
THERMO_PW User’s Guide
(v. 2.0.2 and v.2.0.3)

Andrea Dal Corso (SISSA - Trieste)

Contents

1 Introduction 4
1.1 People . 7
1.2 Licence . 8

2 Installing, Compiling, and Running 9
2.1 Installing . 9
2.2 Compiling . 11
2.3 Searching help and reporting bugs 12
2.4 Uninstalling . 13
2.5 Running THERMO_PW . 14

3 Input variables 15
3.1 Temperature and pressure . 17
3.2 Coordinates and structure . 19
3.3 what=’scf’ . 20
3.4 what=’scf_ke’ . 21
3.5 what=’scf_nk’ . 22
3.6 what=’scf_bands’ . 23
3.7 what=’scf_2d_bands’ . 26
3.8 what=’scf_dos’ . 30
3.9 what=’plot_bz’ . 32
3.10what=’scf_ph’ . 35
3.11what=’scf_disp’ . 39
3.12what=’scf_elastic_constants’ . 41
3.13what=’mur_lc’ . 44
3.14what=’mur_lc_bands’ . 48
3.15what=’mur_lc_dos’ . 49
3.16what=’mur_lc_ph’ . 50
3.17what=’mur_lc_disp’ . 51
3.18what=’mur_lc_elastic_constants’ . 52
3.19what=’mur_lc_t’ . 53
3.20what=’elastic_constants_geo’ . 60

4 Restarting an interrupted run 62

2

User’s guide

5 Thermo_pw on the GPU 65

6 Tools 66

7 Examples, examples_qe, inputs, pseudo_test, space_groups,
tools_inputs 71

8 Color codes 73

9 Documentation 81

3

Chapter 1
Introduction

This guide covers the installation and usage of the THERMO_PW package. It
assumes some familiarity with QUANTUM ESPRESSO. For this please consult
the web site: http://www.quantum-espresso.org.

THERMO_PW computes material properties. At low level, it calls QUANTUM

ESPRESSO routines and, at high level, it has pre-processing tools to reduce
the information provided by the user and post-processing tools that use the
output of QUANTUM ESPRESSO to produce plots of material properties di-
rectly comparable with experiment.

THERMO_PW has the following directory structure, contained in a directory
thermo_pw/ that should be put in the root directory of QUANTUM ESPRESSO:

Doc/ : contains this user’s guide and other documentation
examples/ : some examples
examples_qe/ : QUANTUM ESPRESSO examples run using THERMO_PW

inputs/ : a collection of useful inputs
pseudo_test/ : a collection of inputs to test a pseudopotential library
space_groups/ : a collection of structures for many space groups
lib/ : source files for modules used by THERMO_PW

qe/ : routines of QUANTUM ESPRESSO that require some
change

fft : some fft routines that can run on the GPU.
lapack : some lapack routines that can run on the GPU.
src/ : source files for THERMO_PW

tools/ : source files for auxiliary tools
tools_input/ : examples of inputs for the auxiliary tools

The THERMO_PW package can calculate the following quantities:

• Plot of the Brillouin zone (the structure can be seen by reading the input
of THERMO_PW by the XCrySDen program).

• Plot of the X-rays powder diffraction pattern of the input crystal.

• Total energy at fixed geometry.

• Total energy as a function of the kinetic energy cut-off.

4

User’s guide

• Total energy as a function of k-points and smearing.

• Electronic band structure at fixed geometry.

• Electronic density of states at fixed geometry. Electronic thermodynamic
properties: energy, free energy, entropy, and heat capacity.

• Electronic heat capacity as a function of temperature (for metals only).

• Complex dielectric constant as a function of the complex frequency ω
at fixed geometry. Complex index of refraction for all systems except
monoclinic and triclinic. Reflectivity at normal incidence and adsorption
coefficient for cubic solids.

• Inverse dielectric constant at a given wavevector q as a function of the
complex frequency ω at fixed geometry.

• Phonon frequencies at fixed geometry.

• Phonon dispersions at fixed geometry and harmonic thermodynamic prop-
erties: vibrational energy, vibrational free energy, vibrational entropy,
and constant volume heat capacity as a function of temperature. Atomic
Debye-Waller factors as a function of temperature.

• Frozen ions and relaxed ions elastic constants at fixed geometry.

• Relaxed ions temperature dependent elastic constants at fixed unper-
turbed geometry.

• Fit of the total energy as a function of the lattice parameters with a
quadratic or quartic polynomial and determination of equilibrium lattice
parameters. Murnaghan or (third or fourth order) Birch-Murnaghan fit.
Enthalpy as a function of pressure. Crystal parameters and volume as a
function of pressure.

• Electronic band structure at the minimum of the total energy.

• Electronic density of states at the minimum of the total energy. Electronic
thermodynamic properties.

• Complex dielectric constant as a function of the complex frequency ω
at the minimum of the total energy. Complex index of refraction for all
systems except monoclinic and triclinic. Reflectivity at normal incidence
and adsorption coefficient for cubic solids.

• Inverse dielectric constant at a given wavevector q as a function of the
complex frequency ω at the minimum of the total energy.

• Phonon frequencies at the minimum of the total energy.

• Phonon dispersions and harmonic thermodynamic quantities at the min-
imum of the total energy.

5

User’s guide

• Frozen ions and relaxed ions elastic constants at the minimum of the
total energy.

• Anharmonic properties within the quasi-harmonic approximation: lat-
tice parameters, thermal expansion tensor, volume, volume thermal ex-
pansion, and constant strain heat capacity as a function of tempera-
ture; phonon frequencies and mode Grüneisen parameters interpolated
at a given geometry or at the equilibrium geometry at a given tempera-
ture (limited to cubic, tetragonal, orthorhombic, and hexagonal systems).
Bulk modulus and pressure derivative of the bulk modulus, isobaric heat
capacity, isoentropic bulk modulus, and average Grüneisen parameter as
a function of temperature (limited to cubic systems). Minimum Helmholtz
(or Gibbs at finite pressures) free energy as a function of temperature.

• Isothermal and isoentropic elastic constants and elastic compliances as
a function of temperature within the “quasi-static” approximation.

• Isothermal and isoentropic elastic constants and elastic compliances as
a function of temperature within the “quasi-harmonic” approximation.

• Surface band structure identification and plot of the projected bulk band
structure.

THERMO_PW can run on both serial and parallel machines using all the
parallellization options of QUANTUM ESPRESSO. Moreover, THERMO_PW can
run using several images. When possible, the image parallelization is used in
an asynchronous way. One image takes the role of master and distributes the
work to all the images that carry it out independently. Presently the total en-
ergies of several geometries for the determination of the equilibrium geometry
are calculated in parallel when there are several images. Stresses or total en-
ergies at different strained geometries needed for the calculation of the elastic
constants are calculated in parallel. The phonon calculations are carried out
in parallel, each image doing one irreducible representation of one q point.
For frequency dependent calculation, each frequency, or group of frequencies,
can be calculated in parallel by different images. The phonon dispersions of
several geometries needed for the quasi-harmonic calculation of the thermo-
dynamic properties or of the elastic constants can be calculated in parallel
(one geometry at a time or all geometries together).

6

User’s guide

1.1 People

The THERMO_PW code is primarily designed, written, and maintained by
Andrea Dal Corso (SISSA - Trieste).

Some routines have been contributed by SISSA PhD students and post-
docs. Among them I mention M. Palumbo, O. Motornyi, A. Urru, C. Malica, X.
Gong, B. Thakur, and A. Ahmed.

I would like also to thank all the people that contributed with comments,
requests of improvements, and bug reports.

7

User’s guide

1.2 Licence

All the material included in this distribution is free software; you can redis-
tribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHAN-
TABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

8

Chapter 2
Installing, Compiling, and Running

2.1 Installing

The THERMO_PW package is tightly bound to QUANTUM ESPRESSO. It can-
not be compiled without it. To download and compile QUANTUM ESPRESSO,
please refer to the general User’s Guide, available in the file Doc/user_guide.pdf
in the root QUANTUM ESPRESSO directory, or on the web site

http://www.quantum-espresso.org.

The main distribution page of Thermo_pw is

https://dalcorso.github.io/thermo_pw/

where you can download one of the .tar.gz files. Please match carefully
THERMO_PW and QUANTUM ESPRESSO versions as illustrated in Table 1. For
the versions of QUANTUM ESPRESSO not listed here, there is no THERMO_PW

package. The source files of THERMO_PW can be obtained by unpacking the
.tar.gz file in the root QUANTUM ESPRESSO directory, for instance with the
command tar -xzvf thermo_pw.1.9.0.tar.gz.
You can also download the git version of THERMO_PW as described at the web
page: https://dal corso.github.io/thermo_pw/thermo_pw_help.html.
The git version of THERMO_PW contains the most recent features and bug
fixes but it might work only with the git version of QUANTUM ESPRESSO
and its use for production is not recommended.
Please read the web page:

http://dalcorso.github.io/thermo_pw/thermo_pw_help.html

for updated information about the compatibility between the git version of
THERMO_PW and QUANTUM ESPRESSO. This web page contains also infor-
mation on critical bugs found in the THERMO_PW package and should be con-
sulted before using THERMO_PW.

9

User’s guide

THERMO_PW QUANTUM ESPRESSO release date
2.1.0 7.4.1
2.0.3 7.4.1 23/06/2025
2.0.2 7.4 20/06/2025
2.0.1 7.3.1 15/04/2025
2.0.0 7.3 24/09/2024
1.9.1 7.3 14/02/2024
1.9.0 7.2 26/01/2024
1.8.1 7.2 05/05/2023
1.8.0 7.1 26/04/2023
1.7.1 7.1 05/07/2022
1.7.0 7.0 05/07/2022
1.6.1 7.0 10/01/2022
1.6.0 6.8 27/12/2021
1.5.1 6.8 22/07/2021
1.5.0 6.7 19/07/2021
1.4.1 6.7 29/12/2020
1.4.0 6.6 22/12/2020
1.3.2 6.6 17/8/2020
1.3.1 6.6 13/8/2020
1.3.0 6.5 12/8/2020
1.2.1 6.5 23/1/2020
1.2.0 6.4.1 28/12/2019
1.1.1 6.4.1 16/04/2019
1.1.0 6.4 16/04/2019
1.0.9 6.3 6/3/2019
1.0.0 6.3 17/7/2018
0.9.9 6.2.1 5/7/2018
0.9.0 6.2.1 20/12/2017
0.8.0 6.2 24/10/2017
0.8.0-beta 6.2-beta 31/8/2017
0.7.9 6.1 06/7/2017
0.7.0 6.1 18/3/2017
0.6.0 6.0.0 5/10/2016
0.5.0 5.4.0 26/4/2016
0.4.0 5.3.0 23/1/2016
0.3.0 5.2.1, 5.2.0 23/6/2015
0.2.0 5.1.2 13/3/2015
0.1.0 5.1.1 28/11/2014

Table 2.1: Compatibility between the versions of THERMO_PW and of QE.

10

User’s guide

2.2 Compiling

In order to compile THERMO_PW, the main Makefile and the files install/
makedeps.sh and install/plugins_makefile of QUANTUM ESPRESSO must
be changed. This is done by giving the command make join_qe inside the
thermo_pw directory. This command exchanges the thermo_pw files with
those of the QUANTUM ESPRESSO package.

Typing make thermo_pw inside the main QUANTUM ESPRESSO directory,
or make inside the thermo_pw directory, produces the executable thermo_pw/
src/thermo_pw.x that appears in the QUANTUM ESPRESSO bin/ directory.
A few other tool codes are produced as well and linked in the QUANTUM

ESPRESSO bin/ directory.
With some versions of QE the sequence of commands which is known to

compile thermo_pw is the following:
Untar qe (with the version you want to run)
tar -xzvf qe.tgz
cd main qe directory
tar -xzvf thermo_pw.tzg
cd thermo_pw
make join_qe
cd ..
./configure
make thermo_pw

Running ./configure before make join_qe might not work properly. To
run thermo_pw with GPU you need a pgi fortran compiler (for instance the
one contained in the Nvidia hpc sdk) and should run configure with a
command similar to:

./configure --with-cuda=$CUDA_ROOT --with-cuda-runtime=11.8
--with-cuda-cc=80 --with-scalapack=no --with-cuda-mpi=yes

Please check on your system which is the correct version of cuda-runtime
and of cuda-cc. The numbers given here are indicative.

Starting from version 1.5.1 thermo_pw can be compiled also with cmake.
The command make join_qe substitutes the CMakeLists.txt file of QE with
the one contained in thermo_pw. After writing make join_qe follow the QE
instructions to compile using cmake. Two new commands are available: make
thermo_pw produces thermo_pw.x and make tpw_tools produces the tools
codes.

THERMO_PW has been written on a PC with the Linux operating system
using a gfortran compiler and openMPI parallelization. It has been run in
parallel on a Linux cluster with several hundreds processors. It has not been
tested with other combinations of computer/operating system, but it is sup-
posed to run on the same systems where QUANTUM ESPRESSO runs. If you
have a machine in which you can compile and run QUANTUM ESPRESSO but
not thermo_pw, please report the problem.

11

User’s guide

2.3 Searching help and reporting bugs

For problems installing thermo_pw or for help with some of its features,
please subscribe to the thermo_pw-forum mailing list (https://lists.quantum-
espresso.org/mailman/listinfo/ thermo_pw-forum). Requests of new fea-
tures are also welcome. If you think you have found a bug in thermo_pw, you
can report it to the mailing list or write me: dalcorso.at.sissa.it.

12

User’s guide

2.4 Uninstalling

In order to remove THERMO_PW, give the command make leave_qe in the
thermo_pw directory. Then just remove the directory. Note that the command
make leave_qe is needed to restore the original QUANTUM ESPRESSO files.

