑
n>0

(
cne

inx + c−ne
−inx) = f(x)

by Theorem 3.5.10.
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Lemma 3.5.13. For any real valued continuous 2π-periodic function f(x) there is the fol-
lowing version3 of Bessel inequality (3.5.22):

a20
2

+

N∑
n=1

(a2n + b2n) ≤ 1

π

∫ 2π

0
f2(x) dx (3.5.33)

and Parseval equality (3.5.26)

a20
2

+

∞∑
n=1

(a2n + b2n) =
1

π

∫ 2π

0
f2(x) dx. (3.5.34)

Proof: We show (3.5.26):

a20
2

+

∞∑
n>0

(a2n + b2n) = 2c20 +

∞∑
n>0

(cn + c−n)2 − (cn − c−n)2 = 2c20 +

∞∑
n>0

4cnc−n =

2

(
c20 +

∑
n>0

cnc−n +
∑
n<0

cnc−n

)
= 2

1

2π
‖f‖ =

1

π

∫ 2π

0
f2(x) dx ,

where in the penultimate eqaution we used (3.5.29) (since f is real) and the Parseval identity.
Clearly the inequality (3.5.22) follows.

For non-smooth functions the problem of convergence of Fourier series is more delicate.
Let us consider an example giving some idea about the convergence of Fourier series for
piecewise smooth functions. Consider the function

signx =


1, x > 0
0, x = 0
−1, x < 0

. (3.5.35)

This function will be considered on the interval [−π, π] and then continued 2π-periodically
onto entire real line. The Fourier coefficients of this function can be easily computed:

an = 0, bn =
2

π

(1− (−1)n)

n
.

So the Fourier series of this functions reads

4

π

∑
k≥1

sin(2k − 1)x

2k − 1
. (3.5.36)

One can prove that this series converges to the sign function at every point of the interval
(−π, π). Moreover this convergence is uniform on every closed subinterval non containing 0
or ±π. However the character of convergence near the discontinuity points x = 0 and x = ±π
is more complicated as one can see from the following graph of a partial sum of the series
(3.5.36).

3Notice a change in the normalization of the L2 norm.
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Fig. 6. Graph of the partial sum Sn(x) = 4
π

∑n
k=1

sin(2k−1)x
2k−1 for n = 50.

In general for piecewise smooth functions f(x) with some number of discontinuity points
one can prove that the Fourier series converges to the mean value 1

2 (f(x0 + 0) + f(x0 − 0))
at every first kind discontinuity point x0. The non vanishing oscillatory behavior of partial
sums near discontinuity points is known as Gibbs phenomenon (see Exercise 3.10.9 below).

For more general classes of functions, the situation is more complicated. A natural func-
tional space turns out to be the L2 space in which case the assignment (Fourier transform)
f  {cn} becomes unitary isomorphism (isometry) onto l2(Z). Carlson: for f ∈ L2(I) (so
e.g. f ∈ C), SN (x) → f(x) a.e. But for any x, most of C does not converge at x. Ac-
tually f  {cn} works for f ∈ L1 (L2(I) ⊂ L1(I)), but SN (x) may diverge everywhere
[Kolmogorov]. Non si sa condizioni per cn dif ∈ C.

Let us return to the wave equation. Using the theory of Fourier series we can represent
any periodic solution to the Cauchy problem (3.5.2) as a superposition of solutions of the
form (3.5.5), (3.5.7). Namely, let us expand the initial data in Fourier series:

φ(x) =
∑
n∈Z

φne
inx, ψ(x) =

∑
n∈Z

ψne
inx. (3.5.37)

Then the solution to the periodic Cauchy problem reads

u(x, t) =
∑
n∈Z

φne
inx cos ant+ ψ0t+

1

a

∑
n∈Z\0

ψne
inx sin ant

n
. (3.5.38)

Remark 3.5.14. The formula (3.5.38) says that the solutions

u(1)n (x, t) = einx cos ant

(3.5.39)

u(2)n (x, t) =


t, n = 0

einx sin ant
n , n 6= 0

for n ∈ Z form a basis in the space of 2π-periodic solutions to the wave equation. Observe
that all these solutions can be written in the so-called separated form

u(x, t) = X(x)T (t) (3.5.40)
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for some smooth functions X(x) and T (t). A rather general method of separation of variables
for solving boundary value problems for linear PDEs has this observation as a starting point.
This method will be explained later on.

