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Let’s consider a periodic solid. We indicate with

RI = Rµ + ds (1)

the equilibrium positions of the atoms. Rµ indicate the Bravais
lattice vectors and ds the positions of the atoms in one unit cell
(s = 1, . . . ,Nat).
We take N unit cells with Born-von Karman periodic boundary
conditions. Ω is the volume of one cell and V = NΩ the volume
of the solid.
At time t , each atom is displaced from its equilibrium position.
uI(t) is the displacement of the atom I.
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Within the Born-Oppenheimer adiabatic approximation the
nuclei move in a potential energy given by the total energy of
the electron system calculated (for instance within DFT) at fixed
nuclei. We call

Etot(RI + uI) (2)

this energy. The electrons are assumed to be in the ground
state for each nuclear configuration.
If |uI | is small, we can expand Etot in a Taylor series with
respect to uI . Within the harmonic approximation:

Etot(RI+uI) = Etot(RI)+
∑
Iα

∂Etot

∂uIα
uIα+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ+...

(3)
where the derivatives are calculated at uI = 0 and α and β
indicate the three cartesian coordinates.
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Equations of motion
At equilibrium ∂Etot

∂uIα
= 0, so the Hamiltonian of the ions

becomes:

H =
∑
Iα

P2
Iα

2MI
+

1
2

∑
Iα,Jβ

∂2Etot

∂uIα∂uJβ
uIαuJβ (4)

where PI are the momenta of the nuclei and MI their masses.
The classical motion of the nuclei is given by the N × 3× Nat
functions uIα(t). These functions are the solutions of the
Hamilton equations:

u̇Iα =
∂H
∂PIα

ṖIα = − ∂H
∂uIα

(5)

Andrea Dal Corso Density functional perturbation theory



Lattice dynamic of a solid: phonons
Density functional perturbation theory

Interatomic force constants

Description of a solid
Equations of motion
The phonon solution

Equations of motion-II

With our Hamiltonian:

u̇Iα =
PIα

MI

ṖIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ (6)

or:

MIüIα = −
∑
Jβ

∂2Etot

∂uIα∂uJβ
uJβ (7)
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The phonon solution

We can search the solution in the form of a phonon. Let’s
introduce a vector q in the first Brillouin zone. For each q we
can write:

uµsα(t) =
1√
Ms

usα(q)ei(qRµ−ωqt) (8)

where the time dependence is given by a simple exponential
eiωqt and the displacement of the atoms in each cell identified
by the Bravais lattice Rµ can be obtained from the
displacements of the atoms in one unit cell, for instance the one
that corresponds to Rµ = 0: 1√

Ms
usα(q).
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The phonon solution-II

Inserting this solution in the equations of motion and writing
I = (µ, s), J = (ν, s′) we obtain an eigenvalue problem for the
3× Nat variables usα(q):

ω2
qusα(q) =

∑
s′β

Dsαs′β(q)us′β(q) (9)

where:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ) (10)

is the dynamical matrix of the solid.
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Within DFT the ground state total energy of the solid, calculated
at fixed nuclei, is:

Etot =
∑

i

〈ψi |−
1
2
∇2|ψi〉+

∫
Vloc(r)ρ(r)d3r +EH [ρ]+Exc[ρ]+UII

(11)
where ρ(r) is the density of the electron gas:

ρ(r) =
∑

i

|ψi(r)|2 (12)

and |ψi〉 are the solution of the Kohn and Sham equations. EH
is the Hartree energy, Exc is the exchange and correlation
energy and UII is the ion-ion interaction. According to the
Hellmann-Feynman theorem, the first order derivative of the
ground state energy with respect to an external parameter is:

∂Etot

∂λ
=

∫
∂Vloc(r)
∂λ

ρ(r)d3r +
∂UII

∂λ
(13)
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Deriving with respect to a second parameter µ:

∂2Etot

∂µ∂λ
=

∫
∂2Vloc(r)
∂µ∂λ

ρ(r)d3r +
∂2UII

∂µ∂λ

+

∫
∂Vloc(r)
∂λ

∂ρ(r)
∂µ

d3r (14)

So the new quantity that we need to calculate is the charge
density induced, at first order, by the perturbation:

∂ρ(r)
∂µ

=
∑

i

∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)
∂ψi(r)
∂µ

(15)

To fix the ideas we can think that λ = uµsα and µ = uνs′β
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The wavefunctions obey the following equation:[
−1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) (16)

where VKS = Vloc(r) + VH(r) + Vxc(r). VKS(r, µ) depends on µ
so that also ψi(r, µ), and εi(µ) depend on µ. We can expand
these quantities in a Taylor series:

VKS(r, µ) = VKS(r, µ = 0) + µ
∂VKS(r)
∂µ

+ . . .

ψi(r, µ) = ψi(r, µ = 0) + µ
∂ψi(r)
∂µ

+ . . .

