Introduction to noncollinear magnetism and spin-orbit coupling in QUANTUM-ESPRESSO

Andrea Dal Corso

SISSA and DEMOCRITOS Trieste (Italy)

Andrea Dal Corso Introduction to noncollinear magnetism and spin-orbit

Outline

A few results from relativistic theory

- Relativity: effects on the electronic structure
- Dirac equation
- Small v/c limit of the Dirac equation
- Dirac equation for a spherically symmetric potential

2 Noncollinear DFT

- The spin-density
- The total energy
- The magnetization density
- The Kohn and Sham equations
- The LSDA approximation revisited
- Fully relativistic pseudopotentials

イロト イポト イヨト イヨト

-

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Relativity: quantitative effects

The relevance of relativistic effects on the electronic structure, can be estimated by the following argument [1]. The mass m_v of an electron with velocity v is:

$$m_{\nu} = \frac{m}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}}$$

where *m* is the rest mass. Hence the Bohr radius $a_0 = \frac{\hbar^2}{m_v e^2}$ is reduced. In a.u., the electron velocity in an hydrogenic atom is v = Z. Since c = 137, taking for instance Z = 80, v/c = 0.58 and a_0 is 23% shorter. As a consequence, *s* and *p* orbitals shrink while *d* and *f* orbitals expand due to the better screening of the nuclear charge by the electrons in the *s* and *p* orbitals.

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Relativity: qualitative effects

- A) Electronic states are spinors. The symmetry of the electronic states is described by the double group.
- B) Spin-orbit coupling usually split states that are degenerate in a nonrelativistic description.
- C) In magnetic systems, the electronic states and the energy depend on the direction of the magnetization with respect to the ionic positions.

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

The Dirac equation - I

The starting point for the relativistic description of a one-electron system is the Dirac equation [2]:

$$i\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t} = \left(c \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta m c^2 \right) \Psi(\mathbf{r},t),$$

where *c* is the speed of light, *m* is the electron mass and α and β are 4 × 4 matrices. The form of α and β is not unique. In terms of the Pauli matrices:

$$\sigma_{x} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{y} = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{z} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

they can be written as:

$$\alpha_i = \begin{pmatrix} \mathbf{0} & \sigma_i \\ \sigma_i & \mathbf{0} \end{pmatrix}, \quad \beta = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix},$$

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

The Dirac equation - II

The solutions of the Dirac equation are four-component spinors:

$$\Psi(\mathbf{r},t) = \begin{pmatrix} \Psi_1(\mathbf{r},t) \\ \Psi_2(\mathbf{r},t) \\ \Psi_3(\mathbf{r},t) \\ \Psi_4(\mathbf{r},t) \end{pmatrix} = \begin{pmatrix} \Psi_A(\mathbf{r},t) \\ \\ \Psi_B(\mathbf{r},t) \\ \\ \end{pmatrix},$$

where $\Psi_A(\mathbf{r}, t)$ and $\Psi_B(\mathbf{r}, t)$ are two-component spinors.

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

The Dirac equation - III

The interaction of the electron with an electromagnetic field, described by the scalar and vector potentials $\phi(\mathbf{r})$ and $\mathbf{A}(\mathbf{r})$, can be accounted for by the usual substitution $\mathbf{p} \rightarrow \mathbf{p} - q\mathbf{A}(\mathbf{r})$ and $E \rightarrow E - q\phi(\mathbf{r})$. In terms of two-component spinors $\psi_A(\mathbf{r})$ and $\psi_B(\mathbf{r})$ we have:

$$i\hbar \frac{\partial \Psi_{A}(\mathbf{r},t)}{\partial t} = c\sigma \cdot \pi \Psi_{B}(\mathbf{r},t) + \left(mc^{2} + q\phi(\mathbf{r})\right) \Psi_{A}(\mathbf{r},t),$$

$$i\hbar \frac{\partial \Psi_{B}(\mathbf{r},t)}{\partial t} = c\sigma \cdot \pi \Psi_{A}(\mathbf{r},t) - \left(mc^{2} - q\phi(\mathbf{r})\right) \Psi_{B}(\mathbf{r},t),$$

where $\pi = \mathbf{p} - q\mathbf{A}(\mathbf{r})$, and q is the electron charge (a negative number).