3.6 Finite vibrating string. Standing waves

To discuss a finite string we start with two simple remarks. When working with functions
with an arbitrary period, we can just use the scale transformed solutions to the wave equation
as in Lemma 3.3.2

ũ(x, t) = u (c x, c t) , c 6= 0, (3.6.1)

which is periodic in x with the period 2π
c if u(x, t) was 2π-periodic.

Next, let ry denote the reflection of the x axis with respect to some fixed point y, that
is ry : x 7→ 2y − x. Then the composition ry+lry of two reflections is just the translation
t2l : x 7→ x+ 2l of x by 2l (to the right if l > 0). Therefore, if f is symmetric with respect to
both ry and ry+l, or if f is antisymmetric with respect to both ry and ry+l, then it is invariant
under t2l, i.e. it is 2l-periodic. Note actually that since r2y = 1 we have also ry = ry+lt2l and
ry+l = t2lry. Therefore any two of the three properties of f

• ry-symmetry (respectively ry-antisymmetry)

• ry+l-symmetry (respectively ry+l-antisymmetry)

• 2l-periodicity

imply the third one.

Let us proceed to considering the oscillations of the string of the length l with initial
conditions

u(x, 0) = φ(x), ut(x, 0) = ψ(x), x ∈ [0, l] (3.6.2)

We impose additionally the boundary conditions, either

i) fixed endpoints, or

ii) free endpoints.

So we have to solve the following mixed problem for the wave equation (3.1.1): (3.6.2) together
with either

u(0, t) = 0, u(l, t) = 0 for all t > 0, (3.6.3)

or
ux(0, t) = 0, ux(l, t) = 0 for all t > 0. (3.6.4)

The idea of solution, again is a suitable extension of the problem onto entire line.

Lemma 3.6.1. Let the initial data φ(x), ψ(x) of the Cauchy problem (3.2.1) for the wave
equation on R be symmetric (resp. antisymmetric) with respect to r0 and rl, and hence
2l-periodic functions. Then the solution u(x, t) will also be a function symmetric (resp. an-
tisymmetric) with respect to r0 and rl, (hence 2l-periodic) for all t, satisfying the boundary
conditions (3.6.4).
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Proof: Straightforward adaptation of the material in Sect. 3.4.

The above Lemma gives an algorithm for solving the mixed problem (3.6.2, 3.6.3) or
(3.6.2, 3.6.4) for the wave equation. Namely, we extend the initial data φ(x), ψ(x) from the
interval [0, l] onto the real axis as symmetric (resp. antisymmetric) with respect to r0 and rl
(hence 2l-periodic) functions. After this we apply D’Alembert formula to the extended initial
data. The resulting solution will satisfy the initial conditions (3.6.3) on the interval [0, l] as
well as the boundary conditions (3.6.4) at the end points of the interval.

We will apply now the technique of Fourier series to the mixed problems (3.6.2), (3.6.3)-
(3.6.4).

Lemma 3.6.2. Let a 2π-periodic functions f(x) be represented as the sum of its Fourier
series

f(x) =
∑
n∈Z

cne
inx, cn =

1

2π

∫ π

−π
f(x)e−inxdx.

The function f(x) is even/odd iff the Fourier coefficients satisfy

c−n = ±cn

respectively.

Proof: For an even/odd function one must have

cn =
1

2π

∫ π

−π
±f(−x)e−inxdx =

1

2π

∫ −π
π
±f(x)einxd(−x) = ±c−n,

where we used that f(x) = ±f(−x) and in the second integral we changed the integration
variable x 7→ −x.

