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Relativity: quantitative effects

The relevance of relativistic effects on the electronic structure,
can be estimated by the following argument [1]. The mass mv
of an electron with velocity v is:

mv =
m√

1 −
( v

c

)2

where m is the rest mass. Hence the Bohr radius a0 = ~2

mv e2 is
reduced. In a.u., the electron velocity in an hydrogenic atom is
v = Z . Since c = 137, taking for instance Z = 80, v/c = 0.58
and a0 is 23% shorter. As a consequence, s and p orbitals
shrink while d and f orbitals expand due to the better screening
of the nuclear charge by the electrons in the s and p orbitals.
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Relativity: qualitative effects

A) Electronic states are spinors. The symmetry of the
electronic states is described by the double group.

B) Spin-orbit coupling usually split states that are degenerate
in a nonrelativistic description.

C) In magnetic systems, the electronic states and the energy
depend on the direction of the magnetization with respect
to the ionic positions.
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The Dirac equation - I
The starting point for the relativistic description of a
one-electron system is the Dirac equation [2]:

i~
∂Ψ(r, t)
∂t

=
(

cα · p + βmc2
)

Ψ(r, t),

where c is the speed of light, m is the electron mass and α and
β are 4 × 4 matrices. The form of α and β is not unique. In
terms of the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
they can be written as:

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
,

Andrea Dal Corso Introduction to noncollinear magnetism and spin-orbit



A few results from relativistic theory
Noncollinear DFT

Fully relativistic pseudopotentials

Relativity: effects on the electronic structure
Dirac equation
Small v/c limit of the Dirac equation
Dirac equation for a spherically symmetric potential

The Dirac equation - II

The solutions of the Dirac equation are four-component spinors:

Ψ(r, t) =


Ψ1(r, t)
Ψ2(r, t)
Ψ3(r, t)
Ψ4(r, t)

 =


ΨA(r, t)

ΨB(r, t)

 ,

where ΨA(r, t) and ΨB(r, t) are two-component spinors.

Andrea Dal Corso Introduction to noncollinear magnetism and spin-orbit



A few results from relativistic theory
Noncollinear DFT

Fully relativistic pseudopotentials

Relativity: effects on the electronic structure
Dirac equation
Small v/c limit of the Dirac equation
Dirac equation for a spherically symmetric potential

The Dirac equation - III

The interaction of the electron with an electromagnetic field,
described by the scalar and vector potentials φ(r) and A(r), can
be accounted for by the usual substitution p → p − qA(r) and
E → E − qφ(r). In terms of two-component spinors ψA(r) and
ψB(r) we have:

i~
∂ΨA(r, t)

∂t
= cσ · πΨB(r, t) +

(
mc2 + qφ(r)

)
ΨA(r, t),

i~
∂ΨB(r, t)

∂t
= cσ · πΨA(r, t)−

(
mc2 − qφ(r)

)
ΨB(r, t),

where π = p − qA(r), and q is the electron charge (a negative
number).
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The time independent Dirac equation

When φ(r) and A(r) are time independent we can search the
solution in the form Ψ(r, t) = e− iEt

~ Ψ(r) and we get:

cσ · πΨB(r) +
(

mc2 + qφ(r)− E
)

ΨA(r) = 0

cσ · πΨA(r)−
(

E + mc2 − qφ(r)
)

ΨB(r) = 0.
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Small v/c limit of the Dirac equation - I
By setting E ′ = E − mc2, we can write the second equation in
the form:

ΨB(r) =
cσ · πΨA(r)

E ′ + 2mc2 − qφ(r)
≈ 1

2mc
σ · πΨA(r),

where we expanded the denominator in a Taylor series of
E ′−qφ(r)

2mc2 and neglected the terms of order (v/c)2. ΨB(r) is of
order v/c ΨA(r). The latter is called the large component while
the former is called the small component. Inserting this
expression of ΨB(r) in the equation for ΨA(r), we obtain the
Pauli equation [HPauli − E ′]ψA(r) = 0:[

1
2m

(σ · π)(σ · π) + qφ(r)− E ′
]

ΨA(r) = 0.
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Small v/c limit of the Dirac equation - II

Using the relationship:

(σ · π)(σ · π) = π2 − ~qσ · ∇ × A(r),

we can rewrite the Pauli equation as:[
π2

2m
− ~q

2m
σ · B(r) + qφ(r)− E ′

]
ΨA(r) = 0.