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

The time independent Dirac equation

When $\phi(\mathbf{r})$ and $\mathbf{A}(\mathbf{r})$ are time independent we can search the solution in the form $\Psi(\mathbf{r}, t) = e^{-\frac{iEt}{\hbar}}\Psi(\mathbf{r})$ and we get:

$$c\sigma \cdot \pi \Psi_B(\mathbf{r}) + \left(mc^2 + q\phi(\mathbf{r}) - E\right)\Psi_A(\mathbf{r}) = 0$$

 $c\sigma \cdot \pi \Psi_A(\mathbf{r}) - \left(E + mc^2 - q\phi(\mathbf{r})\right)\Psi_B(\mathbf{r}) = 0.$

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Small v/c limit of the Dirac equation - I

By setting $E' = E - mc^2$, we can write the second equation in the form:

$$\Psi_B(\mathbf{r}) = rac{c \sigma \cdot \pi \Psi_A(\mathbf{r})}{E' + 2mc^2 - q \phi(\mathbf{r})} pprox rac{1}{2mc} \sigma \cdot \pi \Psi_A(\mathbf{r}),$$

where we expanded the denominator in a Taylor series of $\frac{E'-q\phi(\mathbf{r})}{2mc^2}$ and neglected the terms of order $(v/c)^2$. $\Psi_B(\mathbf{r})$ is of order $v/c \Psi_A(\mathbf{r})$. The latter is called the large component while the former is called the small component. Inserting this expression of $\Psi_B(\mathbf{r})$ in the equation for $\Psi_A(\mathbf{r})$, we obtain the Pauli equation $[H_{Pauli} - E'] \psi_A(\mathbf{r}) = 0$:

$$\left[\frac{1}{2m}(\boldsymbol{\sigma}\cdot\boldsymbol{\pi})(\boldsymbol{\sigma}\cdot\boldsymbol{\pi})+q\phi(\mathbf{r})-E'\right]\Psi_A(\mathbf{r})=0.$$

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Small v/c limit of the Dirac equation - II

Using the relationship:

$$(\boldsymbol{\sigma}\cdot\boldsymbol{\pi})(\boldsymbol{\sigma}\cdot\boldsymbol{\pi}) = \boldsymbol{\pi}^2 - \hbar \boldsymbol{q}\boldsymbol{\sigma}\cdot\nabla\times\boldsymbol{\mathsf{A}}(\mathbf{r}),$$

we can rewrite the Pauli equation as:

$$\left[rac{\pi^2}{2m}-rac{\hbar q}{2m}m{\sigma}\cdotm{B}(m{r})+q\phi(m{r})-E'
ight]\Psi_{\mathcal{A}}(m{r})=0.$$

This equation shows that the electron, in addition to the magnetic moment due to its orbital motion, has a magnetic moment due to its spin angular momentum equal to $\mu_B \sigma$ where $\mu_B = \frac{\hbar q}{2m}$ is the Bohr magneton.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

ŀ

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Small v/c limit of the Dirac equation - III

Keeping the terms up to order $(v/c)^2$ in the Taylor series, we obtain the equation $H\tilde{\Psi} = E\tilde{\Psi}$ for a two-component spinor $\tilde{\Psi}$, where the Hamiltonian is [3]:

$$H = H_{Pauli}$$

$$- \frac{p^4}{8m^3c^2} \qquad \text{mass-velocity}$$

$$+ \frac{\hbar^2 q}{8m^2c^2} \nabla \cdot \nabla \phi(\mathbf{r}) \qquad \text{Darwin}$$

$$- \frac{\hbar q}{4m^2c^2} \sigma \cdot \left[\pi \times \nabla \phi(\mathbf{r})\right]. \quad \text{spin-orbit}$$