Corollary 3.6.3. Any even/odd smooth 2π-periodic function can be expanded in Fourier
series in cosines/sines:

f(x) =
a0
2

+
∑
n≥1

an cosnx, an =
2

π

∫ π

0
f(x) cosnx dx, if f is even (3.6.5)

f(x) =
∑
n≥1

bn sinnx, bn =
2

π

∫ π

0
f(x) sinnx dx, if f is odd. (3.6.6)

Proof: Let us consider the case of an odd function. In this case we have c−n = −cn, and, in
particular, c0 = 0, so we rewrite the Fourier series in the following form

f(x) =
∑
n≥1

cne
inx +

∑
n≤−1

cne
inx

=
∑
n≥1

cn
(
einx − e−inx

)
= 2i

∑
n≥1

cn sinnx.

Denote
bn = 2icn, n ≥ 1

and compute it

bn =
2i

2π

∫ π

−π
f(x)e−inxdx =

i

π

∫ π

0
f(x)e−inxdx+

i

π

∫ 0

−π
f(x)e−inxdx.

35

Preliminary version – December 2, 2012



In the second integral we change the integration variable x 7→ −x and use f(−x) = −f(x) to
arrive at

bn =
i

π

∫ π

0
f(x)e−inxdx+

i

π

∫ 0

π
f(x)einxdx

=
i

π

∫ π

0
f(x)

[
e−inx − einx

]
dx =

2

π

∫ π

0
f(x) sinnx dx.

Similarly one shows the case of an even function.

Let us return to the solution to the wave equation on the interval [0, l] with fixed end-
points boundary condition. Using the rescaling x 7→ π

l x, t 7→
π
l t, the last corollary and (the

imaginary parts of) (3.5.5), (3.5.7), we arrive at the following

Theorem 3.6.4. Let φ(x) ∈ C2([0, l]), ψ(x) ∈ C1([0, l]) be two arbitrary smooth functions.
Then the solution to the mixed problem (3.6.2), (3.6.3) for the wave equation is written in
the form

u(x, t) =
∑
n≥1

sin
πnx

l

(
bn cos

πant

l
+ ḃn sin

πant

l

)
(3.6.7)

bn =
2

l

∫ l

0
φ(x) sin

πnx

l
dx, ḃn =

2

πan

∫ l

0
ψ(x) sin

πnx

l
dx.

Particular solutions (bm = δmn, ḃm = 0 or bm = 0, ḃm = δmn) to the wave equation giving
a basis in the space of all solutions satisfying the boundary conditions (3.6.3) have the form

u(1)n (x, t) = sin
πnx

l
cos

πant

l
, u(2)n (x, t) = sin

πnx

l
sin

πant

l
, n = 1, 2, . . . (3.6.8)

and bnu
(1)
n , ḃnu

(2)
n are called standing waves. Observe that these solutions have the separated

form (3.5.40). The shape of these waves essentially does not change in time, only the size
does change. In particular the location of the nodes

xk = k
l

n
, k = 0, 1, . . . , n (3.6.9)

of the n-th solution u
(1)
n (x, t) or u

(2)
n (x, t) does not depend on time. The n-th standing waves

(3.6.8) has (n + 1) nodes on the string. The solution takes zero values at the nodes at all
times.

Similarly, the solution to the wave equation on the interval [0, l] with free endpoints
boundary condition, using the rescaling x 7→ π

l x, the last corollary and (the real parts of)
(3.5.5), (3.5.7), we arrive at the following

Theorem 3.6.5. Let φ(x) ∈ C2([0, l]), ψ(x) ∈ C1([0, l]) be two arbitrary smooth functions.
Then the solution to the mixed problem (3.6.2), (3.6.4) for the wave equation is written in
the form

u(x, t) = ȧ0t+
∑
n≥1

cos
πnx

l

(
an cos

πant

l
+ ȧn sin

πant

l

)
(3.6.10)

an =
2

l

∫ l

0
φ(x) cos

πnx

l
dx, ȧ0 =

1

l

∫ l

0
ψ(x) dx, ȧn =

2

πan

∫ l

0
ψ(x) cos

πnx

l
dx, forn ≥ 1 .
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Particular solutions to the wave equation giving a basis in the space of all solutions
satisfying the boundary conditions (3.6.3) have the form

