Introduction to density functional perturbation theory for lattice dynamics

Andrea Dal Corso

SISSA and DEMOCRITOS Trieste (Italy)

Outline

- Lattice dynamic of a solid: phonons
 - Description of a solid
 - Equations of motion
 - The phonon solution
- Density functional perturbation theory
 - ph.x
- Interatomic force constants
 - q2r.x
 - Discrete Fourier transform in 1D
 - matdyn.x

Let's consider a periodic solid. We indicate with

$$\mathbf{R}_{l} = \mathbf{R}_{\mu} + \mathbf{d}_{s} \tag{1}$$

the equilibrium positions of the atoms. \mathbf{R}_{μ} indicate the Bravais lattice vectors and \mathbf{d}_s the positions of the atoms in one unit cell $(s = 1, \dots, N_{at})$.

We take N unit cells with Born-von Karman periodic boundary conditions. Ω is the volume of one cell and $V = N\Omega$ the volume of the solid.

At time t, each atom is displaced from its equilibrium position. $\mathbf{u}_{l}(t)$ is the displacement of the atom l.

Within the *Born-Oppenheimer adiabatic approximation* the nuclei move in a potential energy given by the total energy of the electron system calculated (for instance within DFT) at fixed nuclei. We call

$$E_{tot}(\mathbf{R}_I + \mathbf{u}_I) \tag{2}$$

this energy. The electrons are assumed to be in the ground state for each nuclear configuration.

If $|\mathbf{u}_I|$ is small, we can expand E_{tot} in a Taylor series with respect to \mathbf{u}_I . Within the *harmonic approximation*:

$$E_{tot}(\mathbf{R}_{I}+\mathbf{u}_{I}) = E_{tot}(\mathbf{R}_{I}) + \sum_{I\alpha} \frac{\partial E_{tot}}{\partial \mathbf{u}_{I\alpha}} \mathbf{u}_{I\alpha} + \frac{1}{2} \sum_{I\alpha,J\beta} \frac{\partial^{2} E_{tot}}{\partial \mathbf{u}_{I\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{I\alpha} \mathbf{u}_{J\beta} + \dots$$
(3)

where the derivatives are calculated at $\mathbf{u}_I = \mathbf{0}$ and α and β indicate the three cartesian coordinates.

Equations of motion

At equilibrium $\frac{\partial E_{tot}}{\partial \mathbf{u}_{l\alpha}} = 0$, so the Hamiltonian of the ions becomes:

$$H = \sum_{l\alpha} \frac{\mathbf{P}_{l\alpha}^2}{2M_l} + \frac{1}{2} \sum_{l\alpha,J\beta} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{l\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{l\alpha} \mathbf{u}_{J\beta}$$
(4)

where \mathbf{P}_I are the momenta of the nuclei and M_I their masses. The classical motion of the nuclei is given by the $N \times 3 \times N_{at}$ functions $\mathbf{u}_{I\alpha}(t)$. These functions are the solutions of the Hamilton equations:

$$\dot{\mathbf{u}}_{l\alpha} = \frac{\partial H}{\partial \mathbf{P}_{l\alpha}}
\dot{\mathbf{P}}_{l\alpha} = -\frac{\partial H}{\partial \mathbf{u}_{l\alpha}}$$
(5)

Equations of motion-II

With our Hamiltonian:

$$\dot{\mathbf{u}}_{I\alpha} = \frac{\mathbf{P}_{I\alpha}}{M_I}$$

$$\dot{\mathbf{P}}_{I\alpha} = -\sum_{J\beta} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{I\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{J\beta}$$
(6)

or:

$$M_I \ddot{\mathbf{u}}_{I\alpha} = -\sum_{J\beta} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{I\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{J\beta}$$
 (7)

The phonon solution

We can search the solution in the form of a phonon. Let's introduce a vector **q** in the first Brillouin zone. For each **q** we can write:

$$\mathbf{u}_{\mu s \alpha}(t) = \frac{1}{\sqrt{M_s}} \mathbf{u}_{s \alpha}(\mathbf{q}) e^{i(\mathbf{q} \mathbf{R}_{\mu} - \omega_{\mathbf{q}} t)}$$
(8)

where the time dependence is given by a simple exponential $e^{i\omega_{\mathbf{q}}t}$ and the displacement of the atoms in each cell identified by the Bravais lattice \mathbf{R}_{μ} can be obtained from the displacements of the atoms in one unit cell, for instance the one that corresponds to $\mathbf{R}_{\mu}=0$: $\frac{1}{\sqrt{Mc}}\mathbf{u}_{s\alpha}(\mathbf{q})$.

