Density functional perturbation theory for lattice dynamics

Andrea Dal Corso

SISSA and IOM-CNR
Trieste (Italy)
Outline

1. Crystal lattice dynamics: phonons
2. Density functional perturbation theory
3. Dynamical matrix at finite \(q \)
Description of a solid

Let’s consider a periodic solid. We indicate with

\[\mathbf{R}_I = \mathbf{R}_\mu + \mathbf{d}_s \]

the equilibrium positions of the atoms. \(\mathbf{R}_\mu \) indicate the Bravais lattice vectors and \(\mathbf{d}_s \) the positions of the atoms in one unit cell (\(s = 1, \ldots, N_{at} \)).

We take \(N \) unit cells with Born-von Karman periodic boundary conditions. \(\Omega \) is the volume of one cell and \(V = N\Omega \) the volume of the solid.

At time \(t \), each atom is displaced from its equilibrium position. \(\mathbf{u}_I(t) \) is the displacement of the atom \(I \).
Within the *Born-Oppenheimer adiabatic approximation* the nuclei move in a potential energy given by the total energy of the electron system calculated (for instance within DFT) at fixed nuclei. We call

\[E_{tot}(R_I + u_I) \]

this energy. The electrons are assumed to be in the ground state for each nuclear configuration.

If \(|u_I|\) is small, we can expand \(E_{tot}\) in a Taylor series with respect to \(u_I\). Within the *harmonic approximation*:

\[
E_{tot}(R_I+u_I) = E_{tot}(R_I) + \sum_{l\alpha} \frac{\partial E_{tot}}{\partial u_{l\alpha}} u_{l\alpha} + \frac{1}{2} \sum_{l\alpha,j\beta} \frac{\partial^2 E_{tot}}{\partial u_{l\alpha} \partial u_{j\beta}} u_{l\alpha} u_{j\beta} + \ldots,
\]

where the derivatives are calculated at \(u_I = 0\) and \(\alpha\) and \(\beta\) indicate the three Cartesian coordinates.
Equations of motion

At equilibrium $\frac{\partial E_{\text{tot}}}{\partial u_{l\alpha}} = 0$, so the Hamiltonian of the ions becomes:

$$H = \sum_{l\alpha} \frac{p_{l\alpha}^2}{2M_l} + \frac{1}{2} \sum_{l\alpha, j\beta} \frac{\partial^2 E_{\text{tot}}}{\partial u_{l\alpha} \partial u_{j\beta}} u_{l\alpha} u_{j\beta},$$

where p_l are the momenta of the nuclei and M_l their masses. The classical motion of the nuclei is given by the $N \times 3 \times N_{\text{at}}$ functions $u_{l\alpha}(t)$. These functions are the solutions of the Hamilton equations:

$$\dot{u}_{l\alpha} = \frac{\partial H}{\partial p_{l\alpha}},$$

$$\dot{p}_{l\alpha} = -\frac{\partial H}{\partial u_{l\alpha}}.$$
Equations of motion-II

With our Hamiltonian:

\[\dot{\mathbf{u}}_{I\alpha} = \frac{\mathbf{P}_{I\alpha}}{M_I}, \]

\[\dot{\mathbf{P}}_{I\alpha} = -\sum_{J\beta} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{I\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{J\beta}, \]

or:

\[M_I \ddot{\mathbf{u}}_{I\alpha} = -\sum_{J\beta} \frac{\partial^2 E_{tot}}{\partial \mathbf{u}_{I\alpha} \partial \mathbf{u}_{J\beta}} \mathbf{u}_{J\beta} \]
The phonon solution

We can search the solution in the form of a phonon. Let’s introduce a vector \mathbf{q} in the first Brillouin zone. For each \mathbf{q} we can write:

$$u_{\mu s\alpha}(t) = \frac{A(\mathbf{q}, t)}{\sqrt{M_s}} \tilde{u}_{s\alpha}(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{R}_\mu} = u_{s\alpha}(\mathbf{q}) e^{i\mathbf{q} \cdot \mathbf{R}_\mu}$$

where the amplitude $A(\mathbf{q}, t)$ of the displacement depends on time and the displacement of the atoms in each cell identified by the Bravais lattice \mathbf{R}_μ can be obtained from the displacements of the atoms in one unit cell, for instance the one that corresponds to $\mathbf{R}_\mu = 0$ ($A(\mathbf{q}, t) \tilde{u}_{s\alpha}(\mathbf{q})$) multiplying by a phase factor.
Characteristic of a phonon - 1