v(0)(x, t) = t, v(1)n (x, t) = cos
πnx

l
cos

πant

l
, v(2)n (x, t) = cos

πnx

l
sin

πant

l
, n ≥ 1

(3.6.11)

and anv
(1)
n , ȧnv

(2)
n are also called standing waves. Observe that these solutions have the

separated form (3.5.40) too and again the shape of these waves again essentially does not
change in time, only the size does change. In particular the location of the nodes

xk = (2k + 1)
l

2n
, k = 0, 1, . . . , n− 1 (3.6.12)

of the n-th solution v
(1)
n (x, t) or v

(2)
n (x, t) does not depend on time. The n-th standing waves

(3.6.11) has n nodes on the string. The solution takes zero values at the nodes at all times.

3.7 Energy of vibrating string

Consider the energy functional of the vibrating string with fixed points x = 0 and x = l. It
is clear that the kinetic energy of the string at the moment t is equal to

K =
1

2

∫ l

0
ρ u2t (x, t) dx. (3.7.1)

Let us now compute the potential energy U of the string. By definition U is equal to the work
done by the elastic force moving the string from the equilibrium u ≡ 0 to the actual position
given by the graph u(x). The motion can be described by the one-parameter family of curves
v(x; s), v ∈ C∞([0, l]× [0, 1]), where the parameter s changes from s = 0 (the equilibrium)
to s = 1 (the actual position of the string). (For instance we can take v(x; s) = s u(x)).
As we already know the vertical component of the force acting on the interval of the string
v(x; s) between x and x+ δx is equal to

F = T (vx(x+ δx; s)− vx(x; s)) ' T vxx(x, s) δx.

The work Us to move this interval from the position v(x; s) to v(x; s+ δs) is therefore equal
to

Us = −F · [v(x; s+ δs)− v(x; s)] ' −T vxx(x, s)δx vs(x, s)δs

(the negative sign since the direction of the force is opposite to the direction of the dis-
placement). The total work of the elastic forces for moving the string of length l from the
equilibrium s = 0 to the given configuration at s = 1 is obtained by integration:

U = −
∫ 1

0
ds

∫ l

0
T vxx(x, s)vs(x, s) dx .

Integrating by parts we get

U =

∫ 1

0
ds

∫ l

0
T vx(x, s)vxs(x, s) dx =

1

2

∫ 1

0
ds

∫ l

0
T (v2x)s(x, s) dx =

1

2

∫ l

0
T v2x(x, s) dx|s=1

s=0

and using the boundary conditions,

v(x, 1) = u(x), v(x, 0) = 0

and their x-derivatives, we finally arrive at the following expression for the potential energy:

U =
1

2

∫ l

0
T u2x(x) dx. (3.7.2)
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The sum of (3.7.1) and (3.7.2) gives the formula for the total energy E = E(t) of the vibrating
string at the moment t

E = K + U =
1

2

∫ l

0

(
ρ u2t (x, t) + T u2x(x, t)

)
dx. (3.7.3)

Remark 3.7.1. Note that U and E does not depend on the path s 7→ v(x, s).

We will now prove that the total energy E of vibrating string with fixed end points does
not depend on time.

Lemma 3.7.2. Let the function u(x, t) satisfy the wave equation utt = a2uxx. Then the
following identity holds true

∂

∂t

(
1

2
ρ u2t (x, t) +

1

2
T u2x(x, t)

)
=

∂

∂x
(T uxut) . (3.7.4)

Proof: A straightforward differentiation using the wave equation yields

∂

∂t

(
1

2
ρ u2t (x, t) +

1

2
T u2x(x, t)

)
= ρ a2utuxx + T uxuxt.

Recalling that

a2 =
T

ρ

we rewrite the last equation in the form

= T (utuxx + utxux) = T (utux)x .