13

User’s guide

2.5 Running THERMO_PW

In order to run THERMO_PW, you need an input for pw.x, a file called
thermo_ control, and an input for ph.x (which must be called ph_control)
if required by the task. These files must be in your working directory. The in-
put of pw.x can have any name and is given as input to the THERMO_PW code.
It is better not to specify an outdir directory in the ph.x input. Specifying an
outdir directory is not forbidden, but for some tasks thermo_pw.x might add
a geometry number to outdir and the outdir written in the ph.x input must
be consistent.

A typical command for running THERMO_PW is:
mpirun -n np thermo_pw.x -ni ni ... < input_pw > output_thermo_pw

where np is the number of processors and ni is the number of images. The
dots indicate the other QUANTUM ESPRESSO parallelization options that you
can find in its manual.

Note that it is very easy to waste resources using too many images. Unused
images wait for the working images to complete their tasks wasting cpu-time
in an endless loop. Some options do not use the image feature, so you have
to know how the calculation is divided and the number of images must not be
larger than the number of tasks (below I give this number for each option). If
you have doubts on this point use one image (ni=1).

The outputs of the THERMO_PW code are one or more postscript or pdf
files with plots of the material properties. THERMO_PW produces also files with
the data of the plot and scripts for the gnuplot program. Usually, the user
does not need to modify these files, but they allow the improvement of the
figures when needed. The plot of the Brillouin zone (BZ) is made with the help
of the asymptote code. Thermo_pw produces a script for the asymptote code
and can also run it to produce the pdf file of the BZ.

14

Chapter 3
Input variables

The pw.x and ph.x input files are described in the QUANTUM ESPRESSO
documentation. In this section we discuss only the creation of the file thermo_
control. This file contains a namelist:
&INPUT_THERMO

what=’ ’,
...
/

The what variable controls the sequence of calculations made by THERMO_PW.
For each possible value of what, we discuss briefly the input variables that
control the output plots. Usually default values of the input variables are
sufficient to carry out the basic THERMO_PW tasks and you are not supposed
to set any variable except what, but in some cases these input variables give
more control on the calculation and on its accuracy.

THERMO_PW writes on files the data to plot and a script to plot these data.
The output postscript or pdf files are produced by invoking the gnuplot
program. Usually any modern Linux distribution provides a package to install
this code, or has it already installed. You can also download the package from
http://www.gnuplot.info/.
The following input variables control the use of the gnuplot code:

lgnuplot : if .TRUE. gnuplot is called by the
program and the postscript or pdf files are
immediately available. Otherwise give the
command gnuplot gnuplot_files/*.
Default: logical .TRUE.

gnuplot_command : the command used to call gnuplot.
Default: character(len=*) ’gnuplot’

flgnuplot : initial part of the name of the files where
gnuplot scripts are written.
Default: character(len=*) ’gnuplot.tmp’

flext : extension of the output files. Presently .ps
and .pdf are supported for postscript or pdf

15

User’s guide

output. The latter is available only if gnuplot
supports the pdfcairo terminal.
Default: character(len=*) ’.ps’

If your system has not gnuplot you can disable the production of the
postscript or pdf files and use other graphical tools to plot the output data.

16

User’s guide

3.1 Temperature and pressure

Several quantities in THERMO_PW can be calculated as a function of tem-
perature at zero pressure or at selected pressures. Moreover the equilibrium
geometry can be searched at fixed pressure minimizing the enthalpy instead
of the energy. In some cases it is also possible to plot some quantities as a
function of pressure at zero temperature or at selected temperatures. There is
therefore the necessity to specify uniform meshes of temperatures (pressures)
or to choose selected temperatures (pressures). The meshes are specified giv-
ing the minimum and maximum temperatures (pressures) and the interval
between temperature (pressure) points. Selected temperatures (pressures) are
instead defined giving their number and their values. The code will choose
these temperatures (pressures) on the uniform mesh taking the point closest
to the specified temperature (or pressure). For the options where these fea-
tures are active, the values of temperature and pressure are controlled by the
following variables:
tmin : minimum temperature for the mesh of temperatures.

Default: real 1 K
tmax : maximum temperature for the mesh of temperatures.

Default: real 800 K
deltat : interval between two temperatures. Be careful

with this value because it is used also to
compute temperature derivatives numerically.
Too small or too large values could give
inaccurate anharmonic properties.
Default: real 3 K

ntemp : number of temperatures.
Default: integer determined from previous data

pressure : The external pressure. The crystal parameters are
calculated minimizing the enthalpy at this
pressure. Given in kbar units.
Default: real 0.0 kbar

pmin : minimum pressure for the mesh of pressures.
Default: real -50.0 kbar

pmax : maximum pressure for the mesh of pressures.
Default: real 100.0 kbar

deltap : Interval between two pressures in the mesh of pressures.
Default: real 1.0 kbar

ntemp_plot : number of temperatures in the plots where the
temperature is a parameter. When 0 these plots are
not produced.
Default: integer 0

temp_plot(ntemp_plot) : A real array of dimension ntemp_plot with
the values of the temperature.
No Default value, must be given (in K) when
ntemp_plot is not zero.

17

User’s guide

npress_plot : number of pressures in the plots where the
pressure is a parameter. When 0 these plots are
not produced.
Default: integer 0

press_plot(npress_plot) : A real array of dimension npress_plot
with the values of the pressure.
No Default value, must be given (in kbar) when
npress_plot is not zero.

nvol_plot : number of volumes in the plots where the volume is a
parameter. When 0 these plots are not produced.
Default: integer 0

ivol_plot(nvol_plot) : an integer array with the volumes to
consider in the plots where the volume is a parameter.
The chosen volumes can be only among one of the ngeo(1)
geometries.
No Default value, must be given when nvol_plot
is not zero.

Note that when you fix the external pressure, the geometries chosen to fit
the enthalpy must be about the minimum geometry at that pressure. Simi-
larly, when using pressure ranges, the number of simulated geometries must
be large enough to cover the selected range of pressures, otherwise the plotted
quantities might be inaccurate.

18

User’s guide

3.2 Coordinates and structure

The thermo_pw code requires the Bravais lattice of the solid. Moreover
for computing some quantities it assumes that the direct lattice vectors are
those provided by the routine latgen.f90 of the QUANTUM ESPRESSO dis-
tribution. For this reason it is not recommended to use ibrav=0 in the pw.x
input. The preferred method is to give the value of ibrav and use the prim-
itive vectors provided by QUANTUM ESPRESSO. It is also possible to specify
the space_group number and the coordinates of the nonequivalent atoms.
When the pw.x input contains the ibrav=0 option, thermo_pw writes on out-
put the values of ibrav, celldm, and of the atomic coordinates that should
be used in the input of pw.x to simulate the same solid and stops. There are
however two input variables of thermo_pw that can modify this behavior:
continue_zero_ibrav : when ibrav=0 in the input of pw.x and

this variable is set to .TRUE. thermo_pw runs
with ibrav=0 (not recommended except when you
deal with a supercell). When this variable is
.FALSE. and ibrav=0 the behavior depends on
find_ibrav.
Default: logical .FALSE.

find_ibrav : This variable is active only when continue_zero_
ibrav=.FALSE.. When this variable is set to .TRUE.
and the input of pw.x has ibrav=0, thermo_pw finds
the values of ibrav, celldm, and of the atomic
positions that produce the same crystal and
continue the calculation. The geometry used by
thermo_pw might be rotated with respect to the
input and have different primitive vectors. When
this variable is .FALSE. the code stops after
writing in output ibrav, celldm, and the atomic
positions. These variables can be copied in the
pw.x input. Note that the automatic identification
of the lattice does not work for supercells.
Default: logical .FALSE.

19

User’s guide

3.3 what=’scf’

With this option the code computes only the total energy. This is a single
calculation as if running pw.x with the given input. No other input variable is
necessary. An example for this option can be found in example01.
Number of tasks for this option: 1.

20

User’s guide

3.4 what=’scf_ke’

With this option the code makes several self-consistent calculations, in par-
allel on several images, varying the kinetic energy cut-off for the wavefunctions
and for the charge density. In the input of pw.x one specifies the minimum
values for these two cut-offs. These values are then increased in fixed intervals
controlled by the following variables. The energy is then plotted as a function
of the wavefunctions kinetic energy cut-off, a different curve for each value of
the charge density cut-off.
The variables that control this option are:
nke : number of kinetic energies tested for the

wavefunctions cut-off.
Default: integer 5

deltake : delta of wavefunctions kinetic energy cut-off
in Ry (can be either positive or negative).
Default: real 10 Ry

nkeden : number of kinetic energies tested for the
charge density cut-off.
Default: integer 1

deltakeden : delta of charge density kinetic energy
cut-off in Ry (can be either positive or
negative).
Default: real 100 Ry.

flkeconv : name of the file where the data with the
total energy as a function of the kinetic
energy is written.
Default: character(len=*) ’output_keconv.dat’

flpskeconv : name of the postscript file with the plot
of the total energy as a function of the
kinetic energy cut-off.
Default: character(len=*) ’output_keconv’

An example for this option can be found in example10.
Number of tasks for this option: nke * nkedens.

21

User’s guide

3.5 what=’scf_nk’

With this option the code makes several self-consistent calculations, in par-
allel on several images, varying the size of the k-point grid, and optionally for
metals the smearing parameter degauss. In the input of pw.x the minimum
value of these parameters is given and these values are increased in fixed in-
tervals controlled by the following variables. On output the energy is plotted
as a function of the mesh size, one curve for each smearing parameter.
The variables that control this option are:
nnk : the number of different values of nk to test.

Default: integer 5
deltank(3) : the interval between nk values. All three values

of nk1, nk2, and nk3 are updated simultaneously.
Default: integer 2 2 2

nsigma : the number of smearing intervals.
Default: integer 1

deltasigma : the distance between different smearing values
(can be either positive or negative).
Default: 0.005 Ry

flnkconv : file where the data with the k point convergence
is written.
Default: character(len=*) ’output_nkconv.dat’

flpsnkconv : name of the postscript file with the k points
convergence plot.
Default: character(len=*) ’output_nkconv’

An example for this option can be found in example11.
Number of tasks for this option: nnk * nsigma.

22

User’s guide

3.6 what=’scf_bands’

With this option the code makes a self-consistent calculation followed by
a band structure calculation. This option is not parallelized over images and
should be used with one image. The output of the band structure calculation
is further processed in order to produce a plot of the band structure. The zero
of the energy is the highest valence band of the first k point in insulators and
the Fermi energy in metals.
The energy bands plot can be modified by the following variables:
emin_input : minimum energy for the band dispersion plot (in eV).

Default: real minimum of the bands
emax_input : maximum energy for the band dispersion plot (in eV).

Default: real maximum of the bands
nbnd_bands : the number of bands in the band calculation.

Default: integer 2*nbnd, where nbnd is the number
of bands given in pw.x input or calculated by pw.x.

only_bands_plot: if the files with the bands and the represen-
tations are already on files, this option allows to
change the parameters of the plot (such as the
maximum or minimum energy) and do another plot
without additional calculation. If the files are
missing and this variable is .TRUE. an error
occurs. Note that using this option you cannot
change the path.
Default: logical .FALSE.

lsym : if .TRUE. does the symmetry analysis of the bands.
Default: .TRUE.

enhance_plot: if .TRUE. writes on the band plot the point
group labels, and colors with different background
colors lines at the zone border.
Default: .FALSE.

long_path : if .TRUE. plots the bands in all the Brillouin
zone path. Otherwise makes a faster calculation
on a short path. The short path is indicated also
for two-dimensional layers perpendicular to the
z direction.
Default: .TRUE.

old_path : if .TRUE. use an alternative path, usually more
similar to the one used in experimental papers
(available only for a few lattices).
Default: .FALSE.

path_fact : A factor that multiply the number of points along
each line of the default path. Note that this is
a real number so you can also decrease the default
number of points along each line.
Default: real 1.0

23

User’s guide

filband : file where the bands are written in the QE format.
Default: character(len=*) ’output_band.dat’

flpband : file(s) where the bands are written in gnuplot
format.
Default: character(len=*) ’output_pband.dat’

flpsband : postscript file with the electronic band structure.
Default: character(len=*) ’output_band’

Number of tasks for this option: 1.
By default, the bands are plotted along a fixed path in the Brillouin zone,

but the user can modify this behavior giving the path at the end of the INPUT_THERMO
namelist with the same format used for the pw.x input. The automatic path
generation is not available for base-centered monoclinic and for triclinic Bra-
vais lattices. For these lattices the path must be given explicitly. The following
variables control the path:

q_in_band_form : only the first and last point of each k
path are given. The weight of each k point
is an integer, the number of points in the
line that starts at this k point.
Default: logical .TRUE.

q_in_cryst_coord : the k - points are given in crystal
coordinates. For centered lattices the
crystal coordinates refer to the primitive
cell (not the conventional one). Same
convention as in QE.
Default: logical .FALSE.

point_label_type : the label definition (see the BZ manual).
Default: SC

q2d : the q points define a rectangle in
reciprocal space. See the QE guide for
more details.
Default: logical .FALSE.

is_a_path : if .TRUE. the q points are in a path in
reciprocal space. This is usually the case
except when q2d=.TRUE. or when the input
points are in an arbitrary order. Set this
to .FALSE. only if you want to skip the plot
of the bands.
Default: logical .TRUE.

Note that the path is not given in the input of pw.x that contain instead
the information to generate the mesh of k points for the self-consistent cal-
culation. An example for this option can be found in example02. If you give
explicitly the path, be careful with options that require geometry changes (see
below). Only automatic paths, or path given through letter labels are eas-
ily recalculated. The other paths could turn out to be correct only for one
geometry.