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

Dirac equation for a spherically symmetric potential

We need also the following result. Let's consider the Dirac equation for an electron in a spherically symmetric potential:

$$H\Psi = \left[c\alpha \cdot \mathbf{p} + \beta mc^2 + q\phi(|\mathbf{r}|)\right]\Psi(\mathbf{r}) = E\Psi(\mathbf{r}).$$

One can show that:

$$[H, \mathbf{L}] \neq \mathbf{0} \qquad [H, \mathbf{S}] \neq \mathbf{0}$$

$$[H, \mathbf{J}] = \mathbf{0} \quad \mathbf{J} = \mathbf{L} + \mathbf{S},$$

where L is the orbital angular momentum, S is the spin angular momentum and J is the total angular momentum.

Relativity: effects on the electronic structure Dirac equation Small v/c limit of the Dirac equation Dirac equation for a spherically symmetric potential

The spin-angle functions

The spin-angle functions are two-component spinors eigenstates of the total angular momentum:

$$J^2 Y^{j,m_j}_{\ell,1/2}(\Omega,\sigma) = \hbar^2 j(j+1) Y^{j,m_j}_{\ell,1/2}(\Omega,\sigma),$$

$$J_{Z}Y_{\ell,1/2}^{j,m_{j}}(\Omega,\sigma)=\hbar m_{j}Y_{\ell,1/2}^{j,m_{j}}(\Omega,\sigma).$$

The solutions of the Dirac equation with a spherically symmetric potential can be written in terms of spin-angle functions:

$$\Psi(\mathbf{r}) = \frac{1}{r} \begin{pmatrix} P(r) Y_{\ell,1/2}^{j,m_j}(\Omega,\sigma) \\ iQ(r) Y_{\ell',1/2}^{j,m_j}(\Omega,\sigma) \end{pmatrix}$$

Many-body Hamiltonian for electrons with spin

An approximate Hamiltonian for a system of interacting electrons with spin in an electromagnetic field can be written as [4]:

$$H = \sum_{i} \left[rac{\pi_i^2}{2m} - \mu_B \sigma_i \cdot \mathbf{B}(\mathbf{r}_i) + q\phi(\mathbf{r}_i)
ight] + rac{1}{2} \sum_{ij} rac{q^2}{|\mathbf{r}_i - \mathbf{r}_j|}.$$

Before formulating density functional theory starting from this Hamiltonian, we make a further simplification. We set $\pi_i = \mathbf{p}_i$ neglecting the coupling of the electron orbital momentum with the magnetic field. Note that this Hamiltonian can be written by introducing a 2 × 2 matrix as an external one-body potential:

A few results from relativistic theory Noncollinear DFT Fully relativistic pseudopotentials The Kohn and Sham equations The LSDA approximation revisited

The spin-density as a basic variable

$$V_{ext}^{\sigma,\sigma'}(\mathbf{r}) = \begin{pmatrix} q\phi(\mathbf{r}) - \mu_B B_z(\mathbf{r}), & -\mu_B (B_x(\mathbf{r}) - iB_y(\mathbf{r})) \\ -\mu_B (B_x(\mathbf{r}) + iB_y(\mathbf{r})), & q\phi(\mathbf{r}) + \mu_B B_z(\mathbf{r}) \end{pmatrix}$$

The basic variable is the spin-density and one can show that the ground state energy of the many-body Hamiltonian is a functional of the spin-density:

$$n(\mathbf{r},\sigma,\sigma') = N \sum_{\sigma_2,\sigma_3,\cdots,\sigma_N} \int d^3 r_2 \cdots d^3 r_N \Psi^*(\mathbf{r},\sigma,\mathbf{r}_2,\sigma_2,\cdots,\mathbf{r}_N,\sigma_N) \times \Psi(\mathbf{r},\sigma',\mathbf{r}_2,\sigma_2,\cdots,\mathbf{r}_N,\sigma_N).$$

Unfortunately, in this case $V_{ext}^{\sigma,\sigma'}(\mathbf{r})$ is not uniquely determined by the spin-density.