A Γ-point phonon has the same displacements in all unit cells ($q = 0$):

$$e^{iqR}$$

1 1 1 1 1 q=0

A zone border phonon with $q_{ZB} = G/2$, where G is a reciprocal lattice vector, has displacements which repeat periodically every two unit cells:

$$e^{iqR}$$

1 -1 1 -1 1 q=$\frac{2\pi}{a} \frac{1}{2}$
Characteristic of a phonon - II

A phonon with \(q = q_{ZB}/2 \) has displacements which repeat every four unit cells:

\[e^{i q R} \]

\[\begin{array}{cccccc}
1 & i & -1 & -i & 1 \\
a & a & a & a & a \\
\end{array} \quad q = \frac{2\pi}{a} \frac{1}{4} \]

A phonon at a general wavevector \(q \) could be incommensurate with the underlying lattice:

\[e^{i q R} \]

\[\begin{array}{cccccc}
1 & e^{i\frac{\pi}{2}\sqrt{2}} & e^{i\pi\sqrt{2}} & e^{i\frac{3\pi}{2}\sqrt{2}} & e^{i2\pi\sqrt{2}} \\
a & a & a & a & a \\
\end{array} \quad q = \frac{2\pi\sqrt{2}}{a} \frac{1}{4} \]
The phonon solution-II

Inserting this solution in the equations of motion and writing \(I = (\mu, s), J = (\nu, s') \) we obtain the following equations for the \(3 \times N_{at} \) variables \(\tilde{u}_{s\alpha}(q) \):

\[
\frac{d^2 A(q, t)}{dt^2} \tilde{u}_{s\alpha}(q) = -A(q, t) \sum_{s'\beta} D_{s\alpha s'\beta}(q) \tilde{u}_{s'\beta}(q),
\]

where:

\[
D_{s\alpha s'\beta}(q) = \frac{1}{\sqrt{M_s M_{s'}}} \sum_{\nu} \frac{\partial^2 E_{tot}}{\partial u_{\mu s\alpha} \partial u_{\nu s'\beta}} e^{iq(R_{\nu} - R_{\mu})}
\]

is the dynamical matrix of the solid.
The phonon solution-III

Diagonalizing the dynamical matrix:

\[
\sum_{s', \beta} D_{s\alpha s' \beta}(q) e_{s' \beta}^\eta(q) = \omega_{q, \eta}^2 e_{s\alpha}^\eta(q),
\]

we find the eigenvalues \(\omega_{q, \eta}^2 \) and eigenvectors \(e_{s\alpha}^\eta(q) \). Setting \(\tilde{u}_{s\alpha}(q) = e_{s\alpha}^\eta(q) \) the equations of motion become:

\[
\frac{d^2 A_{\eta}(q, t)}{dt^2} = -\omega_{q, \eta}^2 A_{\eta}(q, t),
\]

which are (for each \(q \)) the equations of \(3 \times N_{at} \) decoupled harmonic oscillators whose solutions are for instance:

\[
A_{\eta}(q, t) = A_{q}^\eta \sin \left(\omega_{q, \eta} t - \delta_{q}^\eta \right),
\]

where \(A_{q}^\eta \) and \(\delta_{q}^\eta \) depends on the initial conditions.
The final solution of the problem is:

$$u_{\mu s\alpha}(t) = \sum_{q,\eta} \frac{1}{\sqrt{M_s}} A_{q}^{\eta} \sin \left(\omega_{q,\eta} t - \delta_{q}^{\eta} \right) e_{s\alpha}^{\eta}(q) e^{i q \cdot R_{\mu}}.$$
Density functional theory