24

User’s guide

It is also possible to separate the self-consistent and the band calcula-
tion, by running first thermo_pw.x using what=’scf’ and then running, on
the same directory, thermo_pw.x using what=’scf_bands’. The same in-
put can be used in the two calculations, only the thermo_control file need
to be changed. The number or processors and pools can be changed in the
same cases in which this is possible in pw.x. You cannot however run twice
thermo_pw.x on the same directory using what=’scf_bands’ and two differ-
ent paths, you must use two different working directories.

25

User’s guide

3.7 what=’scf_2d_bands’

With this option the code makes a self-consistent calculation followed by a
band structure calculation as with the option what=’scf_bands’, but it as-
sumes that the cell contains a slab with surfaces perpendicular to the z direc-
tion. Therefore the two-dimensional Bravais lattice of the surface is identified
and the default path is chosen on the two-dimensional Brillouin zone. There
are three options: Plot of the projected band structure (PBS); plot of the bands
of the slab; plot of the bands of the slab above the projected band structure
(the Fermi energies are aligned). In the first case the code computes several
paths of k-points parallel to the surface (at different kz) and does not plot the
individual bands but selects the energy regions in which there are bulk states.
The second case is similar to a standard band plot. The default path contains
only k-points parallel to the surface (with kz = 0). The third case assumes that
the projected band structure has been already calculated and the information
to plot it can be found on the file flpbs. For the rest it is similar to case two.
For each direction, bands belonging to different irreducible representations of
the point co-group of k can be plotted in the same panel or on different panels.
This option is controlled by the following variables:
lprojpbs: When .TRUE. the projected band structure (PBS) is

calculated if nkz > 1 otherwise it is read from file.
Usually this variable is .TRUE.. Set it to .FALSE. if
you do not want to see the PBS, or if you want to see
the bands of a bulk projected on the surface Brillouin
zone without the PBS.
Default: logical .TRUE. (forced to .FALSE. if what is
not ’scf_2d_bands’)

nkz: The number of k_z values used for the PBS plot.
If lprojpbs is .FALSE. a plot of the bulk bands projected
on the surface Brillouin zone is produced.
Default: integer 4 (forced to 1 if what is not
’scf_2d_bands’).

gap_thr: minimum size (in eV) of the gaps in the PBS.
Default: real 0.1 eV

sym_divide: When .TRUE. the bands belonging to different
irreducible representations are plotted in different
panels. This option can be controlled by variables
specified in the path (see below).
Default: logical .FALSE.

identify_sur: When .TRUE. the surface bands are searched
and identified on the surface band structure.
Default: logical .FALSE.

dump_states: If .TRUE. and identify_sur is .TRUE. dump
on the file ’dump/state_k_#’ the planar averages of
the density (and in the noncollinear case also of
the magnetization density) of each state. One file for

26

User’s guide

each k point is produced and # is the number of
the k points. (Use with a small number of k points
or it might create quite large files).
Default: logical .FALSE.

sur_layers: The number of surface layers on which we add
the charge density of each state to check if it is
a surface state.
Default: integer 2

sur_thr: the threshold (in percentage) of the charge
density that must be on the surface layers to
identify a state as a surface state.
Default: calculated from the actual charge density
values of the states.

sp_min : minimum distance between layers. Two atoms
form different layers only if their distance along
z is larger than this number. Should be smaller
than the interplanar distance (in a.u.) written by
the tool gener_3d_slab.
Default: real 2.0 a.u.

subtract_vacuum: if .TRUE. the charge density of each
state on vacuum is subtracted (to remove the vacuum
states that are confused with surface states)
Default: .TRUE.

force_bands: when .TRUE. the bands are plotted in any case.
Used to plot the bulk bands on top of the PBS,
mainly for debugging.
Default: logical .FALSE.

only_bands_plot: if the files with the bands, the
representations, the pbs and the projections are already
on files, this option allows to change the parameters of
the plot (such as the maximum energy or sur_thr) and
do another plot without any additional calculation. If the
files are missing and this variable is .TRUE. an error
occurs.
Default: logical .FALSE.

flpbs: the name of the file that contains the information on
the projected band structure.
Default: character(len=*) ’output_pbs’

flprojlayer: the name of the file that contains the information
of the projection of the charge density of each state on
each layer. Calculated only when identify_sur is .TRUE..
Default: character(len=*) ’output_projlayer’

The bands and the gnuplot scripts are saved on the same files that would
be used with the option what=’scf_bands’.
This option is not yet available for lsda calculations. Number of tasks for this
option: 1. Image parallelization is not useful with this option.

27

User’s guide

By default the symmetry separation is not carried out. The code plots the
bands of the slab on the same panel with a different color for each represen-
tation as in the bulk band structure plot (color refer to the representations of
the slab point co-group of k). In order to plot in different panels the different
representations the user can specify sym_divide= .TRUE.. By default this
option is disabled and its use is rather tricky. In order to use it you must
indicate explicitly the path on the two dimensional Brillouin zone using the
option q_in_band_form=.TRUE.. Close to the starting point of a given line
you indicate the number of representations for that line (0 means all repre-
sentations) and which ones. For instance for a (111) surface of an fcc metal
in the direction Γ̄− M̄ you may want to plot separately the states even or odd
with respect to the mirror plane perpendicular to the surface that contains the
Γ̄− M̄ line. In order to do so you can specify the path as follows:

5
gG 30 0
K 30 0
M 30 1 1
gG 30 1 2
M 1 0

The representations to plot are indicated by their numbers (in this case 1 or
2). The number of the representation and the point co-group of each k-point
can be found in the output of thermo_pw. These representation numbers
refer to the point co-group of each k-point in the slab when you plot the slab
band structures and to the point co-group of each k-point in the bulk when
you plot a PBS. Some particular values of kz, such as kz = 0 might have a
point co-group in the bulk different from the point co-group of a point with a
generic kz but in this case the representations are transformed into those of
the smaller group using the group-subgroup relationships and the symmetry
descent of the irreducible representations (only when sym_divide=.TRUE.).
The representations of the smaller point co-group have to be used in the PBS
input.

In general, the point co-group of a k-point k = (k∥, kz) with component k∥
parallel to the surface and a generic kz in the bulk is different from the point
co-group of a k-point k = (k∥, 0) in the slab. Moreover, experimentally one
cannot consider symmetries of the slab that exchange the two surfaces, and
therefore the point co-group a k-point k = (k∥, 0) on the surface is a subgroup
of the point co-group of k = (k∥, 0) on the slab. The point co-group k = (k∥, kz)
in the bulk does not contain operations that exchange kz with −kz but it might
be larger than the point co-group of k = (k∥, 0) on the surface because it might
contain symmetries of the bulk that require fractional translations perpen-
dicular to the surface that are not symmetries neither of the slab nor of the
surface.

The point co-group of a given k-point k = (k∥, 0) on the surface can be found
by removing from the corresponding slab point co-group the operations that
exchange the two surfaces. It is also the group formed from the intersection

28

User’s guide

of the point co-group of k = (k∥, 0) in the slab and of the point k = (k∥, kz) in
the bulk. It is the user responsibility to specify the same number of panels for
the PBS and for the slab calculation and to assure that the representations
plotted in each panel correspond to each other. Returning to the example of
the (111) surface of an fcc, in the direction Γ̄ − K̄ the slab has C2 symmetry
about the x-axis, a symmetry that the surface has not. Therefore you can plot
with two different colors the bands that belong to the A or B representations of
the slab, (states even or odd with respect to a 180◦ rotation about the x axis, an
operation that exchanges the two surfaces) but you cannot separate the PBS
into even or odd states with respect to the C2 symmetry. You might specify two
different panels with the A or B bands in each, but the PBS in the two panels
will be the same. On the contrary, for a k-point along the Γ̄− M̄ direction, the
point co-group has the Cs symmetry both for the slab and for the surface, so
you can separate both the PBS and the surface states in two different panels.

There is no input variable to control or change the colors or style of the
plot. To change the defaults you can modify directly the gnuplot script, it is
written in such a way that a change of a few variables can control the entire
plot.

29

User’s guide

3.8 what=’scf_dos’

With this option the code makes a self-consistent calculation followed by a
band structure calculation on a uniform mesh of k-points and computes and
plots the electronic density of states.
This option does not use the image parallelization and should be used with
one image.
This option is controlled by the following variables:
deltae : energy interval for electron dos plot (in Ry).

Default: real 0.01 Ry.
ndose : number of energy points in the dos plot.

Default: determined from previous data
nk1_d, nk2_d, nk3_d : thick mesh for dos calculation.

Default: integer 16, 16, 16
k1_d, k2_d, k3_d : the shift of the k point mesh.

Default: integer 1, 1, 1
sigmae : the smearing used for dos calculation (in eV).

If 0.0 uses the degauss of the electronic
structure calculation in metals and 0.01 Ry
in insulators.
Default: real 0.0

legauss : When .TRUE. computes the electronic dos using
a gaussian smearing. When .false. uses the same
smearing of the electronic structure calculation
in metals or gaussian smearing in insulators.
Default: logical .false.

fleldos : name of the file that contains the electron dos
data.
Default: character output_eldos.dat

flpseldos : name of the postscript file that contains the
electron dos picture.
Default: character output_eldos

fleltherm : name of the file that contains the electron
thermodynamic data.
Default: character output_eltherm.dat

flpseltherm : name of the postscript file that contains the
plot of the electron thermodynamic quantities.
Default: character ’output_eltherm’

The minimum and maximum energy, as well as the number of bands, are
specified as with the option what=’scf_bands’. However with the present op-
tion no energy shift is applied to the bands and the minimum and maximum
energies refer to the unshifted eigenvalues. Note that after a calculation with
what=’scf_dos’ you can run the tool code epsilon_tpw.x to evaluate the
frequency dependent dielectric constant (for insulators only).
With this option, in the metallic case, the code computes the electronic ther-
modynamic quantities of a gas of independent electrons whose energy levels

30

User’s guide

give the calculated density of states and produces a postscript file with the
electronic excitation energy, free energy, entropy, and constant strain heat
capacity as a function of temperature. The zero of the electron energy is the
energy at the smallest temperature required in input when it is lower than 4 K
or 4 K.

Number of tasks for this option: 1.

31

User’s guide

3.9 what=’plot_bz’

With this option the code writes a script to make a plot of the Brillouin zone
(BZ) and of the path (the default one or the one given in input). The script must
be read by the asymptote code, available at http://asymptote.sourceforge.
net/. In many Linux distributions this code is available as a separate pack-
age, but it is not installed by default.
The following variables control the plot:
lasymptote : if .TRUE. asymptote is called by the program and

the pdf file with the plot of the BZ is produced.
Default: logical .FALSE.

flasy : initial part of the name of the file where the
asymptote script is written and of the name of the
pdf file.
Default: character(len=*) ’asy_tmp’

asymptote_command : the command that invokes asymptote and
produces the pdf file of the BZ.
Default: character(len=*) ’asy -f pdf -noprc
flasy.asy’

npx : used only in the monoclinic cell, this parameter
is needed to determine the shape of the Brillouin
zone. The default value is usually large enough,
but for particular shapes of the monoclinic
Brillouin zone it could be small. If the code
stops with an error asking to increase npx, double
it until the error disappears.
Default: integer 8

The structure of the solid can be seen using the XCrySDen code reading
the input file of pw.x. You can find the code at http://www.xcrysden.org/.
THERMO_PW produces also a file in the xsf format called prefix.xsf, where
the variable prefix is given in the input of pw.x. This can be useful when the
nonequivalent atomic positions and the space group are given in the input of
pw.x. To see an xsf file, give the command xcrysden -xsf file.xsf.

With this option the code produces also a file with the X-ray powder diffrac-
tion intensities for the solid. A plot shows the scattering angles and the rel-
ative intensity of each peak. Note that this plot is made using a superpo-
sition of atomic charges, not the self-consistent charge. By setting the flag
lformf=.TRUE. the atomic form factors of all the atomic types used to calcu-
late the intensities are plotted. By setting the flag lxrdp=.TRUE. the inten-
sities plot is done also after the cell optimization and after a self-consistent
calculation for the options that support it. The variables that control these
plots are:

lambda : The X-ray wavelength (in A) used to calculate the
scattering angles.
Default: Cu alpha line 1.541838 A if lambda_element

32

User’s guide

is empty
lambda_elem : The anode element, used to set the X-ray

wavelength. Supported elements ’Cr’, ’Fe’, ’Co’,
’Cu’, ’Mo’. NB: lambda must be zero to use
lambda_elem, otherwise the value of lambda given
in input is used.
Default: character(len=2) ’ ’

flxrdp : name of the file where the scattering angles and
intensities are written.
Default: character ’output_xrdp.dat’

flpsxrdp : name of the postscript file with the X-ray
diffraction spectrum.
Default: character ’output_xrdp’

lxrdp : if .TRUE. compute the xrdp also after the cell
optimization with all the options mur_lc_...
with the uniformly strained atomic positions
and after the scf calculation if supported by
the option.
Default: logical .FALSE.

lformf : if .TRUE. plot also the form factor of each
atom type present in the solid. Note that the
atom type is recognized from the atom name in
the thermo_pw input. The name must coincide
with the symbols in the periodic table. (Cu, H,
Li, Li1, ... are correct, CU, LI, H1 ... are
wrong).
Default: logical .FALSE.

smin : minimum value of s used in the atomic form
factor plot.
Default: real 0.0

smax : maximum value of s used in the atomic form
factor plot.
Default: real 1.0

nspoint : number of points in which the atomic form
factor is calculated.
Default: integer 200

lcm : when .TRUE. the code uses the Cromer-Mann
coefficients form the International Tables of
Crystallography to compute the atomic form
factors, otherwise uses the Doyle-Turner or
Smith-Burge parameters.
Default: logical .FALSE.

flformf : name of the file in which the atomic form
factor is written. The code adds a number to
each file name and creates a file per atom type.
Default: character ’output_formf.dat’