The spin-density The total energy The magnetization density The Kohn and Sham equations The LSDA approximation revisited

The total energy - I

As in the standard Kohn and Sham formulation, one can introduce an auxiliary system: a gas of non interacting electrons with spin that has the same spin-density of the many-body system. The wavefunctions of this system are Slater determinants of two-component spinors ($\Psi_i(\mathbf{r}, \sigma)$) one-electron wavefunctions. The spin-density of this system is:

$$n(\mathbf{r},\sigma,\sigma')=\sum_{i}\Psi_{i}^{*}(\mathbf{r},\sigma)\Psi_{i}(\mathbf{r},\sigma').$$

The kinetic energy (using from now on atomic units) is:

$$T_0 = \sum_{i,\sigma} \langle \Psi_{i,\sigma} | - \frac{1}{2} \nabla^2 | \Psi_{i,\sigma} \rangle.$$

The spin-density The total energy The magnetization density The Kohn and Sham equations The LSDA approximation revisited

The total energy - II

The energy due to the interaction between the electrons and the external potential is:

$$E_{ext} = \sum_{\sigma,\sigma'} \int d^3 r \ V_{ext}^{\sigma,\sigma'}(\mathbf{r}) n(\mathbf{r},\sigma,\sigma').$$

The Coulomb energy can be written in terms of the charge density:

$$n(\mathbf{r}) = \sum_{i,\sigma} \Psi_i^*(\mathbf{r},\sigma) \Psi_i(\mathbf{r},\sigma) = \sum_{\sigma} n(\mathbf{r},\sigma,\sigma).$$
$$E_H = \frac{1}{2} \int d^3 r \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}.$$

-

The spin-density The total energy The magnetization density The Kohn and Sham equations The LSDA approximation revisited

The total energy - III

The unknown part of the total energy functional is the exchange and correlation energy:

$$E_{tot} = T_0 + E_{ext} + E_H + E_{xc} \left[n(\mathbf{r}, \sigma, \sigma') \right].$$

In the local spin density approximation the exchange and correlation energy depends on the density and on the modulus of the magnetization density. We use here the same functional $E_{xc}[n, |m|]$. The noncollinear magnetization density of the non-interacting electron gas can be written as:

$$\mathbf{m}(\mathbf{r}) = \mu_B \sum_{i,\sigma_1,\sigma_2} \Psi_i^*(\mathbf{r},\sigma_1) \boldsymbol{\sigma}^{\sigma_1,\sigma_2} \Psi_i(\mathbf{r},\sigma_2) = \mu_B \sum_{\sigma_1,\sigma_2} \boldsymbol{\sigma}^{\sigma_1,\sigma_2} \boldsymbol{n}(\mathbf{r},\sigma_1,\sigma_2)$$

A few results from relativistic theory Noncollinear DFT Fully relativistic pseudopotentials The Kohn and Sham equations The LSDA approximation revisited

The magnetization density

It is useful to write explicitly the three components of the magnetization density:

$$\mathbf{m}_{\mathbf{X}}(\mathbf{r}) = \mu_{B} \sum_{i} \left[\Psi_{i}^{*}(\mathbf{r},\uparrow) \Psi_{i}(\mathbf{r},\downarrow) + \Psi_{i}^{*}(\mathbf{r},\downarrow) \Psi_{i}(\mathbf{r},\uparrow) \right]$$

$$\mathbf{m}_{\mathcal{Y}}(\mathbf{r}) = -i\mu_{B}\sum_{i}\left[\Psi_{i}^{*}(\mathbf{r},\uparrow)\Psi_{i}(\mathbf{r},\downarrow) - \Psi_{i}^{*}(\mathbf{r},\downarrow)\Psi_{i}(\mathbf{r},\uparrow)\right]$$

$$\mathbf{m}_{z}(\mathbf{r}) = \mu_{B} \sum_{i} \left[|\Psi_{i}(\mathbf{r},\uparrow)|^{2} - |\Psi_{i}(\mathbf{r},\downarrow)|^{2} \right]$$