This equation shows that the electron, in addition to the
magnetic moment due to its orbital motion, has a magnetic
moment due to its spin angular momentum equal to µBσ where
µB = ~q

2m is the Bohr magneton.
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Small v/c limit of the Dirac equation - III

Keeping the terms up to order (v/c)2 in the Taylor series, we
obtain the equation HΨ̃ = EΨ̃ for a two-component spinor Ψ̃,
where the Hamiltonian is [3]:

H = HPauli

− p4

8m3c2 mass − velocity

+
~2q

8m2c2∇ · ∇φ(r) Darwin

− ~q
4m2c2 σ ·

[
π ×∇φ(r)

]
. spin − orbit
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Dirac equation for a spherically symmetric
potential

We need also the following result. Let’s consider the Dirac
equation for an electron in a spherically symmetric potential:

HΨ =
[
cα · p + βmc2 + qφ(|r|)

]
Ψ(r) = EΨ(r).

One can show that:

[H,L] 6= 0 [H,S] 6= 0

[H,J] = 0 J = L + S,

where L is the orbital angular momentum, S is the spin angular
momentum and J is the total angular momentum.

Andrea Dal Corso Introduction to noncollinear magnetism and spin-orbit



A few results from relativistic theory
Noncollinear DFT

Fully relativistic pseudopotentials

Relativity: effects on the electronic structure
Dirac equation
Small v/c limit of the Dirac equation
Dirac equation for a spherically symmetric potential

The spin-angle functions
The spin-angle functions are two-component spinors
eigenstates of the total angular momentum:

J2Y j,mj
`,1/2(Ω, σ) = ~2j(j + 1)Y j,mj

`,1/2(Ω, σ),

JzY j,mj
`,1/2(Ω, σ) = ~mjY

j,mj
`,1/2(Ω, σ).

The solutions of the Dirac equation with a spherically symmetric
potential can be written in terms of spin-angle functions:

Ψ(r) =
1
r

 P(r)Y j,mj
`,1/2(Ω, σ)

iQ(r)Y j,mj
`′,1/2(Ω, σ)

 .

Andrea Dal Corso Introduction to noncollinear magnetism and spin-orbit



A few results from relativistic theory
Noncollinear DFT

Fully relativistic pseudopotentials

The spin-density
The total energy
The magnetization density
The Kohn and Sham equations
The LSDA approximation revisited

Many-body Hamiltonian for electrons with spin

An approximate Hamiltonian for a system of interacting
electrons with spin in an electromagnetic field can be written as
[4]:

H =
∑

i

[
π2

i
2m

− µBσi · B(ri) + qφ(ri)

]
+

1
2

∑
ij

q2

|ri − rj |
.

Before formulating density functional theory starting from this
Hamiltonian, we make a further simplification. We set πi = pi
neglecting the coupling of the electron orbital momentum with
the magnetic field. Note that this Hamiltonian can be written by
introducing a 2 × 2 matrix as an external one-body potential:
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The spin-density as a basic variable

V σ,σ′

ext (r) =

(
qφ(r)− µBBz(r), −µB (Bx(r)− iBy (r))

−µB (Bx(r) + iBy (r)) , qφ(r) + µBBz(r)

)
.

The basic variable is the spin-density and one can show that
the ground state energy of the many-body Hamiltonian is a
functional of the spin-density:

n(r, σ, σ′) = N
∑

σ2,σ3,··· ,σN

∫
d3r2 · · ·d3rNΨ∗(r, σ, r2, σ2, · · · , rN , σN)

×Ψ(r, σ′, r2, σ2, · · · , rN , σN).

Unfortunately, in this case V σ,σ′

ext (r) is not uniquely determined
by the spin-density.
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The total energy - I
As in the standard Kohn and Sham formulation, one can
introduce an auxiliary system: a gas of non interacting
electrons with spin that has the same spin-density of the
many-body system. The wavefunctions of this system are
Slater determinants of two-component spinors (Ψi(r, σ))
one-electron wavefunctions. The spin-density of this system is:

n(r, σ, σ′) =
∑

i

Ψ∗
i (r, σ)Ψi(r, σ′).