Corollary 3.7.3. Denote E[a,b](t) the energy of a segment of vibrating string

E[a,b](t) =

∫ b

a

(
1

2
ρ u2t (x, t) +

1

2
T u2x(x, t)

)
dx. (3.7.5)

The following formula describes the dependence of this energy on time:

d

dt
E[a,b](t) = T utux|x=b − T utux|x=a. (3.7.6)

Remark 3.7.4. In physics literature the quantity

1

2
ρ u2t (x, t) +

1

2
T u2x(x, t) (3.7.7)

is called energy density. It is equal to the energy of a small piece of the string from x to
x+ dx at the moment t. The total energy of a piece of a string is obtained by integration of
this density in x. Another important notion is the flux density

T utux. (3.7.8)

The formula (3.7.6) says that the change of the energy of a given piece of the string for the
time dt is given by the total flux through the boundary of the piece.

Finally we arrive at the conservation law of the total energy of a vibrating string with
fixed end points.
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Theorem 3.7.5. The total energy (3.7.3) of the vibrating string with fixed end points does
not depend on t:

d

dt
E = 0.

Proof: The formula (3.7.6) for the particular case a = 0, b = l gives

d

dt
E = T (ut(l, t)ux(l, t)− ut(0, t)ux(0, t)) = 0

since
ut(0, t) = ∂tu(0, t) = 0, ut(l, t) = ∂tu(l, t) = 0

due to the boundary conditions u(0, t) = u(l, t) = 0, ∀t.

The conservation law of total energy means that the vibrating string is a conservative
system.

Theorem 3.7.6. The formula for the total energy remains the same for a vibrating string
of finite length with free boundary conditions ux(0, t) = ux(l, t) = 0 and the previous proof of
the conservation law is valid as well.

Proposition 3.7.7. The energy of the vibrating string represented as sum (3.6.7) of standing

waves bnu
(1)
n , ḃnu

(2)
n (see (3.6.8)) is equal to the sum of energies of these standing waves.

The energy of the vibrating string represented as sum (3.6.10) is equal to the energy of the

uniformly moving solution ȧ0 t plus the sum of energies of the standing waves anv
(1)
n , ȧnv

(2)
n

(see (3.6.11)).

Proof: Since E is conserved it suffices to compute E at t = 0,

E(0) =
1

2

∫ l

0

(
ρ u2t (x, 0) + T u2x(x, 0)

)
dx

=
T

2

π2

l2

∑
m,n>0

∫ l

0
mn

(
ḃmḃn sin

πmx

l
sin

πnx

l
+ bmbn cos

πmx

l
cos

πnx

l

)
dx

=
πT

4

π

l

∑
n>0

n2
(
b2n + ḃ2n

)
due to the othogonality of cosines and of sines. The result is however just the sum of the
energies of the individual contributions of standing waves. Similarly one shows the second
statement.

The conservation of total energy can be used for proving uniqeness of solution for the
wave equation. Indeed, if u(1)(x, t) and u(2)(x, t) are two solutions vanishing at x = 0 and
x = l with the same initial data. The difference

u(x, t) = u(2)(x, t)− u(1)(x, t)

solves wave equation, satisfies the same boundary conditions and has zero initial data u(x, 0) =
φ(x) = 0, ut(x, 0) = ψ(x) = 0. The conservation of energy for this solution gives

E(t) =

∫ l

0

(
1

2
ρ u2t (x, t) +

1

2
T u2x(x, t)

)
dx = E(0) =

∫ l

0

(
1

2
ρψ2(x) +

1

2
T φ2x(x)

)
dx = 0.