Within DFT the ground state total energy of the solid, calculated at fixed nuclei, is:

\[E_{\text{tot}} = \sum_i \langle \psi_i | - \frac{1}{2} \nabla^2 | \psi_i \rangle + \int V_{\text{loc}}(\mathbf{r}) \rho(\mathbf{r}) d^3 r + E_H[\rho] + E_{\text{xc}}[\rho] + U_{\text{II}}, \]

where \(\rho(\mathbf{r}) \) is the density of the electron gas (2 sums over spins):

\[\rho(\mathbf{r}) = 2 \sum_i |\psi_i(\mathbf{r})|^2, \]

and \(|\psi_i\rangle \) are the wavefunctions. \(E_H \) is the Hartree energy:

\[E_H = \frac{1}{2} \int d^3 r d^3 r' \frac{\rho(\mathbf{r}) \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}, \]

\(E_{\text{xc}} \) is the exchange and correlation energy and \(U_{\text{II}} \) is the ion-ion interaction.
According to the Hellmann-Feynman theorem, the first order derivative of the ground state energy with respect to an external parameter is:

\[
\frac{\partial E_{\text{tot}}}{\partial \lambda} = \int \frac{\partial V_{\text{loc}}(\mathbf{r})}{\partial \lambda} \rho(\mathbf{r}) d^3 \mathbf{r} + \frac{\partial U_{\text{II}}}{\partial \lambda},
\]
Deriving with respect to a second parameter μ:

\[
\frac{\partial^2 E_{\text{tot}}}{\partial \mu \partial \lambda} = \int \frac{\partial^2 V_{loc}(\mathbf{r})}{\partial \mu \partial \lambda} \rho(\mathbf{r}) d^3 r + \frac{\partial^2 U_{\text{II}}}{\partial \mu \partial \lambda}
\]

\[
+ \int \frac{\partial V_{loc}(\mathbf{r})}{\partial \lambda} \frac{\partial \rho(\mathbf{r})}{\partial \mu} d^3 r.
\]

So the new quantity that we need to calculate is the charge density induced, at first order, by the perturbation:

\[
\frac{\partial \rho(\mathbf{r})}{\partial \mu} = 2 \sum_i \left[\frac{\partial \psi_i^*(\mathbf{r})}{\partial \mu} \psi_i(\mathbf{r}) + \psi_i^*(\mathbf{r}) \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} \right].
\]

To fix the ideas we can think that $\lambda = u_{\mu s \alpha}$ and $\mu = u_{\nu s' \beta}$.
The wavefunctions obey the following equation:

\[
\left[-\frac{1}{2}\nabla^2 + V_{KS}(\mathbf{r})\right] \psi_i(\mathbf{r}) = \varepsilon_i \psi_i(\mathbf{r}),
\]

where \(V_{KS} = V_{loc}(\mathbf{r}) + V_H(\mathbf{r}) + V_{xc}(\mathbf{r}) \). \(V_{KS}(\mathbf{r}, \mu) \) depends on \(\mu \) so that also \(\psi_i(\mathbf{r}, \mu) \), and \(\varepsilon_i(\mu) \) depend on \(\mu \). We can expand these quantities in a Taylor series:

\[
V_{KS}(\mathbf{r}, \mu) = V_{KS}(\mathbf{r}, \mu = 0) + \frac{\partial V_{KS}(\mathbf{r})}{\partial \mu} \mu + \ldots
\]

\[
\psi_i(\mathbf{r}, \mu) = \psi_i(\mathbf{r}, \mu = 0) + \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} \mu + \ldots
\]

\[
\varepsilon_i(\mu) = \varepsilon_i(\mu = 0) + \frac{\partial \varepsilon_i}{\partial \mu} \mu + \ldots.
\]
Inserting these equations and keeping only the terms of first order in μ we obtain:

\[
\left[-\frac{1}{2} \nabla^2 + V_{KS}(r) - \varepsilon_i\right] \frac{\partial \psi_i(r)}{\partial \mu} = - \frac{\partial V_{KS}}{\partial \mu} \psi_i(r) + \frac{\partial \varepsilon_i}{\partial \mu} \psi_i(r),
\]

where:

\[
\frac{\partial V_{KS}}{\partial \mu} = \frac{\partial V_{loc}}{\partial \mu} + \frac{\partial V_H}{\partial \mu} + \frac{\partial V_{xc}}{\partial \mu}
\]