The phonon solution-II

Inserting this solution in the equations of motion and writing $I = (\mu, s)$, $J = (\nu, s')$ we obtain an eigenvalue problem for the $3 \times N_{at}$ variables $\mathbf{u}_{s\alpha}(\mathbf{q})$:

$$\omega_{\mathbf{q}}^{2}\mathbf{u}_{s\alpha}(\mathbf{q}) = \sum_{s'\beta} D_{s\alpha s'\beta}(\mathbf{q})\mathbf{u}_{s'\beta}(\mathbf{q})$$
(9)

where:

$$D_{s\alpha s'\beta}(\mathbf{q}) = \frac{1}{\sqrt{M_s M_{s'}}} \sum_{\nu} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{\mu s\alpha} \partial \mathbf{u}_{\nu s'\beta}} e^{i\mathbf{q}(\mathbf{R}_{\nu} - \mathbf{R}_{\mu})}$$
(10)

is the dynamical matrix of the solid.

Within DFT the ground state total energy of the solid, calculated at fixed nuclei, is:

$$E_{tot} = \sum_{i} \langle \psi_{i} | -\frac{1}{2} \nabla^{2} | \psi_{i} \rangle + \int V_{loc}(\mathbf{r}) \rho(\mathbf{r}) d^{3} r + E_{H}[\rho] + E_{xc}[\rho] + U_{II}$$
(11)

where $\rho(\mathbf{r})$ is the density of the electron gas:

$$\rho(\mathbf{r}) = \sum_{i} |\psi_{i}(\mathbf{r})|^{2} \tag{12}$$

and $|\psi_i\rangle$ are the solution of the Kohn and Sham equations. E_H is the Hartree energy, E_{xc} is the exchange and correlation energy and U_{II} is the ion-ion interaction. According to the Hellmann-Feynman theorem, the first order derivative of the ground state energy with respect to an external parameter is:

$$\frac{\partial E_{tot}}{\partial \lambda} = \int \frac{\partial V_{loc}(\mathbf{r})}{\partial \lambda} \rho(\mathbf{r}) d^3 r + \frac{\partial U_{II}}{\partial \lambda}$$
(13)

Deriving with respect to a second parameter μ :

$$\frac{\partial^{2} E_{tot}}{\partial \mu \partial \lambda} = \int \frac{\partial^{2} V_{loc}(\mathbf{r})}{\partial \mu \partial \lambda} \rho(\mathbf{r}) d^{3} r + \frac{\partial^{2} U_{II}}{\partial \mu \partial \lambda} + \int \frac{\partial V_{loc}(\mathbf{r})}{\partial \lambda} \frac{\partial \rho(\mathbf{r})}{\partial \mu} d^{3} r \tag{14}$$

So the new quantity that we need to calculate is the charge density induced, at first order, by the perturbation:

$$\frac{\partial \rho(\mathbf{r})}{\partial \mu} = \sum_{i} \frac{\partial \psi_{i}^{*}(\mathbf{r})}{\partial \mu} \psi_{i}(\mathbf{r}) + \psi_{i}^{*}(\mathbf{r}) \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu}$$
(15)

To fix the ideas we can think that $\lambda = \mathbf{u}_{\mu s \alpha}$ and $\mu = \mathbf{u}_{\nu s' \beta}$

The wavefunctions obey the following equation:

$$\left[-\frac{1}{2} \nabla^2 + V_{KS}(\mathbf{r}) \right] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r})$$
 (16)

where $V_{KS} = V_{loc}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r})$. $V_{KS}(\mathbf{r}, \mu)$ depends on μ so that also $\psi_i(\mathbf{r}, \mu)$, and $\varepsilon_i(\mu)$ depend on μ . We can expand these quantities in a Taylor series:

$$V_{KS}(\mathbf{r}, \mu) = V_{KS}(\mathbf{r}, \mu = 0) + \mu \frac{\partial V_{KS}(\mathbf{r})}{\partial \mu} + \dots$$

$$\psi_{i}(\mathbf{r}, \mu) = \psi_{i}(\mathbf{r}, \mu = 0) + \mu \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu} + \dots$$

$$\varepsilon_{i}(\mu) = \varepsilon_{i}(\mu = 0) + \mu \frac{\partial \varepsilon_{i}}{\partial \mu} + \dots$$
(17)