Hence ux(x, t) = ut(x, t) = 0 for all x, t. Using the boundary conditions one concludes that
u(x, t) ≡ 0.
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3.8 Equazione delle onde in Rn

L’equazione delle onde in R2 che descrive l’evoluzione temporale della corda vibrante unidi-
mensionale, in R3 descrive le vibrazioni della membrana e in R4 del corpo elastico. Più in
generale consideriamo il problema di Cauchy per u ∈ Cm(Rn × [0,∞)):

utt −∆u = 0 su Rn × (0,∞)

u = φ, ut = ψ su Rn × {t = 0}.
(3.8.9)

Studieremo prima la media di u sulla sfera S(x, r) in Rn con centro nel punto x e raggio
r > 0. Definiamo una funzione di r, t con parametro x

U(x; r, t) := −
∫
S(x,r)

u(y; t)dS(y),

dove −
∫

è l’integrale ’normalizzato’, ovvero

−
∫
S(x,r)

fdS :=
1

nαnrn−1

∫
S(x,r)

fdS,

con

αn :=
πn/2

Γ(n2 + 1)

dato dal volume di una palla unitaria in Rn (uguale anche a 1
n per l’area di una sfera unitaria).

Definiamo anche

Φ(x; r) := −
∫
S(x,r)

φ(y)dS(y),

Ψ(x; r) := −
∫
S(x,r)

ψ(y)dS(y).

Lemma 3.8.8. (Eulero-Poisson-Darboux)
Per ogni x (fisso), U ∈ Cm([0,∞)× (0,∞)) e inoltre

Utt − Urr −
n− 1

r
Ur = 0 su R+ × (0,∞), (3.8.10)

U = Φ, Ut = Ψ su R+ × {t = 0}. (3.8.11)

Proof: Con il cambio di variabile di integrazione y = x + rz e grazie alla normalizzazione
abbiamo

Ur(x; r, t) = ∂r −
∫
S(x,r)

u(x+ rz; t)dS(z) = −
∫
S(x,r)

∇u(x+ rz; t) · z dS(z)

che si può riscrivere con formula di ([Evans, App. C]) come

r

n
−
∫
B(x,r)

∆u(y; t)d(y), (3.8.12)

dove −
∫
B(x,r) = 1

αnrn

∫
B(x,r) è l’integrale ”normalizzato” sulla palla con centro x e raggio r.

Questa espressione converge a 0 quando r → 0, il che dimostra che Ur è continua su
R+ × (0,∞) e si estende per contunuità anche sul bordo r = 0. Analogamente si dimostrano
le stesse proprietà per Urr, Urt, etc., perciò u ∈ Cm([0,∞)× [0,∞).
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Inoltre, da (3.8.12) segue che

Ur(x; r, t) =
r

n
−
∫
B(x,r)

utt(y; t)d(y)

e perciò

rn−1Ur(x; r, t) =
1

nαn

∫
B(x,r)

utt(y; t)d(y). (3.8.13)

Derivando (3.8.13) rispetto r, da un lato otteniamo

(rn−1Ur(x; r, t))r = (n− 1)rn−2Ur(x; r, t)) + rn−1Urr(x; r, t))

e dall’altro

1

nαn
∂r

∫
B(x,r)

utt(y; t)d(y) =
1

nαn

∫
S(x,r)

utt(y; t)dS(y) = rn−1 −
∫
S(x,r)

utt(y; t)d(y) = rn−1Utt

che dimostra (3.8.10). Inoltre (3.8.11) segue dalla definizione.

Trasformeremo ora (3.8.10), (3.8.11) nel problema che già sapiamo a risolvere. Concen-
triamoci sul caso n = 3. Sia U soluzione di (3.8.10). Poniamo

Ũ = rU, Φ̃ = rΦ, Ψ̃ = rΨ

e calcoliamo
Ũtt = rUtt = rUrr + 2Ur = (rUr + U)r = (Ũr)r

che è niente altro che l’equazione delle onde in dimensione 2 (!). Inoltre, ci sono i dati iniziali

Ũ(r, 0) = Φ̃(r), Ũt(r, 0) = Ψ̃(r) su Rn × {t = 0}

e per definizione di Ũ abbiamo anche la condizione al contorno

Ũ(0, t) = 0,∀t,

ovvero un problema misto con bordo fissato. Ma questo problema sappiamo che si risolve con
la formula di D’Alembert estesa per antisimmetria su tutti i valori di r reali. In particolare,
per r < t abbiamo

Ũ(x; r, t) =
1

2

(
Φ̃(r + t)− Φ̃(t− r)

)
+

1

2

∫ r+t

t−r
Ψ̃(s) ds. (3.8.14)

Ci interessa la regione r < t perchè vorremmo calcolare

u(x, t) = limr→0+U(x; r, t) = limr→0+

1

r
Ũ(x; r, t) = Φ̃′(t) + Ψ̃(t)

= ∂t

(
t−
∫
S(x,t)

φ(y) dS(y)

)
+ t−

∫
S(x,t)

ψ(y) dS(y).