and

\[
\frac{\partial V_H}{\partial \mu} = \int \frac{1}{|r - r'|} \frac{\partial \rho(r')}{\partial \mu} d^3 r',
\]

\[
\frac{\partial V_{xc}}{\partial \mu} = \frac{dV_{xc}}{d\rho} \frac{\partial \rho(r)}{\partial \mu}
\]

depend self-consistently on the charge density induced by the perturbation.
The induced charge density depends only on $P_c \frac{\partial \psi_i}{\partial \mu}$ where $P_c = 1 - P_v$ is the projector on the conduction bands and $P_v = \sum_i |\psi_i\rangle \langle \psi_i|$ is the projector on the valence bands. In fact:

$$\frac{\partial \rho(r)}{\partial \mu} = 2 \sum_i \left[\left(P_c \frac{\partial \psi_i(r)}{\partial \mu} \right)^* \psi_i(r) + \psi_i^*(r) P_c \frac{\partial \psi_i(r)}{\partial \mu} \right]$$

$$+ 2 \sum_i \left[\left(P_v \frac{\partial \psi_i(r)}{\partial \mu} \right)^* \psi_i(r) + \psi_i^*(r) P_v \frac{\partial \psi_i(r)}{\partial \mu} \right].$$

$$\frac{\partial \rho(r)}{\partial \mu} = 2 \sum_i \left[\left(P_c \frac{\partial \psi_i(r)}{\partial \mu} \right)^* \psi_i(r) + \psi_i^*(r) P_c \frac{\partial \psi_i(r)}{\partial \mu} \right]$$

$$+ 2 \sum_{ij} \psi_j^*(r) \psi_i(r) \left(\langle \frac{\partial \psi_i}{\partial \mu} | \psi_j \rangle + \langle \psi_i | \frac{\partial \psi_j}{\partial \mu} \rangle \right).$$
Therefore we can solve the self-consistent linear system:

\[
\begin{bmatrix}
-\frac{1}{2} \nabla^2 + V_{KS}(\mathbf{r}) - \varepsilon_i
\end{bmatrix}
\begin{bmatrix}
P_c \frac{\partial \psi_i(\mathbf{r})}{\partial \mu}
\end{bmatrix}
= -P_c \frac{\partial V_{KS}}{\partial \mu} \psi_i(\mathbf{r}),
\]

where

\[
\frac{\partial V_{KS}}{\partial \mu} = \frac{\partial V_{loc}}{\partial \mu} + \frac{\partial V_{H}}{\partial \mu} + \frac{\partial V_{xc}}{\partial \mu}
\]

and

\[
\frac{\partial \rho(\mathbf{r})}{\partial \mu} = 2 \sum_i \left[\left(P_c \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} \right)^* \psi_i(\mathbf{r}) + \psi_i^*(\mathbf{r}) P_c \frac{\partial \psi_i(\mathbf{r})}{\partial \mu} \right].
\]
Dynamical matrix at finite q - I

The dynamical matrix is:

$$D_{s\alpha s'\beta}(q) = \frac{1}{\sqrt{M_sM_{s'}}} \sum_{\nu} e^{-i q R_\mu} \frac{\partial^2 E_{tot}}{\partial u_{\mu s\alpha} \partial u_{\nu s'\beta}} e^{i q R_\nu}.$$

Inserting the expression of the second derivative of the total energy we have (neglecting the ion-ion term):

$$D_{s\alpha s'\beta}(q) = \frac{1}{\sqrt{M_sM_{s'}}} \left[\frac{1}{N} \int_V d^3 r \sum_{\mu\nu} \left(e^{-i q R_\mu} \frac{\partial^2 V_{loc}(r)}{\partial u_{\mu s\alpha} \partial u_{\nu s'\beta}} e^{i q R_\nu} \right) \rho(r) \right] + D^{I,I}_{s\alpha s'\beta}(q).$$

We now show that these integrals can be done over Ω.
Dynamical matrix at finite q - II