ヘロト ヘ回ト ヘヨト ヘヨト

-

The spin-density The total energy The magnetization density **The Kohn and Sham equations** The LSDA approximation revisited

The Kohn and Sham equations - I

Minimizing the total energy functional, keeping into account the orthogonality constraint of the one-electron wavefunctions:

$$\sum_{\sigma} \langle \Psi_{i,\sigma} | \Psi_{j,\sigma} \rangle = \delta_{ij},$$

we obtain the equation:

$$\frac{\partial \boldsymbol{E}_{tot}}{\partial \Psi_i^*(\mathbf{r},\sigma)} = \varepsilon_i \Psi_i(\mathbf{r},\sigma),$$

or:

$$- \frac{1}{2}\nabla^{2}\Psi_{i}(\mathbf{r},\sigma) + \sum_{\sigma'} V_{ext}^{\sigma,\sigma'}(\mathbf{r})\Psi_{i}(\mathbf{r},\sigma') + V_{H}(\mathbf{r})\Psi_{i}(\mathbf{r},\sigma) + \frac{\partial E_{xc}}{\partial n}\Psi_{i}(\mathbf{r},\sigma) + \mu_{B}\sum_{\alpha,\sigma'} \frac{\partial E_{xc}}{\partial m_{\alpha}}\sigma_{\alpha}^{\sigma,\sigma'}\Psi_{i}(\mathbf{r},\sigma') = \varepsilon_{i}\Psi_{i}(\mathbf{r},\sigma).$$

Andrea Dal Corso

Introduction to noncollinear magnetism and spin-orbit

The spin-density The total energy The magnetization density **The Kohn and Sham equations** The LSDA approximation revisited

The Kohn and Sham equations - II

In order to shorten the notation, we can define the exchange and correlation potential (V_{xc}) and magnetic field (B_{xc}) as

$$V_{xc}(\mathbf{r}) = \frac{\partial E_{xc}}{\partial n}$$
 and $B_{xc,\alpha}(\mathbf{r}) = -\frac{\partial E_{xc}}{\partial m_{\alpha}} = -\frac{\partial E_{xc}}{\partial |m|} \frac{m_{\alpha}}{|m|}$

and define a spin dependent self-consistent local potential

$$V_{LOC}^{\sigma,\sigma'}(\mathbf{r}) = V_{ext}^{\sigma,\sigma'}(\mathbf{r}) + \left[V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r})\right]\delta^{\sigma,\sigma'} - \mu_{B}\sum_{\alpha}B_{xc,\alpha}(\mathbf{r})\sigma_{\alpha}^{\sigma,\sigma'},$$

obtaining the equation:

$$\sum_{\sigma'} \left[-\frac{1}{2} \nabla^2 \delta^{\sigma,\sigma'} + V_{LOC}^{\sigma,\sigma'}(\mathbf{r}) \right] \Psi_i(\mathbf{r},\sigma') = \varepsilon_i \Psi_i(\mathbf{r},\sigma).$$

A few results from relativistic theory Noncollinear DFT Fully relativistic pseudopotentials The Kohn and Sham equations The LSDA approximation revisited

The LSDA approximation revisited - I

In the LSDA, the orientation of the spin of each electron is along a fixed direction taken as the z axis. We have electrons with spin up and electrons with spin down. Their spinors are:

$$\Psi_i(\mathbf{r}) = \left(egin{array}{c} \Psi_i(\mathbf{r},\uparrow) \\ 0 \end{array}
ight), \quad \Psi_j(\mathbf{r}) = \left(egin{array}{c} 0 \\ \Psi_j(\mathbf{r},\downarrow) \end{array}
ight).$$