Usando la regola di Leibniz e con il cambio della variabile di integrazione y = x+rz, l’ultima
espressione diventa

−
∫
S(x,t)

(tψ(y) + φ(y)) dS(y) + t−
∫
S(0,1)

∇φ(x+ tz) · z dS(z).

Tornando alle variabili y con cambio inverso z = y−x
t otteniamo la formula di Kirchhoff

u(x, t) = −
∫
S(x,t)

(tψ(y) + φ(y) +∇φ(y) · (y − x)) dS(y), x ∈ R3, t > 0,
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per la soluzione del problema di Cauchy (3.8.9).

Questo procedimento non funziona per n = 2. Però usando le soluzioni per n = 3, che
sono costanti lungo x3, dopo alcuni passagi [Evans, p. 73-74] si arriva alla formula di Poisson:

u(x, t) =
1

2
−
∫
B(x,t)

(
tφ(y) + t2φ(y) + t∇ψ(y) · (y − x)

) (
t2 − ‖y − x‖2

)− 1
2 dS(y),

Si possono scrivere anche soluzioni per n ≥ 4, bisogna però assumere regolarità di φ e ψ
più alta (vedi [Evans]).

3.9 Equazione delle onde nonomogenea

Sia u(x, t; s) una famiglia a un parametro s > 0 di soluzioni, ovvero ∀s

utt(·, ·, s)−∆u(·, ·, s) = 0 su Rn × (s,∞)

u(·, s; s) = 0, ut = ψ(·, s; s) = f(·; s), su Rn,
(3.9.15)

dove f ∈ C[
n
2
]+1(Rn × (0,∞)).

Theorem 3.9.9 (”principio di Duhamel”). Poniamo

u(x, t) =

∫ t

0
u(x, t; s)ds, x ∈ Rn, t ≥ 0.

Tale u soddisfa
i). u ∈ C2(Rn × (0,∞))
ii). utt −∆u = f su Rn × (0,∞)
iii). limx,t→x0,0 u(x, t) = 0, limx,t→x0,0 ut(x, t) = 0, ∀x0 ∈ Rn.

Proof:
i). segue dalla proprietà delle soluzioni per n ≥ 2
ii). calcoliamo

ut(x, t) = u(x, t; t) +

∫ t

0
ut(x, t; s)ds =

∫ t

0
ut(x, t; s)ds,

e di conseguenza

utt(x, t) = ut(x, t; t) +

∫ t

0
utt(x, t; s)ds = f(x, t) +

∫ t

0
∆u (x, t; s)ds = f(x, t) + ∆u (x, t)

iii). chiaramente u(x, 0) = 0 e ut(x, t) = 0, ∀x ∈ Rn.

Esempio.
Assumiamo n = 1. Usiamo la formula di D’Alembert sostituendo t con t− s

ut(x, t; s) =
1

2

∫ x+t−s

x−t−s
f(y, s)dy, per t > s,

perciò

u(x, t) =
1

2

∫ t

0

∫ x+t−s

x−t−s
f(y, s) dy ds =

1

2

∫ t

0
ds

∫ x+s

x−s
f(y, t− s) dy.