Inserting these equations and keeping only the first order in μ we obtain:

$$\left[-\frac{1}{2} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i \right] \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} = -\frac{\partial V_{KS}}{\partial \mu} \psi_i(\mathbf{r}) + \frac{\partial \varepsilon_i}{\partial \mu} \psi_i(\mathbf{r}) \quad (18)$$

where:
$$\frac{\partial V_{KS}}{\partial \mu} = \frac{\partial V_{loc}}{\partial \mu} + \frac{\partial V_{H}}{\partial \mu} + \frac{\partial V_{xc}}{\partial \mu}$$
 and

$$\frac{\partial V_H}{\partial \mu} = \int \frac{1}{|\mathbf{r} - \mathbf{r}'|} \frac{\partial \rho(\mathbf{r}')}{\partial \mu} d^3 r'
\frac{\partial V_{xc}}{\partial \mu} = \frac{dV_{xc}}{d\rho} \frac{\partial \rho(\mathbf{r})}{\partial \mu}$$
(19)

depend self-consistently on the charge density induced by the perturbation.

The induced charge density depends only on $P_c \frac{\partial \psi_i}{\partial \mu}$ where $P_c = 1 - P_v$ is the projector on the conduction bands and $P_v = \sum_i |\psi_i\rangle\langle\psi_i|$ is the projector on the valence bands. In fact:

$$\frac{\partial \rho(\mathbf{r})}{\partial \mu} = \sum_{i} P_{c} \frac{\partial \psi_{i}^{*}(\mathbf{r})}{\partial \mu} \psi_{i}(\mathbf{r}) + \psi_{i}^{*}(\mathbf{r}) P_{c} \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu} + \sum_{i} P_{v} \frac{\partial \psi_{i}^{*}(\mathbf{r})}{\partial \mu} \psi_{i}(\mathbf{r}) + \psi_{i}^{*}(\mathbf{r}) P_{v} \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu} \qquad (20)$$

$$\frac{\partial \rho(\mathbf{r})}{\partial \mu} = \sum_{i} P_{c} \frac{\partial \psi_{i}^{*}(\mathbf{r})}{\partial \mu} \psi_{i}(\mathbf{r}) + \psi_{i}^{*}(\mathbf{r}) P_{c} \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu} + \sum_{ii} \psi_{j}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) \left(\langle \frac{\partial \psi_{i}}{\partial \mu} | \psi_{j} \rangle + \langle \psi_{i} | \frac{\partial \psi_{j}}{\partial \mu} \rangle \right)$$
(21)

DFPT

Therefore we can solve the self-consistent linear system:

$$\left[-\frac{1}{2} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i \right] P_c \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} = -P_c \frac{\partial V_{KS}}{\partial \mu} \psi_i(\mathbf{r})$$
 (22)

where

$$\frac{\partial V_{KS}}{\partial \mu} = \frac{\partial V_{loc}}{\partial \mu} + \frac{\partial V_{H}}{\partial \mu} + \frac{\partial V_{xc}}{\partial \mu}$$
 (23)

and

$$\frac{\partial \rho(\mathbf{r})}{\partial \mu} = \sum_{i} P_{c} \frac{\partial \psi_{i}^{*}(\mathbf{r})}{\partial \mu} \psi_{i}(\mathbf{r}) + \psi_{i}^{*}(\mathbf{r}) P_{c} \frac{\partial \psi_{i}(\mathbf{r})}{\partial \mu}$$
(24)

The program ph.x solves this self-consistent linear system for $3 \times N_{at}$ perturbations at a fixed vector **q**. With $\frac{\partial \rho(\mathbf{r})}{\partial \mu}$ for all the perturbations it calculates the dynamical matrix

$$D_{\mathbf{s}\alpha\mathbf{s}'\beta}(\mathbf{q})$$
 (25)

at the given $\bf q$. Diagonalizing this matrix we obtain $3 \times N_{at}$ frequencies $\omega_{\bf q}$. By repeating this procedure for several $\bf q$ we could plot $\omega_{\bf q}$ as a function of $\bf q$ and display the phonon dispersions. However, it is more convenient to adopt a different approach that requires the calculation of the dynamical matrix in a small set of points $\bf q$.