33

User’s guide

flpsformf : name of the postscript file with the atomic
form factor. The code adds a number to each
file name and creates a file per atom type.
Default: character ’output_formf’

34

User’s guide

3.10 what=’scf_ph’

With this option the code makes a self-consistent calculation followed by a
phonon calculation. The phonon calculation is controlled by the file ph_control
and can be at a single q point or on a mesh of q points. The different represen-
tations are calculated in parallel when several images are available. No other
input variable is necessary. The outputs of this calculation are the dynamical
matrices files.
thermo_pw adds to the ph.x code the ability to compute the complex dielec-
tric constant tensor of insulators as a function of a complex frequency for the
study of optical properties within time-dependent density functional perturba-
tion theory (TD-DFPT). The code produces also the complex index of refraction
for all systems except monoclinic and triclinic. For cubic solids it makes also
a plot of the reflectivity for normal incidence and of the adsorption coefficient.
As a default the TD-DFPT algorithm uses the Sternheimer equation and a self-
consistent loop, but it is also possible to use a Lanczos chain. The option is
activated in the ph.x input by setting epsil=.TRUE. and fpol=.TRUE., but
at variance with the ph.x code, the frequencies must be specified as complex
numbers. The following additional variables can be put in the input of the
ph.x code, to select the frequency range and the number of frequencies to
compute:
freq_line : if this variable is .TRUE., after the FREQUENCY

keyword the code expects the number of frequency
points and the starting and final frequencies.
If .FALSE. the number of frequencies and a list of
frequencies are given. The frequencies are complex
numbers and are given with a real and an imaginary
part (in Ry), without parenthesis.
Default: .FALSE.

delta_freq : When freq_line is .TRUE. instead of giving the
last frequency of the line one can give the distance
between two frequency points delta_freq as a complex
number. The last point of the line is calculated using
the number of frequencies nfs and the first frequency.
When delta_freq is not zero the last frequency is not
used and can be omitted.
Default: complex, (0.0, 0.0).

start_freq : Number of the initial frequency calculated in the
job in the sequence of frequencies.
Default: integer 1

last_freq : Number of the final frequency calculated in the job
in the sequence of frequencies.
Default: integer nfs (total number of frequencies)

lfreq_ev : If .TRUE. the units of the frequencies are eV
instead of the default Ry units.
Default: logical .FALSE.

35

User’s guide

linear_im_freq: This option is used only when freq_line=.TRUE.
When linear_freq_im is .TRUE., the imaginary part
of each frequency is calculated as eta * freq where
eta is the imaginary part of the first frequency
on the frequency line.
Default: logical .FALSE.

llanczos: When this flag is .TRUE. at finite frequencies a
Lanczos algorithm is used to solve the linear
system. Can be very fast but might require much
more memory than the standard algorithm. Presently
it is incompatible with images.
Default: .FALSE.

lanczos_steps: steps of the Lanczos chain.
Default: interger 2000

lanczos_steps_ext: steps of the extrapolated Lanczos chain
Default: integer 10000

lanczos_restart_steps: number of steps between saving of the
Lanczos status. If 0 the status is saved only at the
end of the run. Use recover=.TRUE. to resume an
interrupted Lanczos chain or to increase the
number of steps.
Default: integer 0

extrapolation : extrapolation type. Presently only ’no’ or
’average’ are available. In the first case no
extrapolation is applied, in the second the average
of the beta and gamma is used.
Default: character ’average’

pseudo_hermitian : when .TRUE. a pseudo-hermitian algorithm is
used to make the Lanczos steps. Should be twice
faster than the default non hermitian algorithm.
Default: .TRUE.

only_spectrum : Computes only the spectrum assuming that
the Lanczos chain coefficients are in a file. It
gives error if the number of requested Lanczos
steps is larger than those available on file.
Default: logical .FALSE.

lcg: When this flag is .TRUE. a global conjugate
gradient algorithm is used to compute the
dielectric constant and the phonon frequencies.
It will not require mixing, but will use more
memory than the standard algorithm (for insulators
only). It is not available for the frequency
dependent case.
Default: .FALSE.

When a non zero wave-vector q is specified in the input of the phonon
code, the previous options produce the inverse of the dielectric constant as a

36

User’s guide

function of the frequency at the wave-vector q (this option can be used both
for insulators and metals).
Additional variables can be specified in the THERMO_PW input to control where
the frequency dependent dielectric constant is written and plotted and how the
work is divided among images:

flepsilon : beginning of the name of the file where the
frequency dependent dielectric constant is
written at finite q (the code adds the
extensions _re and _im).
Default: character(len=*) ’epsilon’

flpsepsilon : name of the postscript file where the frequency
dependent dielectric constant is plotted at finite q.
Default: character(len=*) ’output_epsilon’

floptical : beginning of the name of the file where the
frequency dependent dielectric constant and the
complex index of refraction are written (the code
adds the extensions _xx, _yy, and _zz for the solids
that need to distinguish the different directions).
Default: character(len=*) ’optical’

flpsoptical : name of the postscript file where the frequency
dependent dielectric constant, the complex index of
refraction and for cubic solid also the reflectivity
and the absorption coefficient are plotted.
Default: character(len=*) ’output_optical’

omega_group : number of frequencies calculated together by
each image. This variable is used only with images.
Default: integer 1.

An example for this option can be found in example03, example16, example17,
example20, and example21.
Number of tasks for this option: for a phonon calculation the number of par-
allelizable tasks of the phonon code (smaller but of the order of the number of
q points times 3Nat, where Nat is the number of atoms in the unit cell), for a di-
electric constant calculation using Sternheimer equation nfs/omega_group,
number of frequencies divided by the number of frequencies in each group,
for a dielectric constant calculation using Lanczos 1 (images not allowed).

It is also possible to separate the self-consistent and the phonon calcu-
lation, by running first thermo_pw.x using what=’scf’ and then running,
on the same directory, thermo_pw.x using what=’scf_ph’. The same input
can be used in the two calculations, only the thermo_control file need to
be changed. The number or processors/pools/images can be changed in the
same cases in which this is possible in Quantum ESPRESSO.

Using images in a phonon calculation with the master/slave approach has
an overhead because each image must recalculate the initialization and the

37

User’s guide

band structure at each task, or check if the bands are already on disk, calcu-
lated previously by the same image. On some systems with slow disks it could
be faster to recalculate the bands instead of reading them from disk. It is also
possible to use the image breaking suggested by the ph.x code that keeps, as
much as possible, on the same image the tasks that require the same initial-
ization without recomputing it. The input variables that control this part of
the calculation are:

force_band_calculation : if .TRUE. the bands are never read
from disk but recalculated when needed.
Default: logical .FALSE.

use_ph_images : if .TRUE. each image makes a set of tasks so
as to minimize the number of band calculations
and phonon initialization.
Default: logical .FALSE. if nimage>1 .TRUE.
nimage=1.

sym_for_diago : When .TRUE. use symmetry to calculate the
bands and the unperturbed wavefunctions instead
of diagonalizing the Hamiltonian.
Default: logical .FALSE.

38

User’s guide

3.11 what=’scf_disp’

With this option the code makes a self-consistent calculation followed by
a phonon dispersion calculation at a fixed geometry. The geometry is given
in the input of pw.x. The dynamical matrices are used to calculate the in-
teratomic force constants that are then used to calculate the dynamical ma-
trices and hence the phonon frequencies along a path in the Brillouin zone
and on a much thicker mesh of q points. The path can be generated au-
tomatically or given in input as in a band structure calculation (see above
what=’scf_bands’). The uniform mesh of q points is controlled by thermo_
control. The code uses the phonon frequencies calculated on the thick mesh
of q points to get the phonon density of states using a smearing approach. The
density of states is used to calculate the harmonic thermodynamic properties:
vibrational energy, free energy, entropy, and constant strain heat capacity.
The same thermodynamic quantities are calculated also by direct integration
over the Brillouin zone and compared in the plots. When with_eigen=.TRUE.
the atomic B-factors are calculated as a function of temperature by the gener-
alized vibrational density of states or by a direct integration over the Brillouin
zone. Note that presently no interpolation formula is used at low temperatures
so thermo_pw can not be used to obtain thermodynamic properties at very low
temperatures. The extensive quantities plotted in the figures refer to an Avo-
gadro number of unit cells. If you need them per mole you have to divide by
the number of formula units in a unit cell.
The input variables that control this option are:
freqmin_input : minimum frequency for phonon dos plot.

Default: real determined from phonon frequencies
freqmax_input : maximum frequency for phonon dos plot.

Default: real determined from phonon frequencies
deltafreq : frequency interval for phonon dos plot.

Default: real 1 cm^{-1}
ndos_input : number of frequency points in the dos plot.

Default: determined from previous data
nq1_d, nq2_d, nq3_d : thick mesh for phonon dos calculation.

Default: integer 192, 192, 192
phdos_sigma : the smearing used for phonon dos calculation

(in cm^-1).
Default: real 2. cm^-1

idebye : if 1, 2, or 3 the code computes the Debye
temperature as a function of temperature from
the free energy, the vibrational energy, or the
heat capacity respectively.
Default: integer 0

after_disp : if .TRUE. the dynamical matrices are supposed
to be already available in files in the current
directory. This option is needed to restart when
the outdir directory has been erased and ph.x

39

User’s guide

cannot be run without redoing the scf calculation.
The exact restart point depends on the files
already available on the current directory.
Default: logical .FALSE.

fildyn : the name of the dynamical matrix file, as
would be specified in the input of ph. To be used
when after_disp is .TRUE..
Default: character ’ ’

zasr : type of acoustic sum rule applied to the ifc.
Default: character(len=*) ’Simple’

ltherm_dos : if .TRUE. the thermal properties are calculated
from the phonon dos.
Default: logical .TRUE.

ltherm_freq : if .TRUE. the thermal properties are calculated
from the direct integration using the phonon
frequencies.
Default: logical .TRUE.

flfrc : file where the interatomic force constants are
written.
Default: character(len=*) ’output_frc.dat.g1’

flfrq : file where matdyn writes the interpolated
frequencies.
Default: character(len=*) ’output_frq.dat.g1’

flvec : file where the eigenvectors of the dynamical
matrix are written.
Default: character(len=*) ’matdyn.modes’

fldosfrq : file where the frequencies used to calculate
the phonon density of states are saved.
Default: character(len=*) ’save_frequencies.dat’

fldos : file where the phonon dos is written.
Default: character(len=*) ’output_dos.dat.g1’

fltherm : file where the harmonic thermodynamic
quantities are written.
Default: character(len=*) ’output_therm.dat.g1’

flpsdisp : postscript file of the phonon dispersions.
Default: character(len=*) ’output_disp’

flpsdos : postscript file of the phonon dos.
Default: character(len=*) ’output_dos’

flpstherm : postscript file of the harmonic thermodynamic
quantities.
Default: character(len=*) ’output_therm’

This option requires ldisp=.TRUE. in the phonon input.
An example for this option can be found in example04.
Number of tasks for this option: number of parallelizable tasks of the phonon
code (smaller but of the order of number of q points times 3Nat, where Nat is
the number of atoms in the unit cell).

40

User’s guide

3.12 what=’scf_elastic_constants’

With this option the code calculates the elastic constants of the solid at
the geometry given in the pw.x input. There are four different algorithms
that at convergence should give the same results. In two of them, depending
on the Laue class, the code calculates the nonzero components of the stress
tensor for a set of strains and obtains the elastic constants from the numer-
ical first derivative of the stress with respect to strain. The two algorithms
standard and advanced differ only for the choice of the unit cell. In the
standard method the code applies the strain to the primitive vectors of the
unstrained solid and uses ibrav=0 and the strained vectors to compute the
stress tensor. The advanced method, available only for selected Bravais lat-
tices, tries to optimize the calculation by choosing strains for which the num-
ber of needed k-points is reduced. Moreover it identifies the Bravais lattice of
the strained solid and recalculates the primitive vectors with the conventions
of QUANTUM ESPRESSO. When available this should be the most efficient
method. The other two algorithms are called energy_std and energy. Us-
ing the energy_std or energy algorithm the elastic constants are calculated
from a polynomial fit of the total energy as a function of strain without com-
puting stress. This option usually requires more independent strains. It can
be used when stress calculation is not implemented in QUANTUM ESPRESSO.
The difference between energy_std and energy is the same between the al-
gorithms that use the stress. With energy_std the code applies the strain
using ibrav=0, while with energy an optimized cell is used. As the advanced
algorithm the energy algorithm is available only for selected Bravais lattices.
For all methods the number of strains is ngeo_strain for each independent
strain. For each strain, the code relaxes the ions to their equilibrium po-
sitions if frozen_ions=.FALSE. or keeps them in the strained positions if
frozen_ions=.TRUE.. Note that elastic constant calculations with frozen
_ions=.FALSE. might require smaller force convergence threshold than stan-
dard calculations. The default value of forc_conv_thr must be changed in
the pw.x input.

If you know in which direction the atoms relax and if there is only one atom
that moves in each strain type, one can use frozen_ions=.TRUE., and com-
pute the energy at several atomic positions choosing the one that minimizes
the energy. This approach computes more energy configurations but does not
relax them and should provide results identical to frozen_ions=.FALSE.. It
can be used only with energy and energy_std algorithms, but should work
also with the free energy in what=‘elastic_constants_geo’.