The kinetic energy (using from now on atomic units) is:

T0 =
∑
i,σ

〈Ψi,σ| −
1
2
∇2|Ψi,σ〉.
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The total energy - II
The energy due to the interaction between the electrons and
the external potential is:

Eext =
∑
σ,σ′

∫
d3r V σ,σ′

ext (r)n(r, σ, σ′).

The Coulomb energy can be written in terms of the charge
density:

n(r) =
∑
i,σ

Ψ∗
i (r, σ)Ψi(r, σ) =

∑
σ

n(r, σ, σ).

EH =
1
2

∫
d3r

n(r)n(r′)
|r − r′|

.
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The total energy - III
The unknown part of the total energy functional is the exchange
and correlation energy:

Etot = T0 + Eext + EH + Exc
[
n(r, σ, σ′)

]
.

In the local spin density approximation the exchange and
correlation energy depends on the density and on the modulus
of the magnetization density. We use here the same functional
Exc [n, |m|]. The noncollinear magnetization density of the
non-interacting electron gas can be written as:

m(r) = µB
∑

i,σ1,σ2

Ψ∗
i (r, σ1)σ

σ1,σ2Ψi(r, σ2) = µB
∑
σ1,σ2

σσ1,σ2n(r, σ1, σ2)
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The magnetization density

It is useful to write explicitly the three components of the
magnetization density:

mx(r) = µB
∑

i

[
Ψ∗

i (r, ↑)Ψi(r, ↓) + Ψ∗
i (r, ↓)Ψi(r, ↑)

]

my (r) = −iµB
∑

i

[
Ψ∗

i (r, ↑)Ψi(r, ↓)−Ψ∗
i (r, ↓)Ψi(r, ↑)

]

mz(r) = µB
∑

i

[
|Ψi(r, ↑)|2 − |Ψi(r, ↓)|2

]
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The Kohn and Sham equations - I
Minimizing the total energy functional, keeping into account the
orthogonality constraint of the one-electron wavefunctions:∑

σ

〈Ψi,σ|Ψj,σ〉 = δij ,

we obtain the equation:
∂Etot

∂Ψ∗
i (r, σ)

= εiΨi(r, σ),

or:

− 1
2
∇2Ψi(r, σ) +

∑
σ′

V σ,σ′

ext (r)Ψi(r, σ′) + VH(r)Ψi(r, σ)

+
∂Exc

∂n
Ψi(r, σ) + µB

∑
α,σ′

∂Exc

∂mα
σσ,σ′

α Ψi(r, σ′) = εiΨi(r, σ).
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The Kohn and Sham equations - II
In order to shorten the notation, we can define the exchange
and correlation potential (Vxc) and magnetic field (Bxc) as

Vxc(r) =
∂Exc

∂n
and Bxc,α(r) = −∂Exc

∂mα
= −∂Exc

∂|m|
mα

|m|
,

and define a spin dependent self-consistent local potential

V σ,σ′

LOC(r) = V σ,σ′

ext (r) + [VH(r) + Vxc(r)] δσ,σ′ − µB
∑
α

Bxc,α(r)σσ,σ′
α ,

obtaining the equation:

∑
σ′

[
− 1

2
∇2δσ,σ′

+ V σ,σ′

LOC(r)

]
Ψi(r, σ′) = εiΨi(r, σ).
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The LSDA approximation revisited - I
In the LSDA, the orientation of the spin of each electron is
along a fixed direction taken as the z axis. We have electrons
with spin up and electrons with spin down. Their spinors are:

Ψi(r) =

(
Ψi(r, ↑)

0

)
, Ψj(r) =

(
0

Ψj(r, ↓)

)
.