The dynamical matrix of the solid:

$$D_{s\alpha s'\beta}(\mathbf{q}) = \frac{1}{\sqrt{M_s M_{s'}}} \sum_{\nu} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{\mu s\alpha} \partial \mathbf{u}_{\nu s'\beta}} e^{i\mathbf{q}(\mathbf{R}_{\nu} - \mathbf{R}_{\mu})}$$
(26)

is a periodic function of \mathbf{q} with $D_{s\alpha s'\beta}(\mathbf{q}+\mathbf{G})=D_{s\alpha s'\beta}(\mathbf{q})$ for any reciprocal lattice vector \mathbf{G} . Moreover, since in a solid all Bravais lattice points are equivalent, it does not depend on μ . Eq.26 is a Fourier expansion of a three dimensional periodic function. We have Fourier components only at the discrete values \mathbf{R}_{ν} of the Bravais lattice and we can write:

$$\frac{1}{\sqrt{M_s M_{s'}}} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{\mu s \alpha} \partial \mathbf{u}_{\nu s' \beta}} = \frac{\Omega}{(2\pi)^3} \int d^3 \mathbf{q} D_{s \alpha s' \beta}(\mathbf{q}) e^{-i\mathbf{q}(\mathbf{R}_{\nu} - \mathbf{R}_{\mu})}$$
(27)

We can use the properties of the discrete Fourier transform and sample the integral in a uniform mesh of points $\bf q$. This will give the interatomic force constants only for a set of $\bf R}_{\nu}$ neighbors of $\bf R}_{\mu}$. The code ${\tt q2r.x}$ reads a set of dynamical matrices calculated in a uniform mesh of $\bf q$ points and calculates, using Eq. 27, the interatomic force constants for a few neighbors of the point $\bf R}_{\mu}=0$.

Let us consider a one dimensional periodic function f(x+a)=f(x) with period a. This function can be expanded in a Fourier series and will have a discrete set of Fourier components at the point $k_n=\frac{2\pi}{a}n$, where n is an integer (positive, negative or zero).

$$f(x) = \sum_{n} c_n e^{ik_n x} \tag{28}$$

where the coefficients of the expansion are:

$$c_n = \frac{1}{a} \int_0^a f(x) e^{-ik_n x} dx \tag{29}$$

In general, if f(x) is a sufficiently smooth function, $c_n \to 0$ at large n. Now suppose that we know f(x) only in a uniform set of N points $x_j = j\Delta x$ where $\Delta x = a/N$ and $j = 0, \dots, N-1$,

then we can calculate:

$$\tilde{c}_n = \frac{1}{N} \sum_{j=0}^{N-1} f(x_j) e^{-i\frac{2\pi}{N}nj}$$
 (30)

 \tilde{c}_n is a periodic function of n and $\tilde{c}_{n+N}=\tilde{c}_n$. So, if N is sufficiently large that $c_n=0$ when $|n|\geq N/2$ then \tilde{c}_n is a good approximation of c_n for |n|< N/2 and the function

$$f(x) = \sum_{n=-N/2}^{n=N/2} \tilde{c}_n e^{ik_n x}$$
 (31)

is a good approximation of the function f(x) also on the points x different from x_i .

Therefore, if the dynamical matrix is a sufficiently smooth function of ${\bf q}$ and the interatomic force constants decay sufficiently rapidly in real space, we can use Eq. 26 to calculate the dynamical matrix at arbitrary ${\bf q}$, limiting the sum to a few ${\bf R}_{\nu}$ neighbors of ${\bf R}_{\mu}=0$. The program <code>matdyn.x</code> reads the interatomic force constants calculated by <code>q2r.x</code> and calculates the dynamical matrices at an arbitrary ${\bf q}$ using Eq. 26.

This procedure fails in two cases:

- In metals when there are Kohn anomalies. In this case $D_{s\alpha s'\beta}(\mathbf{q})$ is not a smooth function of \mathbf{q} and the interatomic force constants are long range.
- In polar insulators where the atomic displacements generate long range electrostatic interactions and the dynamical matrix is non analytic for q → 0. This case, however, can be dealt with by calculating the Born effective charges and the dielectric constant of the material.