Esempio.
Assumiamo n = 3. Usiamo la formula di Kirchhoff con φ = 0, e sostituendo φ(y) con f(y, s)
e t con t− s

ut(x, t; s) = (t− s)−
∫
S(x,t−s)

f(y, s) dS(y)
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perciò

u(x, t) =

∫ t

0
(t− s)

(
−
∫
S(x,t−s)

f(y, s) dS(y)

)
ds =

1

4π

∫ t

0

∫
S(x,t−s)

(t− s)−1f(y, s) dS(y) ds =

1

4π

∫ t

0

∫
S(x,r)

r−1f(y, t− r) dS(y) dr =

1

4π

∫
B(x,t)

f(y, t− |x− y|)
|x− y|

dy.

Vediamo che f gioca il ruolo di ’potenziale’ e che l’ultima espressione contiene il ’potenziale
ritardato’ per il tempo t = |x− y|.
Osservazione.
Per risolvere

utt −∆u = f

u(x, 0) = φ(x), ut(x, 0) = ψ(x)
(3.9.16)

basta sommare la soluzione dell’equazzione omogenea con dati iniziali φ, ψ (p. es. la formula
di D’Alembert o di Kirchhoff) e la soluzione nonomogenea (Duhamel) con dati iniziali nulli.

3.10 Exercises to Section 3

Exercise 3.10.1. For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation with the initial data

u(x, 0) = 0, ut(x, 0) =

{
1, x ∈ [x0, x1]
0 otherwise

, −∞ < x <∞.

Exercise 3.10.2. Let the initial data u(x, 0) = φ(x), ut(x, 0) = ψ(x) of the Cauchy problem
for the wave equation on −∞ < x <∞ have the following form: the graph of φ(x) consists of
two isosceles triangles with the non-overlapping bases [α1, β1] and [α2, β2] (i.e., β1 < α2) of
the heights h1 and h2 respectively, and ψ(x) ≡ 0. Denote u(x, t) the solution to the problem.
Find

max
x∈R, t>0

u(x, t).

Compare this number with
max

x∈R, t≥0
u(x, t).

Exercise 3.10.3. For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation on the half line x ≥ 0 with the free boundary condition

ux(0, t) = 0

and with the initial data

u(x, 0) = φ(x), ut(x, 0) = 0, x > 0

where the graph of the function φ(x) is an isosceles triangle of height 1 and the base [l, 3l].
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Exercise 3.10.4. For few instants of time t ≥ 0 make a graph of the solution u(x, t) to the
wave equation on the half line x ≥ 0 with the fixed point boundary condition

u(0, t) = 0

and with the initial data

u(x, 0) = 0, ut(x, 0) =

{
1, x ∈ [l, 3l]
0, otherwise

, x > 0.

Exercise 3.10.5. Prove that

∞∑
n=1

sinnx

n
=
π − x

2
for 0 < x < 2π.

Compute the sum of the Fourier series for all other values of x ∈ R.

Exercise 3.10.6. Compute the sums of the following Fourier series:

∞∑
n=1

sin 2nx

2n
, 0 < x < π;

∞∑
n=1

(−1)n

n
sinnx, |x| < π.

Exercise 3.10.7. Prove that

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx, |x| < π.

Exercise 3.10.8. Compute the sums of the following Fourier series:

∞∑
n=1

cos(2n− 1)x

(2n− 1)2

∞∑
n=1

cosnx

n2
.

Exercise 3.10.9. Denote

Sn(x) =
4

π

n∑
k=1

sin(2k − 1)x

2k − 1

the n-th partial sum of the Fourier series (3.5.36). Prove that

1) for any x ∈ (−π, π)
lim
n→∞

Sn(x) = signx.

Hint: derive the following expression for the derivative

S′n(x) =
2

π

sin 2nx

sinx
.

2) Verify that the n-th partial sum has a maximum at

xn =
π

2n
.
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3) Prove that

Sn(xn) =
2

π

n∑
k=1

π

n
·

sin (2k−1)π
2n

(2k−1)π
2n

→ 2

π

∫ π

0

sinx

x
dx ' 1.17898

for n→∞.

Thus for the trigonometric series (3.5.36)

lim sup
n→∞

Sn(x) > 1 for x > 0.

In a similar way one can prove that

lim inf
n→∞

Sn(x) < −1 for x < 0.
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