Computing the magnetization density, we find mx = my = 0,
and

mz(r) = µB

[ N↑∑
i

|Ψi(r, ↑)|2 −
N↓∑
i

|Ψi(r, ↓)|2
]
,

where N↑ and N↓ are the number of electrons with spin up and
spin down, respectively. From the definition of Bxc we find also
Bxc,x = 0, Bxc,y = 0.
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The LSDA approximation revisited - II

Note that now Ψi(r, ↑) and Ψi(r, ↓) are two different wave
functions, not the two components of the same spinor. Calling
them ψi,↑(r) and ψi,↓(r), we have the equation:[
− 1

2
∇2+Vext(r)+VH(r)+Vxc(r)−µBBxc,z(r)

]
ψi,↑(r) = εi,↑ψi,↑(r)

for electrons with spin up and the equation:[
− 1

2
∇2+Vext(r)+VH(r)+Vxc(r)+µBBxc,z(r)

]
ψi,↓(r) = εi,↓ψi,↓(r)

for electrons with spin down.
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The LSDA approximation revisited - III
Within LSDA:

n(r) = n↑(r) + n↓(r), mz(r) = µB (n↑(r)− n↓(r))

or, equivalently:

n↑(r) =
1
2

(
n(r) +

mz(r)
µB

)
, n↓(r) =

1
2

(
n(r)− mz(r)

µB

)
.

Therefore we have:

Vxc(r)− µBBxc,z(r) =
∂Exc

∂n↑
, Vxc(r) + µBBxc,z(r) =

∂Exc

∂n↓
,

and the two previous equations coincide with those of LSDA.
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Towards real materials

In order to apply the above formalism to a real material we use,
as external potential, a pseudo-potential. Usually, no external
magnetic field is applied and V σ,σ′

ext is diagonal in the spin
indexes. One applies to both spin components a
pseudo-potential which has a local part Vloc(r) and a nonlocal
part. The nonlocal part can be written by introducing projectors
on the orbital angular momentum channels about each atom:

VNL =
∑

I

∑
`,m`

E I
`|βI

`Y
I
`,m`

〉〈βI
`Y

I
`,m`

|

This pseudopotential can be constructed keeping into account
scalar relativistic effects, but not the spin-orbit coupling.
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Real materials with spin-orbit coupling - I
If the pseudopotential is generated starting from the large
components of the solutions of the Dirac equation, we obtain
projectors (β`,j ) and pseudopotential coefficients E`,j for each
value of ` and j , the orbital and the total angular momentum. To
project into states of well defined total angular momentum, we
need the spin-angle functions:

VNL =
∑

I

∑
`,j,mj

E I
`,j |βI

`,jY
I,j,mj
`,1/2 〉〈β

I
`,jY

I,j,mj
`,1/2 |.

Therefore VNL is a 2 × 2 matrix in the spin indexes. This
pseudopotential includes both scalar relativistic and spin-orbit
coupling effects. (Note that it is correct at order 1/c2 not only at
order (v/c)2 as the Taylor expansion seen before).
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Real materials with spin-orbit coupling - II
The spin angle functions are:

Y j,mj
`,1/2 =


(

`+m+1
2`+1

)1/2
Y`,m(

`−m
2`+1

)1/2
Y`,m+1

 , Y j,mj
`,1/2 =


(

`−m+1
2`+1

)1/2
Y`,m−1

−
(

`+m
2`+1

)1/2
Y`,m

 ,

for j = `+ 1/2 and j = `− 1/2 respectively. In the first case
m = mj − 1/2 while, in the second, m = mj + 1/2. We can
introduce the Clebsch-Gordan coefficients ασ,`,j

mj
, a unitary

matrix Uσ,`,j
mj ,m′ which selects the appropriate spherical harmonic

and to summarize the above relationships by:

Y j,mj ,σ

`,1/2 = ασ,`,j
mj

∑̀
m′=−`

Uσ,`,j
mj ,m′Y`,m′ ,
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Real materials with spin-orbit coupling - III
Inserting the above relationship in the nonlocal pseudopotential
we find [5]:

V σ,σ′

NL =
∑

I

∑
`,j,m,m′

E I,σ,σ′

`,j,m,m′ |βI
`,jY

I
`,m〉〈βI

`,jY
I
`,m′ |

where both −` < m < ` and −` < m′ < `. The coefficients of
the nonlocal pseudopotential becomes spin-dependent:

E I,σ,σ′

`,j,m,m′ = E I
`,j

j∑
mj=−j

ασ,`,j
mj

Uσ,`,j
mj ,mα

σ′,`,j
mj

U∗,σ′,`,j
mj ,m′

but the projectors are written in terms of spherical harmonics
as in the scalar relativistic pseudopotential.
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