εi(µ) = εi(µ = 0) + µ
∂εi

∂µ
+ . . . (17)
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Inserting these equations and keeping only the first order in µ
we obtain:[

−1
2
∇2 + VKS(r)− εi

]
∂ψi(r)
∂µ

= −∂VKS

∂µ
ψi(r) +

∂εi

∂µ
ψi(r) (18)

where: ∂VKS
∂µ = ∂Vloc

∂µ + ∂VH
∂µ + ∂Vxc

∂µ and

∂VH

∂µ
=

∫
1

|r− r′|
∂ρ(r′)
∂µ

d3r ′

∂Vxc

∂µ
=

dVxc

dρ
∂ρ(r)
∂µ

(19)

depend self-consistently on the charge density induced by the
perturbation.

Andrea Dal Corso Density functional perturbation theory



Lattice dynamic of a solid: phonons
Density functional perturbation theory

Interatomic force constants
ph.x

The induced charge density depends only on Pc
∂ψi
∂µ where

Pc = 1− Pv is the projector on the conduction bands and
Pv =

∑
i |ψi〉〈ψi | is the projector on the valence bands. In fact:

∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

+
∑

i

Pv
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pv
∂ψi(r)
∂µ

(20)

∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

+
∑

ij

ψ∗j (r)ψi(r)
(
〈∂ψi

∂µ
|ψj〉+ 〈ψi |

∂ψj

∂µ
〉
)

(21)
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DFPT

Therefore we can solve the self-consistent linear system:[
−1

2
∇2 + VKS(r)− εi

]
Pc
∂ψi(r)
∂µ

= −Pc
∂VKS

∂µ
ψi(r) (22)

where
∂VKS

∂µ
=
∂Vloc

∂µ
+
∂VH

∂µ
+
∂Vxc

∂µ
(23)

and
∂ρ(r)
∂µ

=
∑

i

Pc
∂ψ∗i (r)
∂µ

ψi(r) + ψ∗i (r)Pc
∂ψi(r)
∂µ

(24)
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The program ph.x solves this self-consistent linear system for
3× Nat perturbations at a fixed vector q. With ∂ρ(r)

∂µ for all the
perturbations it calculates the dynamical matrix

Dsαs′β(q) (25)

at the given q. Diagonalizing this matrix we obtain 3× Nat
frequencies ωq. By repeating this procedure for several q we
could plot ωq as a function of q and display the phonon
dispersions. However, it is more convenient to adopt a different
approach that requires the calculation of the dynamical matrix
in a small set of points q.
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The dynamical matrix of the solid:

Dsαs′β(q) =
1√

MsMs′

∑
ν

∂2Etot

∂uµsα∂uνs′β
eiq(Rν−Rµ) (26)

is a periodic function of q with Dsαs′β(q + G) = Dsαs′β(q) for
any reciprocal lattice vector G. Moreover, since in a solid all
Bravais lattice points are equivalent, it does not depend on µ.
Eq.26 is a Fourier expansion of a three dimensional periodic
function. We have Fourier components only at the discrete
values Rν of the Bravais lattice and we can write:

1√
MsMs′

∂2Etot

∂uµsα∂uνs′β
=

Ω

(2π)3

∫
d3qDsαs′β(q)e−iq(Rν−Rµ)

(27)
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We can use the properties of the discrete Fourier transform and
sample the integral in a uniform mesh of points q. This will give
the interatomic force constants only for a set of Rν neighbors of
Rµ. The code q2r.x reads a set of dynamical matrices
calculated in a uniform mesh of q points and calculates, using
Eq. 27, the interatomic force constants for a few neighbors of
the point Rµ = 0.
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Let us consider a one dimensional periodic function
f (x + a) = f (x) with period a. This function can be expanded in
a Fourier series and will have a discrete set of Fourier
components at the point kn = 2π

a n, where n is an integer
(positive, negative or zero).

f (x) =
∑

n

cneiknx (28)

where the coefficients of the expansion are:

cn =
1
a

∫ a

0
f (x)e−iknxdx (29)

In general, if f (x) is a sufficiently smooth function, cn → 0 at
large n. Now suppose that we know f (x) only in a uniform set
of N points xj = j∆x where ∆x = a/N and j = 0, . . . ,N − 1,
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then we can calculate:

c̃n =
1
N

N−1∑
j=0

f (xj)e−i 2π
N nj (30)

c̃n is a periodic function of n and c̃n+N = c̃n. So, if N is
sufficiently large that cn = 0 when |n| ≥ N/2 then c̃n is a good
approximation of cn for |n| < N/2 and the function

f (x) =

n=N/2∑
n=−N/2

c̃neiknx (31)

is a good approximation of the function f (x) also on the points
x different from xj .
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Therefore, if the dynamical matrix is a sufficiently smooth
function of q and the interatomic force constants decay
sufficiently rapidly in real space, we can use Eq. 26 to calculate
the dynamical matrix at arbitrary q, limiting the sum to a few Rν

neighbors of Rµ = 0. The program matdyn.x reads the
interatomic force constants calculated by q2r.x and calculates
the dynamical matrices at an arbitrary q using Eq. 26.
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This procedure fails in two cases:

In metals when there are Kohn anomalies. In this case
Dsαs′β(q) is not a smooth function of q and the interatomic
force constants are long range.
In polar insulators where the atomic displacements
generate long range electrostatic interactions and the
dynamical matrix is non analytic for q → 0. This case,
however, can be dealt with by calculating the Born effective
charges and the dielectric constant of the material.
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