Defining:

$$\frac{\partial^2 V_{\text{loc}}(r)}{\partial u^*_s \partial u'_{s' \beta}(q)} = \sum_{\mu \nu} e^{-i q R_\mu} \frac{\partial^2 V_{\text{loc}}(r)}{\partial u_{\mu s} \partial u_{\nu s' \beta}(q)} e^{i q R_\nu}$$

we can show (see below) that $\frac{\partial^2 V_{\text{loc}}(r)}{\partial u^*_s \partial u'_{s' \beta}(q)}$ is a lattice-periodic function. Then we can define

$$\frac{\partial \rho(r)}{\partial u_{s' \beta}(q)} = \sum_\nu \frac{\partial \rho(r)}{\partial u_{\nu s' \beta}} e^{i q R_\nu}$$

and show that $\frac{\partial \rho(r)}{\partial u_{s' \beta}(q)} = e^{i q r} \frac{\tilde{\rho}(r)}{\partial u_{s' \beta}(q)}$, where $\frac{\tilde{\rho}(r)}{\partial u_{s' \beta}(q)}$ is a lattice-periodic function.
In the same manner, by defining

$$\frac{\partial V_{loc}(r)}{\partial u_{s\alpha}(q)} = \sum_{\mu} \frac{\partial V_{loc}(r)}{\partial u_{\mu s\alpha}} e^{iqR_{\mu}}$$

and showing that $$\frac{\partial V_{loc}(r)}{\partial u_{s\alpha}(q)} = e^{iqr} \frac{\partial \tilde{V}_{loc}(r)}{\partial u_{s\alpha}(q)}$$, where $$\frac{\partial \tilde{V}_{loc}(r)}{\partial u_{s\alpha}(q)}$$ is a lattice-periodic function, we can write the dynamical matrix at finite $$q$$ as:

$$D_{s\alpha s'\beta}(q) = \frac{1}{\sqrt{M_s M_{s'}}} \left[\int_{\Omega} d^3r \frac{\partial^2 V_{loc}(r)}{\partial u_{s\alpha}^*(q) \partial u_{s'\beta}(q)} \rho(r)
ight. + \int_{\Omega} d^3r \left(\frac{\partial \tilde{V}_{loc}(r)}{\partial u_{s\alpha}(q)} \right)^* \tilde{\rho}(r) \frac{\partial \tilde{\rho}(r)}{\partial u_{s'\beta}(q)} \left. + D_{s\alpha s'\beta}^{II}(q) \right].$$
Dynamical matrix at finite q - IV

\[
\frac{\partial^2 V_{\text{loc}}(\mathbf{r})}{\partial u^*_{\alpha \sigma}(q) \partial u_{\beta s'}(q)} = \sum_{\mu \nu} e^{-i q R_{\mu}} \frac{\partial^2 V_{\text{loc}}(\mathbf{r})}{\partial u_{\mu s\alpha} \partial u_{\nu s' \beta}} e^{i q R_{\nu}}
\]

is a lattice-periodic function because the local potential can be written as

\[
V_{\text{loc}}(\mathbf{r}) = \sum_{\mu} \sum_{s} V_{\text{loc}}^s(\mathbf{r} - R_{\mu} - d_s - u_{\mu s}),
\]

and

\[
\frac{\partial^2 V_{\text{loc}}(\mathbf{r})}{\partial u_{\mu s\alpha} \partial u_{\nu s' \beta}}
\]

vanishes if $\mu \neq \nu$ or $s \neq s'$. Since $\mu = \nu$ the two phase factors cancel, and we remain with a lattice-periodic function:

\[
\frac{\partial^2 V_{\text{loc}}(\mathbf{r})}{\partial u^*_{\alpha \sigma}(q) \partial u_{\beta s'}(q)} = \delta_{s s'} \sum_{\mu} \frac{\partial^2 V_{\text{loc}}^s(\mathbf{r} - R_{\mu} - d_s - u_{\mu s})}{\partial u_{\mu s\alpha} \partial u_{\mu s \beta}} \bigg|_{\mathbf{u}=0}.
\]
In order to show that:

\[
\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)} = \sum_{\nu} \frac{\partial \rho(r)}{\partial u_{\nu s'\beta}} e^{i q R_{\nu}} = e^{i qr} \tilde{\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)}}
\]