At finite pressure all methods give the elastic constants that relate linearly
stress and strain.
The input variables that control this option are:
frozen_ions: if .TRUE. the elastic constants are calculated

keeping the ions frozen in the strained positions.
Default: logical .FALSE.

ngeo_strain: the number of strained configurations used to

41

User’s guide

calculate each derivative.
Default: integer 4 (’standard’ and ’advanced’),
6 (’energy’)

elastic_algorithm: ’standard’, ’advanced’, ’energy_std’ or
’energy’. See discussion above.
Default: character ’standard’

delta_epsilon: the interval of strain values between two
geometries. To avoid a zero strain geometry
that might have a different symmetry ngeo_strain
must be even.
Default: real 0.005

epsilon_0: a minimum strain. For small strains the ionic
relaxation routine requires a very small threshold
to give the correct internal relaxations and
sometimes fail to converge. In this case you
can increase delta_epsilon, but if delta_epsilon
becomes too large you can reach the nonlinear
regime. In this case you can use a small
delta_epsilon and a minimum strain (To be used
only for difficult systems).
Default: real 0.0

poly_degree: degree of the polynomial used to interpolate
stress or energy. ngeo_strain must be larger
than poly_degree+1.
Default: 3 (’standard’, ’advanced’, 2
if ngeo_strain < 6), 4 (’energy’, 3 if
ngeo_strain < 6).

stype(1:strain_types): For each strain type for which this
variable is .TRUE. it is possible to compute
the energy by moving one atom in one direction
and minimizing the energy with respect to the
ionic position. This option requires frozen_ions
=.TRUE. and should give the same result of
frozen_ions=.FALSE. if the atom that moves and
its direction is chosen correctly.
Default: logical .FALSE..

move_at(1:strain_types): The atom that moves in each strain type.
Default: integer none (it must be set
if stype(istrain)=.TRUE.).

atom_dir(3,1:strain_types): The versor of the atomic movement in
Cartesian coordinates (the vector can be given with
any module. It is normalized by the code).
Default: real none (it must be set if
stype(istrain)=.TRUE.).

atom_step(1:strain_types): the step for each atomic displacement.
Default : real 0.01 a.u..

42

User’s guide

nmove Number of atomic positions sampled for minimizing
the energy at each strain type.
Default: integer 5.

lcm_ec If .TRUE. the center of mass of the cell is conserved
in the displacement introduced with previous variables.
Default: logical .TRUE.

fl_el_cons: the name of the file that contains the elastic
constants.
Default: character(len=*) ’output_el_con.dat’

The three algorithms are equivalent only at convergence both with k-point
sampling and with the kinetic energy cut-off, but large differences between the
elastic constants obtained with the standard and advanced algorithms might
point to insufficient k-point sampling. Large differences between the elastic
constants obtained with the energy_std or energy algorithms with respect to
the other two might point to insufficient kinetic energy cut-off.
Number of tasks for this option: ngeo_strain times the number of indepen-
dent strains.

Using the elastic constants tensor the code can calculate and print a few
auxiliary quantities: the bulk modulus, the poly-crystalline averages of the
Young modulus, of the shear modulus, and of the Poisson ratio. Both the
Voigt and the Reuss averages are printed together with the Hill average. The
Voigt-Reuss-Hill average of the shear modulus and of the bulk modulus are
used to compute average sound velocities. The average of the Poisson ratio and
the bulk modulus allow the estimation of the Debye temperature. The Debye
temperature is calculated also with the exact formula evaluating the average
sound velocity from the angular average of the sound velocities calculated for
each propagation direction solving the Christoffel wave equation. The exact
Debye temperature is used within the Debye model to calculate the Debye’s
vibrational energy, free energy, entropy, and constant strain heat capacity.
These quantities are plotted in a postscript file as a function of temperature.

43

User’s guide

3.13 what=’mur_lc’

With this option the code runs several self-consistent calculations at dif-
ferent geometries. The runs can be done in parallel when several images are
available. This option has two working modes controlled by the logical variable
lmurn. When lmurn=.TRUE. the total energy as a function of the volume is
interpolated by an equation of state (Murnaghan or Birch-Murnaghan) and a
plot of the energy as a function of the volume, of the pressure as a function of
the volume and of the enthalpy as a function of pressure are produced. The
volume is changed by changing only celldm(1). celldm(2)...celldm(6)
remain fixed at the values given as input of pw.x or can be read from file
using the option lgeo_from_file=.TRUE.. When lmurn=.FALSE. the en-
ergy is calculated in a uniform grid of parameters composed of ngeo(1) ×
ngeo(2)... × ngeo(6) points. The energies are fitted with a quadratic or
quartic polynomial of Nk variables, where Nk is the number of independent
crystal parameters for the given crystal system. A plot of the energy as a func-
tion of the lattice constant is produced for cubic systems. For solids of the
hexagonal, tetragonal, and trigonal systems contour plots of the energy as a
function of the two crystal parameters (a and c/a or a and cosα) are plotted. For
orthorhombic systems contour plots of the energy as a function of a and b/a are
plotted for each value of c/a. Presently no graphical tool is implemented to plot
the energy for monoclinic and triclinic crystal systems. However in all cases
the enthalpy as a function of pressure is shown. Moreover separate plots show
the crystal parameters as well as the volume as a function of pressure. When
in the directory elastic_constants there are the elastic constants for each
geometry (calculated by the option what=elastic_constants_geo), these are
interpolated at the pressure dependent crystal parameters and shown on out-
put. Using the input variable lgeo_to_file=.TRUE. the code writes on file
the crystal parameters that for each celldm(1) of the grid of crystal struc-
tures give a uniform pressure. When lmurn=.FALSE. the bulk modulus is not
calculated. To obtain it, you can calculate the elastic constants at the min-
imum geometry (see the option what=’mur_lc_elastic_constants’). With
this option the pressure control is active. You can specify a finite pressure
and the enthalpy is minimized instead of the energy. Note however that if
the minimum is distant from the starting configuration its associated error
can be large, larger for the quadratic than for the Murnaghan interpolation.
For this reason the present option should be used starting from the minimum
found by pw.x using the vc-relax option and the pressure should not be
too different from the pressure used for vc-relax. Note that with this op-
tion the atomic coordinates are relaxed at each geometry even if you specified
calculation=’scf’ in the pw.x input. Use frozen_ion=.TRUE. if you want
to keep them fixed. To increase the maximum number of ionic iterations use
calculation=’relax’ and give nstep (otherwise the default is 20). Only the
bfgs relaxation is supported by this option. When lel_free_energy=.TRUE.
the code makes also an electronic bands dos calculation at each geometry,
computes the electronic thermodynamic quantities as a function of tempera-

44

User’s guide

ture and writes them in separate files. These files can be used to add the elec-
tronic contribution to the anharmonic properties with the option mur_lc_t.
This option can be controlled by the following variables:

ngeo(1),...,ngeo(6) : the number of geometries to use for each
celldm parameter. The lattice constant of these
geometries is calculated from the input of pw.x.
celldm(1),...,celldm(6) of this input is used
for the central geometry. For the others celldm(1),
...,celldm(6), are changed in steps of step_ngeo(1),
...,step_ngeo(6). ngeo(1) must be odd. Only the
values of celldm relevant for each Bravais lattice
are actually changed.
Default: integer 1,1,1,1,1,1 for what=scf_*,
9,1,1,1,1,1 for what=mur_lc_* and lmurn=.TRUE. or
for cubic systems, 5 on all the relevant celldm
parameters when lmurn=.FALSE. and the system
is not cubic.

step_ngeo(1),...,step_ngeo(6) : The step between the lattice
constants at different geometries. step_ngeo(1) is,
in atomic units, the change of a, step_ngeo(2),
step_ngeo(3) are dimensionless and are the changes
of the ratios b/a, c/a, step_ngeo(4), step_ngeo(5),
step_ngeo(6) are the changes in degree of the
angles alpha, beta, and gamma. The cosine of the
angle is calculated by the program.
Default: real 0.05 a.u., 0.02, 0.02, 0.5, 0.5, 0.5

lmurn : if .TRUE. the fit with an equation of state
is done. Only ngeo(1) values of the energy are
fitted, the other values
of ngeo are not used. if .FALSE. use a quadratic
or quartic function to interpolate the energy as
a function of all celldm parameters. The number of
self-consistent calculations is ngeo(1) x ngeo(2)
x ngeo(3) x ngeo(4) x ngeo(5) x ngeo(6). In this
case only the minimum energy and the optimal celldm
are given in output.
Default: .TRUE.

ieos : choose the equation of state to use (only when
lmurn=.TRUE.):
1 - Birch-Murnaghan third order
2 - Birch-Murnaghan fourth order
4 - Murnaghan
Default: integer 4

show_fit : if .TRUE. show the contour plot of the fitted
energy instead of the energy. Used by default
when reduced_grid is .TRUE..

45

User’s guide

Default: logical .FALSE.
frozen_ions: if .TRUE. the atomic coordinates are obtained by

applying the strain to the coordinates given in the
pw.x input to the new cell parameters (equivalent to
keep the crystal coordinates fixed) and kept fixed.
If .FALSE. the atomic coordinates are relaxed at
each geometry.
Default: logical .FALSE.

vmin_input : minimum volume for the plot of the energy as a
function of volume.
Default: real 0.98 times the volume of the first
geometry.

vmax_input : maximum volume for the plot of the energy as a
function of volume.
Default: real 1.02 times the volume of the last
geometry.

deltav : distance between two volumes in the plot of the
energy as a function of the volume.
Default: real calculated from nvol.

nvol : number of volumes in equation of state plot.
Default: integer 51

lquartic : if .TRUE. fit the energy with a quartic polynomial.
Default: logical .TRUE.

lsolve : choose the algorithm used to fit the quartic
polynomial parameters.
Allowed values:
1 explicitly minimize chi^2 (usually less accurate
than the other two. Should be used only for tests).
2 Use the QR algorithm to minimize chi^2 (lapack
routine dgels) 3 Use the SVD algorithm to minimize
chi^2 (lapack routine dgelss).
Default: integer 2

flevdat : file where the equation of state is written. The
results of the fit are then written in
flevdat.ev.out.
Default: character(len=*) ’output_ev.dat’

flpsmur : postscript file of the equation of state plot.
Default: character(len=*) ’output_mur’

lel_free_energy : if .TRUE. computes the electronic thermodynamic
properties (energy, free energy, entropy, and constant
strain heat capacity) at each temperature and plots
them. See the scf_dos option for the parameters that
control the calculation.
Default: .FALSE.

ncontours : the number of contours in the energy plot. These
levels can be determined automatically by the code

46

User’s guide

or defined by the user. The energy levels can be
defined after the INPUT_THERMO namelist but before
the path, as a list:
energy_level(1) color(1)
...
energy_level(ncontours) color(ncontours)
Color is a string of the type color_red, color_green,
etc.
The list of available colors is at the beginning of
each gnuplot script. energy_level is in Ry units.
Default: integer 9

do_scf_relax : if .TRUE. the code makes a self-consistent relax
calculation at the equilibrium geometry to find
the optimized atomic coordinates. This step is
needed only for solids that have internal degrees
of freedom in the unstrained configuration.
If .FALSE. the coordinates of the input geometry
are strained uniformly to the equilibrium geometry.
Default: logical .FALSE.

lgeo_from_file : if .TRUE. the input geometries are read from file.
ngeo(1) must have the total number of geometries
and lmurn must be .TRUE..
Default : .FALSE.

lgeo_to_file : if .TRUE. at the end of the calculation the code
writes in a file the geometries that correspond to
the optimized crystal parameters for each value of
celldm(1) of the grid of geometries.
Default : .FALSE.

flenergy : name of the file that contains the energy in a
form that can be used by gnuplot to make contour
plots.
Default: character(len=*) ’output_energy’

flgeom : name of the file that contains the geometries
requested with the flags lgeo_to_file or
lgeo_from_file. The file is in the directory
energy files.
Default: character(len=*) ’output_geometry’

flpsenergy : file with the contour plots of the energy as a
function of the crystal parameters.
Default: character(len=*) ’output_energy’

An example for this option can be found in example05.
Number of tasks for this option:
ngeo(1) when lmurn=.TRUE.,
ngeo(1)×ngeo(2)×ngeo(3)×ngeo(4)×ngeo(5)×ngeo(6) when lmurn=.FALSE..

47

User’s guide

3.14 what=’mur_lc_bands’

With this option the code computes the band structure at the geometry that
minimizes the energy (or the enthalpy at finite pressure). See what=’scf_bands’
and what=’mur_lc’ for a list of the variables that control these two options.
An example for this option can be found in example06.
Number of tasks for this option: see what=’mur_lc’ and what=’scf_bands’.

48

User’s guide

3.15 what=’mur_lc_dos’

With this option the code computes the electronic dos at the geometry that
minimizes the energy (or the enthalpy at finite pressure). See what=’scf_dos’
and what=’mur_lc’ for a list of the variables that control these two options.
Number of tasks for this option: see what=’mur_lc’ and what=’scf_dos’.

49

User’s guide

3.16 what=’mur_lc_ph’

This option is similar to what=’scf_ph’ but the phonon calculation is
made at the geometry that minimizes the energy (or the enthalpy at finite pres-
sure). See what=’scf_ph’ and what=’mur_ lc’ for a list of the variables that
control these options. An example for this option can be found in example07.
Number of tasks for this option: Maximum between the number of tasks
needed by the what=’mur_lc’ option and the number of tasks of the phonon
code (see above the option what=’scf_ph’).

50

User’s guide

3.17 what=’mur_lc_disp’

This option is similar to what=’scf_disp’ but the phonon calculation is
made at the geometry that minimizes the energy (or the enthalpy at finite
pressure). See what=’scf_disp’ and what=’mur_lc’ for a list of the vari-
ables that control these options. An example for this option can be found in
example08.
Number of tasks for this option: Maximum between the number of tasks
needed by the what=’mur_lc’ option and the number of tasks of the phonon
code (see above the option what=’scf_ph’).

51

User’s guide

3.18 what=’mur_lc_elastic_constants’

As what=’scf_elastic_constants’ but the calculation is made at the
geometry that minimizes the energy (or the enthalpy at finite pressure). See
what=’scf_elastic_constants’ and what=’mur_lc’ for a list of the vari-
ables that control these two options. An example for this option can be found
in example13.
Number of tasks for this option: Maximum between the number of tasks
needed by the what=’mur_lc’ option and the number of tasks needed for
the what=’scf_elastic_constants’ option.