Computing the magnetization density, we find $m_x = m_y = 0$, and

$$m_z(\mathbf{r}) = \mu_B \left[\sum_i^{N_{\uparrow}} |\Psi_i(\mathbf{r},\uparrow)|^2 - \sum_i^{N_{\downarrow}} |\Psi_i(\mathbf{r},\downarrow)|^2 \right],$$

where N_{\uparrow} and N_{\downarrow} are the number of electrons with spin up and spin down, respectively. From the definition of \mathbf{B}_{xc} we find also $B_{xc,x} = 0, B_{xc,y} = 0.$

A few results from relativistic theory Noncollinear DFT Fully relativistic pseudopotentials The Spin-density The total energy The magnetization density The Kohn and Sham equations The LSDA approximation revisited

The LSDA approximation revisited - II

Note that now $\Psi_i(\mathbf{r},\uparrow)$ and $\Psi_i(\mathbf{r},\downarrow)$ are two different wave functions, not the two components of the same spinor. Calling them $\psi_{i,\uparrow}(\mathbf{r})$ and $\psi_{i,\downarrow}(\mathbf{r})$, we have the equation:

$$\left[-\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r}) - \mu_B B_{xc,z}(\mathbf{r})\right] \psi_{i,\uparrow}(\mathbf{r}) = \varepsilon_{i,\uparrow} \psi_{i,\uparrow}(\mathbf{r})$$

for electrons with spin up and the equation:

$$\left[-\frac{1}{2}\nabla^2 + V_{ext}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{xc}(\mathbf{r}) + \mu_B B_{xc,z}(\mathbf{r})\right]\psi_{i,\downarrow}(\mathbf{r}) = \varepsilon_{i,\downarrow}\psi_{i,\downarrow}(\mathbf{r})$$

for electrons with spin down.

The spin-density The total energy The magnetization density The Kohn and Sham equations The LSDA approximation revisited

The LSDA approximation revisited - III Within LSDA:

$$n(\mathbf{r}) = n_{\uparrow}(\mathbf{r}) + n_{\downarrow}(\mathbf{r}), \quad m_{z}(\mathbf{r}) = \mu_{B}(n_{\uparrow}(\mathbf{r}) - n_{\downarrow}(\mathbf{r}))$$

or, equivalently:

$$n_{\uparrow}(\mathbf{r}) = \frac{1}{2} \left(n(\mathbf{r}) + \frac{m_z(\mathbf{r})}{\mu_B} \right), \quad n_{\downarrow}(\mathbf{r}) = \frac{1}{2} \left(n(\mathbf{r}) - \frac{m_z(\mathbf{r})}{\mu_B} \right).$$

Therefore we have:

$$V_{xc}(\mathbf{r}) - \mu_B B_{xc,z}(\mathbf{r}) = \frac{\partial E_{xc}}{\partial n_{\uparrow}}, \quad V_{xc}(\mathbf{r}) + \mu_B B_{xc,z}(\mathbf{r}) = \frac{\partial E_{xc}}{\partial n_{\downarrow}},$$

and the two previous equations coincide with those of LSDA.

-

Towards real materials

In order to apply the above formalism to a real material we use, as external potential, a pseudo-potential. Usually, no external magnetic field is applied and $V_{ext}^{\sigma,\sigma'}$ is diagonal in the spin indexes. One applies to both spin components a pseudo-potential which has a local part $V_{loc}(\mathbf{r})$ and a nonlocal part. The nonlocal part can be written by introducing projectors on the orbital angular momentum channels about each atom:

$$V_{NL} = \sum_{I} \sum_{\ell,m_{\ell}} E_{\ell}^{I} |\beta_{\ell}^{I} Y_{\ell,m_{\ell}}^{I} \rangle \langle \beta_{\ell}^{I} Y_{\ell,m_{\ell}}^{I} |$$

This pseudopotential can be constructed keeping into account scalar relativistic effects, but not the spin-orbit coupling.