where \(\tilde{\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)}} \) is a lattice-periodic function, we can calculate the Fourier transform of \(\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)} \) and show that it is different from zero only at vectors \(q + G \), where \(G \) is a reciprocal lattice vector. We have

\[
\frac{\partial \rho}{\partial u_{s'\beta}(q)}(k) = \frac{1}{V} \int_{V} d^3r \ e^{-ikr} \sum_{\nu} \frac{\partial \rho(r)}{\partial u_{\nu s'\beta}} e^{i q R_{\nu}}.
\]
Dynamical matrix at finite \(q \) - VI

Due to the translational invariance of the solid, if we displace the atom \(s' \) in the direction \(\beta \) in the cell \(\nu = 0 \) and probe the charge at the point \(r \), or we displace in the same direction the atom \(s' \) in the cell \(\nu \) and probe the charge at the point \(r + R_\nu \), we should find the same value. Therefore

\[
\frac{\partial \rho(r + R_\nu)}{\partial u_{\nu s' \beta}} = \frac{\partial \rho(r)}{\partial u_{0 s' \beta}}
\]

or, taking \(r = r' - R_\nu \), we have \(\frac{\partial \rho(r')}{\partial u_{\nu s' \beta}} = \frac{\partial \rho(r' - R_\nu)}{\partial u_{0 s' \beta}} \) which can be inserted in the expression of the Fourier transform to give:

\[
\frac{\partial \rho}{\partial u_{s' \beta}(q)}(k) = \frac{1}{V} \int_V d^3r \ e^{-ikr} \sum_\nu \frac{\partial \rho(r - R_\nu)}{\partial u_{0 s' \beta}} e^{iQ_\nu}.
\]
Changing variable in the integral setting $r' = r - R_\nu$, we have

$$\frac{\partial \rho}{\partial u_{s'\beta}(q)}(k) = \frac{1}{V} \int_V d^3 r' e^{-i k r'} \sum_\nu \frac{\partial \rho(r')}{\partial u_{0s'\beta}} e^{i(q-k)R_\nu}. $$

The sum over ν: $\sum_\nu e^{i(q-k)R_\nu}$ gives N if $k = q + G$ and 0 otherwise. Hence $\frac{\partial \rho}{\partial u_{s'\beta}(q)}(k)$ is non-vanishing only at $k = q + G$. It follows that:

$$\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)} = e^{i qr} \sum_G \frac{\partial \rho}{\partial u_{s'\beta}(q)}(q + G) e^{i Gr}$$

and the sum over G gives a lattice-periodic function.
Properties of the wavefunctions: Bloch theorem

According to the Bloch theorem, the solution of the Kohn and Sham equations in a periodic potential $V_{KS}(r + R_{\mu}) = V_{KS}(r)$:

$$\left[-\frac{1}{2} \nabla^2 + V_{KS}(r) \right] \psi_{kv}(r) = \epsilon_{kv} \psi_{kv}(r)$$

can be indexed by a k-vector in the first Brillouin zone and by a band index v, and:

$$\psi_{kv}(r + R_{\mu}) = e^{ikR_{\mu}} \psi_{kv}(r),$$

$$\psi_{kv}(r) = e^{ikr} u_{kv}(r),$$

where $u_{kv}(r)$ is a lattice-periodic function. By time reversal symmetry, we also have:

$$\psi_{-kv}(r) = \psi_{kv}(r).$$
Charge density response at finite q - I

The lattice-periodic part of the induced charge density at finite q can be calculated as follows. We have:

$$
\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)} = 2 \sum_{k\nu} \left[\left(P_c \sum_{\nu} \frac{\partial \psi_{k\nu}(r)}{\partial u_{\nu s'\beta}} e^{-i q R_\nu} \right)^* \psi_{k\nu}(r) \right. \\
+ \left. \psi_{k\nu}^{*}(r) P_c \left(\sum_{\nu} \frac{\partial \psi_{k\nu}(r)}{\partial u_{\nu s'\beta}} e^{i q R_\nu} \right) \right].
$$