52

User’s guide

3.19 what=’mur_lc_t’

With this option the code calculates the anharmonic properties within the
quasi-harmonic approximation. The outputs of the code are the values of
crystal parameters (celldm) as a function of temperature. This calculation is
done by computing the phonon dispersions on all the geometries specified as
in what=’mur_lc’ (or on a subset of these geometries) and minimizing the
Helmholtz free energy. Separate plots of the phonon dispersions are obtained
for all the calculated geometries. For each geometry the code produces also
plots of the phonon density of states and of the harmonic thermodynamic
quantities. From celldm as a function of temperature the code computes the
thermal expansion tensor, the volume, and the volume thermal expansion as
a function of temperature. The frequencies at all the calculated geometries are
interpolated by quadratic or quartic polynomials of the crystal parameters and
can be shown at crystal parameters given in input or at those that minimize
the free energy at a temperature given in input. The interpolated frequencies
are shown on the same path used for the phonon dispersions. In addition to
the frequencies the code produces also several plots of the derivatives of the
frequencies with respect to the crystal parameters multiplied by the crystal
parameters.
When an equation of state is used to interpolate the Helmholtz free energy
(lmurn=.TRUE.), in addition to the volume, the bulk modulus and the pres-
sure derivative of the bulk modulus are plotted as a function of temperature.
Moreover the isobaric heat capacity, the isoentropic bulk modulus, and the av-
erage Grüneisen parameter are calculated as a function of temperature. The
mode Grüneisen parameters are calculated with cubic interpolations of the
phonon frequencies. Using the variable with_eigen one can calculate these
parameters as derivatives of the phonon frequencies (default) or as expecta-
tion values of the derivatives of the dynamical matrix on the central geometry
eigenvectors (might require a lot of RAM). The mode Grüneisen parameters are
used to calculate the volume thermal expansion and the result is compared
with the volume thermal expansion derived from the numerical derivative of
the equilibrium volume obtained from the minimization of the Helmholtz free
energy. When the Helmholtz free energy is interpolated with a quadratic or
cubic polynomial (lmurn=.FALSE.), by default, the code computes only the
temperature dependence of the lattice parameters and of the volume, the vol-
ume thermal expansion, and the thermal expansion tensor. However if a file
with the elastic constants is found in the elastic_constants directory and
lb0_t=.FALSE. the bulk modulus is calculated and assumed independent
from the temperature so that also the isobaric specific heat, the isoentropic
bulk modulus, and the average Grüneisen parameter are calculated as a func-
tion of temperature. The derivatives of the frequencies with respect to the
crystal parameters are used to calculate the thermal expansion tensor which
is compared with that obtained from the numerical derivatives of the crystal
parameters obtained from the minimization of the Helmholtz free energy. If
many files with the elastic constants, one for each geometry, as produced with

53

User’s guide

the option elastic_constants_geo, are found in the elastic_constants
directory and lb0_t=.TRUE., the bulk modulus and the elastic constants are
computed as a function of temperature within the “quasi-static approxima-
tion" and are used to calculate the other thermodynamic properties. If one
or many elastic constants files are found in the anhar_files directory and
lb0_t=.TRUE. the bulk modulus and elastic constants are computed as a
function of temperature within the “quasi-harmonic approximation" and are
used to calculate the other thermodynamic properties (see a more detailed
discussion in the option what=elastic_constants_geo). In addition to the
quantities plotted for cubic solids, the code plots also the elastic constants
and the bulk modulus as a function of the temperature and the elastic com-
pliances and the compressibility as a function of temperature. The elastic
constants are interpolated with a quadratic (lquartic=.FALSE.) or quartic
(lquartic=.TRUE.) polynomial of the crystal parameters. Moreover the ther-
mal stresses and the generalized average Grüneisen parameters are plotted.
These possibilities are implemented only for cubic, tetragonal, hexagonal, trig-
onal, and orthorhombic systems.
With this option the pressure control is active. You can specify a finite pres-
sure and the Gibbs energy is minimized instead of the Helmholtz free energy.
Note however that if the minimum is distant from the starting configuration
its associated error can be large, larger for the quadratic than for the equation
of state interpolation.
By using the variables ntemp_plot and temp_plot (see the Section Temper-
ature and pressure) the code produces also plots of the thermal expansion,
of the bulk modulus, of the average Gruneisen parameter, and of the product
of the thermal expansion and the bulk modulus as a function of pressure.
These plots contain several lines one for each chosen temperature. By us-
ing the variables npress_plot and press_plot (see the Section Temperature
and pressure) in addition to the plots of the volume, the bulk modulus, the
thermal expansion, the isobaric heat capacity, the isoentropic bulk modulus,
and the average Grüneisen parameter as a function of temperature calculated
at the input pressure, the code produces also a plot of the same quantities
for all the npress_plot pressures. Note that these plots may be inaccurate if
the chosen pressures are at geometries distant from the set of geometries cho-
sen by the code for the anharmonic calculation, so these plots might require
values of ngeo larger than the default. Presently the use of these variables is
limited to cubic solids. By using the variables nvol_plot and ivol_plot the
code produces a plot of the thermal pressure as a function of temperature for
several volumes.
The Helmholtz (or Gibbs at finite pressure) free-energy can be interpolated in
two ways depending on the variable ltherm_glob. When ltherm_glob=.FALSE.
(default) the vibrational (plus the electronic) free energy is fitted separately by
a polynomial, while only the static energy is fitted by an equation of state.
When ltherm_glob=.TRUE. a different equation of state is used at each tem-
perature and no polynomial interpolation is needed. The electronic free energy
is added if the flag lel_free_energy=.TRUE.. This electronic free energy can

54

User’s guide

be calculated in two ways. When hot_electrons=.FALSE. the code expects
to find in the directory therm_files the file with the electronic free energy
computed with the option what=mur_lc. When hot_electrons=.TRUE. the
free energy due to excited electrons is calculated from the total energy evalu-
ated as a function of sigma. The total energy for several values of sigma must
be put in directories called restart2, restart3 ... restart#nsigma.
The input variables that control these plots are those described in the option
what=’mur_lc’ and what=’mur_lc_disp’ in addition to the following:

grunmin_input : minimum y coordinate for the Gruneisen
parameter plot.
Default: real, calculated from the Gruneisen
parameters.

grunmax_input : maximum y coordinate for the Gruneisen
parameter plot.
Default: real, calculated from the Gruneisen
parameters.

volume_ph : The frequencies and Gruneisen parameters inter-
polated at this volume are plotted on a postscript
file. When volume_ph=0.0 the volume is calculated
from temp_ph. This option is available only for
cubic solids. Otherwise use celldm_ph.
Default: 0.0 (in (a.u.)**3)

celldm_ph : The frequencies and Gruneisen parameters
interpolated at this crystal parameters are
plotted on a postscript file.
If this is 0.0 the celldm are calculated from
temp_ph. To have accurate Gruneisen parameters
and interpolated frequencies set the central
geometry as close as possible to celldm_ph. When
all nstep are odd, the central geometry is the one
given in the input of pw.x.
Default: 0.0 (celldm(1) in a.u., celldm(2-6)
dimensionless)

temp_ph : The frequencies and Gruneisen parameters inter-
polated at the volume (cubic systems) or at
celldm (anisotropic systems) that minimize the
free energy at this temperature are plotted on a
postscript file (only when volume_ph=0.0 or
celldm_ph(1)=0.0).
Default: real tmin (in K)

with_eigen : if .TRUE. use the eigenvectors of the
dynamical matrix to calculate the Gruneisen
parameters used for anharmonic properties.
Could require a lot of RAM. Note however that
eigenvectors are always used to calculate
the plotted Gruneisen bands (both in cubic

55

User’s guide

and anisotropic solids).
Default: logical .FALSE.

ltherm_glob : when .FALSE. the vibrational (plus electronic)
free energy is fitted by a polynomial, while
only the static energy is fitted by an equation
of state. When .TRUE. a different equation of
state is fitted at each temperature.
Default: logical .FALSE.

poly_degree_ph : degree of the polynomial used to interpolate
the vibrational free energy. Presently only the
values 1, 2, 3, or 4 are available for anisotropic
solids.
Default: integer 4

poly_degree_cv : degree of the polynomial used to interpolate
the heat capacity. Presently only the values
1, 2, 3, or 4 are available for anisotropic
solids.
Default: integer 4

poly_degree_bfact : degree of the polynomial used to interpolate
the b factor. Presently only the values 1, 2, 3,
or 4 are available for anisotropic solids.
Default: integer 4

poly_degree_elc : degree of the polynomial used to interpolate
the elastic constants. Presently only the values
1, 2, 3, or 4 are available for anisotropic solids.
Default: integer 4

poly_degree_grun : degree of the polynomial used to interpolate
the frequencies (Used only when lmurn=.TRUE.
otherwise it is 2).
Default: integer 4

lv0_t : if .TRUE. the calculation of the thermal
expansion with Gruneisen parameters uses the
equilibrium geometry as a function of temperature
computed from the free energy minimization,
otherwise the equilibrium geometry at T=0 K.
If reduced_grid=.TRUE. or both ltherm_freq=.FALSE.
and ltherm_dos=.FALSE. the input geometry is used
when lv0_t=.FALSE.
Default: logical .TRUE.

lb0_t : if .TRUE. the calculation of the thermal expansion
with Gruneisen parameters uses the bulk modulus as
a function of temperature computed from the free
energy minimization, otherwise the bulk modulus
computed at T=0 K (lmurn=.TRUE.).
For lmunrn=.FALSE. the code expects a single
elastic constant file when lb0_t=.FALSE. and an

56

User’s guide

elastic constants file for each geometry when
lb0_t=.TRUE.. Note that if lb0_t=.FALSE. and there
are many elastic constants files the code use a
constant bulk modulus computed with the elastic
constants found in the file of the central
geometry. If lb0_t=.TRUE. and there is a single
elastic constants file all the quantities that
depend on elastic properties are not computed.
Default: logical .TRUE.

add_empirical : If .TRUE. adds to the free energy an empirical term
that can represent the anharmonic contribution
or the electronic contribution.
Default: .FALSE.

efe : The type of empirical free energy
1) (alpha1+alpha2 * V) T^2
2) -2/3 k_B nat alpha1 (v/v0p)^alpha2 T^2
Default: 0 (must be explicitly given)

alpha1 : parameter of the empirical free energy (see above)
in eV/K^2 in 1), in 1/K in 2).
Default: 0.0

alpha2 : parameter of the empirical free energy (see above)
in eV / K^2 / A^3 in 1), adimensional in 2)
Default: 0.0

v0p : parameter of the empirical free energy (equilibrium volume)
in (a.u.)^3
Default: 0.0

hot_electrons : If .TRUE. the electronic free energy is computed from the
energy as a function of smearing, otherwise it is
read from files computed from electron dos. Must be
used together with lel_free_energy=.TRUE..
Default: .FALSE.

nsigma : The number of smearing values for which there are
restart files. Note that nsigma includes the present
restart, so the code expects to find restart2,
restart3, ..., restart#nsigma.
Default: 0 (option not used). Minimum value 3 to
make a quadratic fit of the energy.

sigma_ry(nsigma): the value of the smearing for each directory restart.
In Ry units.
Default: Must be set for each nsigma by the user.

lhugoniot : If .TRUE. the code plots T(p) and V(p) along the
Hugoniot curve.
Default: .FALSE.

flgrun : file where the Gruneisen parameters are written.
Default: character(len=*) ’output_pgrun.dat’

flpgrun : file where the Gruneisen parameters in a plotable

57

User’s guide

form are written.
Default: character(len=*) ’output_grun.dat’

flpsgrun : name of the postscript file with the Gruneisen
parameters plot. The frequencies are written in
a file with the same name plus the string _freq.
Default: character(len=*) ’output_grun’

flanhar : file where the anharmonic thermodynamic quantities
are written.
Default: character(len=*) ’output_anhar.dat’

flpsanhar : postscript file of the anharmonic quantities.
Default: character(len=*) ’output_anhar’

fact_ngeo(1)...fact_ngeo(6) : With these factors the vibrational
free energy is interpolated using a smaller number
of geometries with respect to the total energy. The
phonons are always calculated at geometry 1, then
fact_ngeo(i)-1 geometries are not calculated and
so on. The last calculated geometry must be ngeo(i).
This happens when fact_ngeo(i) divides ngeo(i)-1.
For even ngeo(i), fact_ngeo(i) must be 1. For odd
ngeo(i) the following table gives a few examples
ngeo fact_ngeo calculated geometries
3 2 1,3
5 2 1,3,5
7 2 1,3,5,7
7 3 1,4,7
9 2 1,3,5,7,9
9 4 1,5,9
11 2 1,3,5,7,9,11
11 5 1,6,11
Default: integer 1,1,1,1,1,1
This option is not active when one of the
ngeo_ph(i) is different from ngeo(i).

ngeo_ph(1),...,ngeo_ph(6) These variables are set to compute
the phonon dispersions in a subset of the
geometries used to compute the total energy.
All values must be smaller than the corresponding
ngeo and even or odd as the corresponding ngeo.
step_ngeo remains the same for the two meshes.
The following table gives a few examples:
ngeo ngeo_ph phonon calculated in geometries
5 3 2,3,4
6 2 3,4
6 4 2,3,4,5
7 3 3,4,5
7 5 2,3,4,5,6
9 3 4,5,6

58

User’s guide

9 5 3,4,5,6,7
Default: integer ngeo(1),...,ngeo(6)

reduced_grid: if .TRUE. the computed geometries are only along
one dimensional lines. So each parameter is varied
independently keeping the others fixed at the input
values. This option sets ltherm_freq=.FALSE.,
ltherm_dos=.FALSE., lv0_t=.FALSE. and lb0_t=.FALSE..
With this option the thermal expansion is
calculated only using the Gruneisen parameters
at the input geometry. The multidimensional fit
of the free energy is not done so this method
should be faster than the default one, but it
is less precise. This option is used only with
lmurn=.FALSE. and requires a file with the
elastic constants at the input geometry.
Default: logical .FALSE.

all_geometries_together: if .TRUE. all the phonon calculation
for all the geometries are used for the image
parallelization. To be used only if you have many
images (and CPUs) available.
Default: logical .FALSE.