Real materials with spin-orbit coupling - I

If the pseudopotential is generated starting from the large components of the solutions of the Dirac equation, we obtain projectors ($\beta_{\ell,j}$) and pseudopotential coefficients $E_{\ell,j}$ for each value of ℓ and j, the orbital and the total angular momentum. To project into states of well defined total angular momentum, we need the spin-angle functions:

$$V_{NL} = \sum_{I} \sum_{\ell,j,m_j} E_{\ell,j}^{I} |\beta_{\ell,j}^{I} Y_{\ell,1/2}^{I,j,m_j} \rangle \langle \beta_{\ell,j}^{I} Y_{\ell,1/2}^{I,j,m_j} |.$$

Therefore V_{NL} is a 2 × 2 matrix in the spin indexes. This pseudopotential includes both scalar relativistic and spin-orbit coupling effects. (Note that it is correct at order $1/c^2$ not only at order $(v/c)^2$ as the Taylor expansion seen before).

Real materials with spin-orbit coupling - II

The spin angle functions are:

$$Y_{\ell,1/2}^{j,m_j} = \begin{pmatrix} \left(\frac{\ell+m+1}{2\ell+1}\right)^{1/2} Y_{\ell,m} \\ \left(\frac{\ell-m}{2\ell+1}\right)^{1/2} Y_{\ell,m+1} \end{pmatrix}, \quad Y_{\ell,1/2}^{j,m_j} = \begin{pmatrix} \left(\frac{\ell-m+1}{2\ell+1}\right)^{1/2} Y_{\ell,m-1} \\ -\left(\frac{\ell+m}{2\ell+1}\right)^{1/2} Y_{\ell,m} \end{pmatrix}$$

for $j = \ell + 1/2$ and $j = \ell - 1/2$ respectively. In the first case $m = m_j - 1/2$ while, in the second, $m = m_j + 1/2$. We can introduce the Clebsch-Gordan coefficients $\alpha_{m_j}^{\sigma,\ell,j}$, a unitary matrix $U_{m_j,m'}^{\sigma,\ell,j}$ which selects the appropriate spherical harmonic and to summarize the above relationships by:

$$Y_{\ell,1/2}^{j,m_j,\sigma} = \alpha_{m_j}^{\sigma,\ell,j} \sum_{m'=-\ell}^{\ell} U_{m_j,m'}^{\sigma,\ell,j} Y_{\ell,m'},$$

Real materials with spin-orbit coupling - III

Inserting the above relationship in the nonlocal pseudopotential we find [5]:

$$V_{\textit{NL}}^{\sigma,\sigma'} = \sum_{\textit{I}} \sum_{\ell,j,m,m'} E_{\ell,j,m,m'}^{\textit{I},\sigma,\sigma'} |\beta_{\ell,j}^{\textit{I}} Y_{\ell,m}^{\textit{I}} \rangle \langle \beta_{\ell,j}^{\textit{I}} Y_{\ell,m'}^{\textit{I}} |$$

where both $-\ell < m < \ell$ and $-\ell < m' < \ell$. The coefficients of the nonlocal pseudopotential becomes spin-dependent:

$$\boldsymbol{E}_{\ell,j,m,m'}^{l,\sigma,\sigma'} = \boldsymbol{E}_{\ell,j}^{l} \sum_{m_{j}=-j}^{j} \alpha_{m_{j}}^{\sigma,\ell,j} \boldsymbol{U}_{m_{j},m}^{\sigma,\ell,j} \alpha_{m_{j}}^{\sigma',\ell,j} \boldsymbol{U}_{m_{j},m'}^{*,\sigma',\ell,j}$$

but the projectors are written in terms of spherical harmonics as in the scalar relativistic pseudopotential.

Bibliography

- 1 P. Pyykkö, Chem. Rev. 88, 563 (1988).
- 2 B.H. Bransden and C.J. Joachain, *Physics of atoms and molecules*, Prentice Hall, (2003).
- 3 M. Weissbluth, *Atoms and Molecules*, Academic Press (1978).
- 4 U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).
- 5 A. Dal Corso and A.M. Conte, Phys. Rev. B **71**, 115106 (2005).

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