Changing k with $-k$ in the first term, using time reversal symmetry $\psi_{-k\nu}(r) = \psi_{k\nu}^{*}(r)$, and defining:

$$
\frac{\partial \psi_{k\nu}(r)}{\partial u_{s'\beta}(q)} = \sum_{\nu} \frac{\partial \psi_{k\nu}(r)}{\partial u_{\nu s'\beta}} e^{i q R_\nu},
$$
Charge density response at finite $\mathbf{q} - \text{II}$

we have:

$$
\frac{\partial \rho(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})} = 4 \sum_{k\nu} \psi^*_{k\nu}(\mathbf{r}) P_c \frac{\partial \psi_{k\nu}(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})}.
$$

We can now use the following identities to extract the periodic part of the induced charge density:

$$
\frac{\partial \psi_{k\nu}(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})} = e^{i\mathbf{k}\mathbf{r}} \frac{\partial u_{k\nu}(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})} = e^{i\mathbf{k}\mathbf{r}} \sum_{\nu} \frac{\partial u_{k\nu}(\mathbf{r})}{\partial u_{\nu s'\beta}} e^{i\mathbf{q}\mathbf{R}_\nu} = e^{i(k+\mathbf{q})\mathbf{r}} \frac{\tilde{\partial} u_{k\nu}(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})},
$$

where $\frac{\tilde{\partial} u_{k\nu}(\mathbf{r})}{\partial u_{s'\beta}(\mathbf{q})}$ is a lattice-periodic function.
Charge density response at finite q - III

The projector in the conduction band $P_c = 1 - P_v$ is:

$$
P_c = \sum_{k'c} \psi_{k'c}(r) \psi^*_{k'c}(r')
$$

$$
= \sum_{k'c} e^{ik'r} u_{k'c}(r) u^*_{k'c}(r') e^{-ik'r'}
$$

$$
= \sum_{k'} e^{ik'r} P_{k'} c e^{-ik'r'},
$$

but only the term $k' = k + q$ gives a non zero contribution when applied to $\frac{\partial \psi_{kv}(r)}{\partial u_{s'\beta}(q)}$. We have therefore:

$$
\frac{\partial \rho(r)}{\partial u_{s'\beta}(q)} = e^{iqr} 4 \sum_{kv} u^*_{kv}(r) P_{c+k+q} \frac{\tilde{u}_{kv}(r)}{\partial u_{s'\beta}(q)},
$$
so the lattice-periodic part of the induced charge density, written in terms of lattice-periodic functions is:

$$\frac{\tilde{\partial}\rho(r)}{\partial u_{s'\beta}(q)} = 4 \sum_{k\nu} u^*_{k\nu}(r) P^k_{c+q} \frac{\tilde{\partial}u_{k\nu}(r)}{\partial u_{s'\beta}(q)}.$$

Andrea Dal Corso
Density functional perturbation theory
First-order derivative of the wavefunctions - 1

\[\frac{\partial u_{k\nu}(r)}{\partial u_{s'\beta}(q)} \] is a lattice-periodic function which can be calculated with the following considerations. From first order perturbation theory we get, for each displacement \(u_{\nu s'\beta} \), the equation:

\[
\left[-\frac{1}{2} \nabla^2 + V_{KS}(r) - \epsilon_{k\nu} \right] P_c \frac{\partial \psi_{k\nu}(r)}{\partial u_{\nu s'\beta}} = -P_c \frac{\partial V_{KS}(r)}{\partial u_{\nu s'\beta}} \psi_{k\nu}(r).
\]

Multiplying every equation by \(e^{i\mathbf{q}\mathbf{R}_\nu} \) and summing on \(\nu \), we get:

\[
\left[-\frac{1}{2} \nabla^2 + V_{KS}(r) - \epsilon_{k\nu} \right] P_c \frac{\partial \psi_{k\nu}(r)}{\partial u_{s'\beta}(q)} = -P_c \frac{\partial V_{KS}(r)}{\partial u_{s'\beta}(q)} \psi_{k\nu}(r).
\]
First-order derivative of the wavefunctions - II