The output files corresponding to different geometries can be identified by
the presence of the letters g1, g2, ... in the filename. To exploit all the fea-
tures of this option please write the dynamical matrices in .xml format (using
a fildyn with the .xml extension). An example for this option can be found
in example09.
Number of tasks for this option: Maximum between the number of tasks
needed by the what=’mur_lc’ option and the number of tasks of the phonon
code (see above the option what=’scf_ph’).
When all_geometries_together=.TRUE.: number of tasks of the phonon
code times the number of geometries.

59

User’s guide

3.20 what=’elastic_constants_geo’

With this option the code can compute the elastic constants and elastic
compliances as a function of temperature using the quasi-harmonic approx-
imation. For the same geometries that are used to compute the elastic con-
stants with the elastic_algorithm=’energy_std’ or elastic_algorithm=
’energy’, the code can compute the phonon dispersions and compute the
elastic constants at each temperature as the second derivatives of the Helmholtz
free energy with respect to strain. The second derivatives are corrected so
that the stress-strain elastic constants are shown in the plots and in out-
put. The temperature dependent elastic constants are calculated on a regular
grid of unperturbed geometries, the same geometries chosen by the option
what=’mur_lc’, and written on separate files, one for each unperturbed ge-
ometry, inside the directory anhar_files. In order to plot the elastic con-
stants as a function of temperature within the ‘quasi-harmonic’ approxima-
tion, it is necessary to make another calculation with what=’mur_lc_t’ hav-
ing on files the elastic constants calculated for each geometry with the present
option. In this case thermo_pw will be able to calculate the anharmonic prop-
erties using temperature dependent elastic constants and bulk moduli ob-
tained by interpolating the “fixed-geometry quasi-harmonic” elastic constants
computed by this option at the crystal parameters found at each temper-
ature from the minimization of the free energy. The variables fact_ngeo
and ngeo_ph are not available with this option. Using start_geometry_qha
and last_geometry_qha it is possible to compute the temperature dependent
elastic constants for selected or for a single unperturbed configuration. The
use of start_geometry and last_geometry is also allowed but it refers to
the global number of geometries necessary to compute the elastic constants
in all the grid.

Since the calculation of the Helmholtz free energy derivatives is quite heavy,
it has to be requested explicitly using the flag use_free_energy=.TRUE..
By default, the code computes only the elastic constants at T = 0 K as second
derivatives of the energy and writes them on files in the directory elastic_
constants. A run of thermo_pw using what=’mur_lc_t’ having on files the
T = 0 K elastic constants in the directory elastic_constants allows the cal-
culation of the anharmonic properties using temperature dependent elastic
constants and bulk moduli obtained by interpolating (within the “quasi-static
approximation") the elastic constants computed by this option at the crystal
parameters that, at each temperature, minimize the free energy. When both
the T = 0 K and the temperature dependent elastic constants are on file in the
directory elastic_constants and anhar_files respectively, the latter are
used. When both use_free_energy=.TRUE. and lel_free_energy=.TRUE.
the electronic free energy is added to the free energy before computing the elas-
tic constants. In this case the code expects to find on file (in therm_files) the
electronic thermodynamic properties for each perturbed geometry. These files
are produced with this same option and the flags use_free_energy=.FALSE.
and lel_free_energy= .TRUE.. In this case the code computes the electronic

60

User’s guide

thermodynamic properties at each perturbed geometry and writes them on file,
without calculating the elastic constants. Note that the user must be careful
to use the same value for the lel_free_energy flag with this option and in
the following mur_lc_t calculation that interpolates the elastic constants. Af-
ter computing the elastic constants at T = 0 K with the present option one
can also run another thermo_pw calculation with the option what=’mur_lc’
computing the crystal parameters for a range of pressures (using pmax and
pmin input variables). If the elastic constants are found in the directory
elastic_constants they are interpolated at the pressure dependent crystal
parameters and plotted on output. The variables that control this run are:
use_free_energy : when .TRUE. computes the elastic constants

as second derivatives of the Helmholtz free
energy with respect to strain. When .FALSE.
the elastic constants are computed as second
derivatives of the energy or using the
stress-strain algorithms.
Default: .FALSE.

start_geometry_qha : Among the geometries considered by the
option mur_lc_t the calculations of elastic
constants are done starting from this geometry.
Default: integer 1

last_geometry_qha : Among the geometries considered by the
option mur_lc_t the calculations of elastic
constants are done only up to this geometry.
Default: integer total number of geometries.

An example for this option with use_free_energy=.FALSE. can be found
in example22 while an example with use_free_energy=.TRUE. can be found
in example23.
Number of tasks for this option: The product of the number of tasks needed by
the what=’scf_elastic_constants’ option and the number of geometries
used with what=mur_lc_t when use_free_energy=.FALSE.. When use_free_
energy=.TRUE. and all_geometries_together=.TRUE. the number of tasks
of the previous case is further multiplied by the number of tasks needed to
compute a phonon dispersion (see above the option what=’scf_ph’).
When use_free_energy=.TRUE. and all_geometries_together=.FALSE.
the number of tasks of this option is equal to the number of tasks needed to
compute a phonon dispersion.

61

Chapter 4
Restarting an interrupted run

There are several situations that might require the restart of the THERMO_PW

code. We must distinguish two different cases: THERMO_PW stopped while
running QUANTUM ESPRESSO routines, because the code reached the maxi-
mum cpu time or because some external event stopped the run, or THERMO_PW

stopped after doing some post-processing task. This second case comprises
also the normal termination of THERMO_PW and the necessity to change some
details of the plot rerunning the post-processing tools without redoing the
QUANTUM ESPRESSO calculations.

Support for the first case is based on the recover features provided by
QUANTUM ESPRESSO routines and usually works when images are not used.
This restarting method needs files in the outdir directory. In this case THERMO_PW

behaves as QUANTUM ESPRESSO except for the fact that max_seconds in the
input of pw.x or of ph.x is not active. To run thermo_pw for a fixed number
of seconds max_seconds must be set in the THERMO_CONTROL namelist. If the
code stopped inside pw.x, restart_mode must be set to ’restart’ in the
input of pw.x while if the code stopped inside ph.x routines recover must be
set to .TRUE. in the input of ph.x.

When running thermo_pw with several images and calculating a phonon
dispersion or using the what=’mur_lc_t’ option, max_seconds is controlled
by the image driver of thermo_pw. Presently, after max_seconds a signal is
sent to the asynchronous driver and the master stops sending new works to
the images. It stops the code when all the images have terminated their cur-
rent task. Recovering from this point is possible without loosing any previous
work by keeping the outdir directory and by setting recover=.TRUE. in the
ph.x input. Note however that when thermo_pw is stopped by the operating
system in an unclean way this restart method could not work.

As a last resource you can remove the outdir directory, and THERMO_PW will
not recalculate the quantities contained in files that are already in the work-
ing directory. Completed phonon calculations at a given geometry for which
the dynamical matrices are available are not redone if you put the fildyn
name in the thermo_control namelist. It is possible to stop thermo_pw af-
ter the calculation of the phonon dispersions for a fixed number of geome-
tries by setting the input variable max_geometries in the THERMO_CONTROL

62

User’s guide

namelist or also specify exactly which geometries to do in a given run using
the variables start_geometry and last_geometry or start_geometry_qha
and last_geometry_qha.

In general the restart of thermo_pw from a post-processing task is much
easier. Each routine checks if a file with the same name as the file that it
would produce is already in the working directory, and if this happens, it
reads its content and returns. This feature cannot be disabled from input.
In order to recalculate a given quantity, just remove the file that contains it
from the working directory. For instance in an anharmonic calculation, if
you have already all the dynamical matrices for all the geometries and you
do not have any more the outdir directory, it is possible to skip entirely the
phonon calculations and the reading of the files produced by pw.x by setting
the variable after_disp=.TRUE. and giving the name of the dynamical ma-
trices file using the variable fildyn in the THERMO_CONTROL namelist. In this
case THERMO_PW can compute the anharmonic properties with a different set
of temperatures, or with a different sampling on the phonon frequencies, etc..
You need to erase the output files that contain the phonon dos, or the ther-
mal properties from a previous calculation, keeping the dynamical matrices
files and the restart directory and rerun THERMO_PW. Similarly if the files
containing the bands energy eigenvalues are already in the working directory,
it is possible to set the input variable only_bands_plot to change the bands
plot without redoing the bands calculation. Note however that in this case it
is not possible to change the Brillouin zone path.
The following variables can be used to stop THERMO_PW before it concludes all
the calculations:
max_seconds: the code stops after max_seconds have elapsed.

Note that the check is not done continuously so
the clean stop might occur a few minutes after
max_seconds.
Default: real 10E8

max_geometries: the code stops after computing the dispersions
in max_geometries.
Default: integer 1000000

start_geometry: the code starts doing the phonons for
start_geometry.
Default: integer 1

last_geometry: the code does only the phonons for geometries
with index lower than last_geometry.
Default: integer total number of geometries.

Note that the first time that you use start_geometry and last_geometry
the codes makes a self-consistent pw.x run for all the geometries and saves
the results in the outdir directory. If for any reason the outdir directory
is removed after computing some geometries, just remove also the restart

63

User’s guide

directory and the code will recreate the information in outdir but will not
recalculate the dynamical matrices already available.

Finally we consider some typical runs of the most time consuming option
what=’mur_lc_t’, but what we say is valid also for the computation of the
phonon dispersions at a single geometry. With a single processor or with a
personal computer with a small number of processors you can run the code
without interruption. In general in these cases it is not useful to use the
image parallelization before exploiting all the parallelization levels of QUANTUM

ESPRESSO, since images have an overhead due to the necessity of reinitialize
the phonon calculation and recalculate the bands. If you cannot complete the
calculation in a single run you need to send several times the THERMO_PW

run. In this case you can set start_geometry=last_geometry, max_seconds
in the thermo_pw input, and recover=.TRUE. in the ph.x input. You need
to repeat this for all the geometries and finally you can collect the results
and compute the anharmonic properties. Note that when start_geometry or
last_geometry are set by the user the anharmonic calculation is skipped.

64

Chapter 5
Thermo_pw on the GPU

Thermo_pw uses the QUANTUM ESPRESSO routines which are GPU aware,
so if you compile with the flag -D__CUDA, GPU is active in thermo_pw. Start-
ing from version 1.9.0 THERMO_PW contains also an experimental GPU ver-
sion which improves on the QUANTUM ESPRESSO routines when the system
is small and requires many k-points. This version which is activated by set-
ting many_k=.TRUE. in the INPUT_THERMO namelist uses several experimental
routines presently available only in thermo_pw. It has many limitations so
it has to be used only for particular cases. It is implemented with Davidson
diagonalization for LDA and GGA functionals. It is working for norm conserv-
ing, ultrasoft, and PAW pseudopotentials, both scalar and fully relativistic,
but not for hybrid functionals or for LDA+U schemes. When the response to a
phonon perturbation is calculated by thermo_pw with the flag many_k=.TRUE.
the new routines are used, while the old ones are used for the other perturba-
tions. The method is found to be useful only when FFT sizes are smaller than
approximately 48× 48× 48. It is not compatible with G-vectors parallelization,
but it can be used with pools parallelization. It must be used with a number
of MPI processes equal to the number of GPUs and with a number of pools
equal to the number of MPI processes (one pool per GPU). It uses CUDA fortran
so it is active only on NVIDIA GPUs. It has been tested on marconi100 at
CINECA loading modules hpc-sdk/2022-binary or hpc-sdk/2023-binary.
The many_k routines are active also on the CPU version of the code for testing
purposes, but there is no advantage to use them with CPU.

many_k: If .TRUE., the part of the code that loads
on the GPU several wavefunctions and Hamiltonians
is used.
Default: logical .FALSE.

memgpu: The available free memory in one GPU in GByte units.
(If the code crashes due to memory allocation problems,
decrease this value).
Default: real 10.

65

Chapter 6
Tools

The directory tools contains a few tools that can be useful to build struc-
tures of solids, surfaces, ribbons, and nanowires. Moreover it contains some
miscellaneous codes that give additional information on the internal conven-
tions of THERMO_PW or further process its output. Currently it contains the
following programs:

• average_grun.x reads the thermal expansion, the isothermal bulk mod-
ulus, the volume, the isochoric heat capacity, and the temperature and
computes the average Grüneisen parameter, the isobaric heat capacity,
and the isoentropic bulk modulus.

• bravais_lattices.x tests the module lattices.f90 of the library. Pre-
sently it can read three primitive lattice vectors of a Bravais lattice and
find the ibrav code and the celldm parameters of the input lattice. It
can also read two sets of primitive vectors and decide if they describe
the same Bravais lattice. In the positive case it gives the orientation
of one lattice with respect to the other. For an example of its use see
tools_input/bravais_lattice.in.

• change_dynmat_name.x A simple tool to change the number of the ge-
ometry to a set of dynamical matrix files. For an example of its use see
tools_input/change_name.in.

• change_e_name.x A simple tool to change the number of the geometry to
a set of energy files inside the restart directory.

• change_tel_name.x A simple tool to change the number of the geometry
to the electronic thermodynamic files inside the therm_file directory. It
can be used also to change the names of the elastic constant files, both
those in elastic_constants and in anhar_files directories.