Using the translational invariance of the solid we can write

\[
\frac{\partial V_{KS}(r)}{\partial u_{s'\beta}(q)} = \sum_{\nu} \frac{\partial V_{KS}(r)}{\partial u_{\nu s'\beta}} e^{iqr_{\nu}} = e^{iqr} \tilde{\partial} V_{KS}(r) \frac{\partial u_{s'\beta}(q)}{\partial u_{s'\beta}(q)},
\]

where \(\tilde{\partial} V_{KS}(r)\) is a lattice-periodic function. The right-hand side of the linear system becomes:

\[
- e^{i(k+q)r} P_{c}^{k+q} \tilde{\partial} V_{KS}(r) \frac{\partial u_{s'\beta}(q)}{\partial u_{s'\beta}(q)} u_{k\nu}(r).
\]
First-order derivative of the wavefunctions - III

In the left-hand side we have

\[P_c \sum_\nu \frac{\partial \psi_{k\nu}(r)}{\partial u_{\nu s'\beta}} e^{i q R_{\nu}} = e^{i(k+q)R} P_c^{k+q} \frac{\partial \tilde{u}_{k\nu}(r)}{\partial u_{s'\beta}(q)}, \]

and defining

\[H^{k+q} = e^{-i(k+q)r} \left[-\frac{1}{2} \nabla^2 + V_{KS}(r) \right] e^{i(k+q)r}, \]

we obtain the linear system:

\[\left[H^{k+q} - \varepsilon_{k\nu} \right] P_c^{k+q} \frac{\partial \tilde{u}_{k\nu}(r)}{\partial u_{s'\beta}(q)} = -P_c^{k+q} \frac{\partial V_{KS}(r)}{\partial u_{s'\beta}(q)} u_{k\nu}(r). \]
Linear response: the self-consistent potential - I

The lattice-periodic component of the self-consistent potential can be obtained with the same techniques seen above. We have:

\[
\frac{\partial V_{KS}(r)}{\partial u_{\nu s'\beta}} = \frac{\partial V_{loc}(r)}{\partial u_{\nu s'\beta}} + \int d^3 r' \frac{1}{|r - r'|} \frac{\partial \rho(r')}{\partial u_{\nu s'\beta}} + \frac{\partial V_{xc}}{\partial \rho} \frac{\partial \rho(r)}{\partial u_{\nu s'\beta}}.
\]

Multiplying by \(e^{i q R_{\nu}} \) and summing on \(\nu \), we obtain:

\[
\frac{\partial V_{KS}(r)}{\partial u_{s'\beta}(q)} = \frac{\partial V_{loc}(r)}{\partial u_{s'\beta}(q)} + \int d^3 r' \frac{1}{|r - r'|} \frac{\partial \rho(r')}{\partial u_{s'\beta}(q)} + \frac{\partial V_{xc}}{\partial \rho} \frac{\partial \rho(r)}{\partial u_{s'\beta}(q)}.
\]
Linear response: the self-consistent potential - II

Keeping only the lattice periodic parts gives:

$$e^{iqr} \frac{\partial \tilde{V}_{KS}(r)}{\partial u_{s' \beta}(q)} = e^{iqr} \frac{\partial \tilde{V}_{loc}(r)}{\partial u_{s' \beta}(q)} + \int d^3 r' \frac{1}{|r - r'|} e^{iqr'} \frac{\partial \tilde{\rho}(r')}{\partial u_{s' \beta}(q)}$$

$$+ \frac{\partial V_{xc}(r)}{\partial \rho} e^{iqr} \frac{\partial \tilde{\rho}(r)}{\partial u_{s' \beta}(q)},$$

or equivalently:

$$\frac{\partial \tilde{V}_{KS}(r)}{\partial u_{s' \beta}(q)} = \frac{\partial \tilde{V}_{loc}(r)}{\partial u_{s' \beta}(q)} + \int d^3 r' \frac{1}{|r - r'|} e^{iq(r' - r)} \frac{\partial \tilde{\rho}(r')}{\partial u_{s' \beta}(q)}$$

$$+ \frac{\partial V_{xc}(r)}{\partial \rho} \frac{\partial \tilde{\rho}(r)}{\partial u_{s' \beta}(q)}.$$
Bibliography