• crystal_point_group.x is a crystal point group calculator. It can give
several information about the crystallographic point groups, such as the
list of symmetry operations, the product of two rotations, the product ta-
ble, the class structure, the character tables of the irreducible represen-
tations of the point group and of the double point group and the projective

66

User’s guide

representations. It gives the list of subgroups and supergroups of a given
group and the compatibility tables of a given group with its subgroups.
It can also decompose the Kronecker product representations. Finally it
can list the conjugate groups and calculate the intersection of two point
groups. For an example of its use see tools_input/crystal_point_
group.in.

• debye.x reads from input the Debye temperature and the number of
atoms per unit cell and writes in a file the thermodynamic quantities (vi-
brational energy, free energy, entropy, and heat capacity) as a function
of temperature computed using the Debye model. When the system has
only one atomic type it writes the atomic B factor as a function of tem-
perature computed using the Debye model. For an example of its use see
tools_input/debye.in.

• density.x reads the volume of a unit cell of a solid and its mass (in
a.m.u.) and computes the density, or reads the density of a solid and the
mass (in a.m.u.) of a unit cell and computes the volume.

• elastic.x reads the elastic constants of a solid and computes the elastic
compliances, the bulk modulus, and a few poly-crystalline averages. It
uses the THERMO_PW library so the output is the same. For an example
of its use see tools_input/elastic.in.

• emp_f.x reads a set of parameters for the construction of the Helmholtz
free energy of a solid as a function of volume and temperature and prints
the thermodynamic quantities. Presently it supports the models of Doro-
gokupets, Litasov, Mie-Gruneisen-Debye, and high temperature Birch-
Murnaghan equations (still in experimental form).

• emp_g.x reads a set of parameters for the construction of the Gibbs free
energy of a solid as a function of pressure and temperature and prints
the thermodynamic quantities. Presently it supports only the model of
Gustafson for tungsten.

• epsilon_tpw.x generalizes the routine epsilon.f90 of the QUANTUM

ESPRESSO distribution. It calculates the complex dielectric constant
of a solid as a function of the frequency for independent electrons using
the LDA or GGA eigenvalues. It is limited to insulators, but supports
norm-conserving, ultrasoft, and PAW pseudopotentials. It supports both
scalar relativistic and fully relativistic pseudopotentials and it uses the
point group symmetry of the solid to reduce the number of k-points. For
an example of its use see example14.

• gener_nanowire.x reads a two dimensional (2D) Bravais lattice index
and atomic coordinates and generates a sheet of type (m,n). A sheet
contained between the two vectors C= m a1+na2 and T = pa1+ qa2 can be
also generated and wrapped about C in a nanotube form (a1 and a2 are
the primitive lattices of the 2D Bravais lattice). For lattices that allow it,

67

User’s guide

p and q can be determined automatically so that T is perpendicular to C.
For an example of its use see tools_input/gener_nanowire.in.

• gener_2d_slab.x reads a two dimensional Bravais lattice index and
atomic coordinates and generates an infinite ribbon perpendicular to G
= m b1 + nb2, where b1 and b2 are the primitive reciprocal lattice vectors
of the 2D Bravais lattice. The number of rows of the ribbon, and the
number of atoms per row are given as input variables. For an example of
its use see tools_input/gener_2d_slab.in.

• gener_3d_slab.x reads a three dimensional Bravais lattice index and
atomic coordinates and generates an infinite slab perpendicular to G =
mb1 + nb2 + ob3, where b1, b2 and b3 are the primitive reciprocal lattice
vectors of the Bravais lattice. The number of layers of each slab, and
the size of the surface unit cell are given as input parameters. For an
example of its use see tools_input/gener_3d_slab.in.

• hex_trig.x reads the values of a and c of the conventional hexagonal
cell of a rhombohedral lattice (in Ångstrom), and gives as output the size
ar (in a.u.) and the cosine of the angle α of the rhombohedral cell. This
information can be written in the input of pw.x for this type of cells. It is
used to convert the structural information contained in a CIF file to the
pw.x input.

• kovalev.x writes the correspondence between point group symmetry
operations defined in the Kovalev tables and those used by QUANTUM

ESPRESSO.

• mag_point_group.x gives a few information on the magnetic point groups.

• merge_interp.x This is a driver of the spline interpolation routines of
QE. It can read the meshes and the functions to interpolate from two
different files and provide the first function on the mesh of the second.
In the data files lines that start with # are considered comments.

• optical.x contains a few utilities for optical properties calculations. It
transforms a complex dielectric constant into a complex index of refrac-
tion and computes the reflectivity or the absorption coefficient for cubic
system. It converts also from energy of the photon in eV to the frequency
in Hz or the wavelength in nm.

• pdec.x reads the temperature dependent elastic constants files calcu-
lated for several pressures and makes a plot of the elastic constants as a
function of pressure at several temperatures.

• plot_sur_states.x reads the dump file produced by THERMO_PW in a
what=’scf_2d_bands’ calculation that contains the planar averages of
all the states, and plots the states with the k point and the band numbers
requested in input. For an example of its use see tools_input/plot_sur_
states.in.

68

User’s guide

• rotate_tensors.x applies a rotation to a tensor of rank 1, 2, 3, or 4
defined in a coordinate system 1 and finds the form of the tensor in a
new coordinate system 2.

• space_groups.x gives several information on space groups. It can give
the names of the space group given the number reported in the Interna-
tional Tables for Crystallography (ITA), or the number given one of the
names, translate the names between different editions of the ITA tables
or the Shönflies name. It gives the list of coset representatives of each
space group and the list of symmorphic space groups. For an example of
its use see tools_input/space_groups.in.

• supercell.x reads a three dimensional Bravais lattice index and the
atomic coordinates of the atoms inside a unit cell and produces a super-
cell with n1× n2× n3 cells of the original unit cell or a supercell delimited
by three arbitrary Bravais lattice vectors given in crystal or cartesian co-
ordinates. For centered cells there is the option to consider n1, n2, and n3
for the primitive or for the centered Bravais lattices. The input unit cell
can be specified also by giving the space group and the coordinates of the
nonequivalents atoms. It can be useful to study defects or to calculate all
the atomic positions starting from the space-group and the nonequiva-
lent positions. It is also possible to give the input Bravais lattice by using
ibrav=0 and the three principal vectors. In this case, before generat-
ing the supercell, the code rotates the Bravais lattice so that it has the
same orientation of the vectors described in the thermo.pdf guide. For
an example of its use see tools_input/supercell.in.

• test_colors.x produces a postscript file with the gnuplot colors that
can be used in the plots.

• test_eos.x reads the parameters of an equation of state, and optionally
the coefficients of a polynomial. Produces in output a file with the energy,
the pressure, the bulk modulus, and its first and possibly second deriva-
tive with respect to pressure. It also checks the analytic results with
those obtained by numerical finite differences writing on file the relative
errors.

• template.x This is an example on how to write a tool code that can inter-
face with the QE routines and all the library routines of thermo_pw. The
template activates the parallelization options of QE and can use images.

• translate.x reads a set of atomic positions and a translation vector
and translates the atomic positions. It can read also a rotation matrix
and roto-translate the atomic positions.

• units.x writes on output the numerical constants used to write the
guide units.pdf and equilibrium.pdf. It computes also the error as-
sociated to each conversion factor.

69

User’s guide

For a detailed description of the input variables please look at the beginning
of the fortran sources of each code.

70

Chapter 7
Examples, examples_qe, inputs,
pseudo_test, space_groups,
tools_inputs

The directories examples, examples_qe, inputs, pseudo_tests, space_groups
and tools_inputs contain a set of examples that can be studied in order to
learn how to use the THERMO_PW package. The examples directory contains
inputs that run quickly but do not give converged results. These examples can
be studied to see how the THERMO_PW code works in the different cases. The
reference directory of each example contains all the output files produced by
the run. A one-to-one comparison with the output produced by running the
example script is however not possible due to the asynchronous nature of the
runs. Only the plotted physical quantities should be the same.
The directory examples_qe is used by developers. It contains examples mostly
imported from QUANTUM ESPRESSO that are used to check that QUANTUM

ESPRESSO functionalities are not spoiled by thermo_pw.
The directory inputs contains a set of realistic inputs and reasonably con-
verged results. Not all output files are reported in the reference directory of
each run. The inputs examples are divided according to the structure type
and many material properties are calculated for each structure. This directory
can be seen as a gallery of the results that can be obtained by the THERMO_PW

code, or as a source of information for the construction of a particular input
geometry.
The directory pseudo_test contains a set of inputs that can be used to test
a pseudopotential library. It illustrates how to use THERMO_PW for high-
through-put calculations.
The directory space_groups contains a collection of structures ordered by
the space group number. They are used to test the space groups routines.
These inputs are also examples for the keyword space_group and for the use
of Wyckoff positions to give the atomic coordinates in the pw.x input. You
can also use these structures for your calculations, but note that the cut-off
energies and the k-point meshes are not converged.
The directory tools_inputs give some examples of the inputs of the auxiliary

71

User’s guide

tools programs.

72

Chapter 8
Color codes

In this section we briefly summarize the color codes of some of the figures
that can be obtained from thermo_pw.

• Total energy versus kinetic energy. This is a figure of the total energy
versus wave-functions kinetic energy cut-offs. When the test requires
several charge density cut-offs there is a different curve for each charge
density cut-off. The curve corresponding to the lowest charge density cut-
off is red, the one corresponding to the highest is blue, all the others are
green. Note that the total energy of the last configuration (highest wave
function and charge density cut offs) is subtracted from all energies.

• Total energy versus size of the k-point mesh. This is a figure of the
total energy as a function of the size of the k-point mesh. When the test
requires several values of degauss, there is a different curve for each
degauss. The curve corresponding to the first degauss is red, the one
corresponding to the last is blue, all the others are green. Note that
the total energy of the last configuration (highest number of points and
lowest degauss) is subtracted from all energies.

• Total energy as a function of volume (lmurn=.TRUE.). This plot is com-
posed of three figures: the total energy as a function of the volume, the
pressure as a function of the volume and the enthalpy as a function of
pressure. All curves are red. The points on the first curve are the ener-
gies calculated by pw.x, the continuous curve is the fit.

• Total energy as a function of one or two crystallographic parameters
(lmurn=.FALSE.). When there is a single parameter the curve is red
as in the case lmurn=.TRUE.. When there are two parameters a contour
plot of the energy as a function of two parameters is shown. The contour
levels, their number and their colors can be given in input. By default the
code shows nine levels with three colors. From the lowest to the highest
levels, the colors are red, green, and blue. The energy value of each level
is written on output. When the user requests more levels without specify-
ing their colors, the code continues with three yellow levels, then pink,
cyan, orange, black, and when more than 24 levels are requested the

73

User’s guide

sequence of colors is repeated. When lgeo_to_file=.TRUE. the path
written on file is shown in this plot with an orange points connected by a
line. For orthorhombic solids the code produces many postscript figures,
one for each value of c/a on the grid. In each figure there is a contour
plot of the energy as a function of a and b/a. The colors of the levels follow
the same conventions of the previous case. When the levels are chosen
by the code the entire energy range (for all c/a) is divided into nine levels
so each figure might have less that nine curves. For crystal systems with
more crystallographic parameters, this figure is not available.

• Elastic constants (elastic compliances) as a function of pressure. The
elastic constants (elastic compliances) are shown in different plots in red.
In a final plot all the elastic constants (elastic compliances) are shown on
the same figure in red, green, blue, yellow, pink, cyan, orange
and black with same order of the previous plots. When there are more
than eight elastic constants the colors are repeated.

• The crystal parameters and the volume as a function of pressure. When
(lmurn=.FALSE.) the code plots the lattice parameters as a function of
pressure, as well as the volume as a function of pressure (so far tested
only for cubic cases). All plots are red.

• Energy bands. In this figure the bands have the color of their irreducible
representation. Each line of the path can have a different point group
and set of representations. See the point_groups.pdf file for the list of
representations and their color code. When the symmetry analysis is not
done all the bands are red.

• Energy bands with enhance_plot=.TRUE.. In this case the background
color of the panels with lines at the zone border are gray, yellow, or pink.
Gray means that the point group (or double point group) representations
are used, yellow or pink means that a gauge transformation was applied
and projective representations might have been used. A yellow back-
ground indicates that no switch from the point group to the double point
group or viceversa was made, while a pink background means that such
a switch was necessary.

• Electron density of states. This is a plot composed of two figures, the
first contains the electron density of states, the second the integral of the
density of states up to that energy. The dos is red. In the local spin
density case, the dos for spin up is red the one for spin down is blue
and with a negative sign. The integrated density of states is blue. In the
spin polarized case, the curve shows the integral of the sum of the up
and down density of states.

• Electronic energy, free energy, entropy, and isochoric heat capacity (met-
als only). This plot is composed of four pictures one for each quantity.
There is a single blue curve per plot.

74

User’s guide

• Dielectric constant as a function of frequency (q = 0). There are two plots,
one for the real part and one for the imaginary part. Other two plots
contain the real and imaginary part of the complex index of refraction.
For cubic solids other two plots show the reflectivity for normal incidence
and the absorption coefficient. All curves are in red. For hexagonal,
trigonal, and tetragonal systems the xx component is in red, while the
zz component is in green. For orthorombic systems the xx component
is in red, the yy component in green and the zz component in blue. For
monoclinic and triclinic systems the plot is not available.

• Inverse of the dielectric constant as a function of frequency (q ̸= 0). There
are four plots: the real and imaginary part of ε(q, ω) and the real and
imaginary part of 1/ε(q, ω). They are all in red. Note that the latter is
really calculated, while the first is just its inverse.

• Phonon dispersions. In this figure the phonon dispersions have the color
of their irreducible representations. The same comments made for the
plot of the band structure apply here.

• Phonon dos. There is one picture with a single red curve.

• Vibrational energy, free energy, entropy, and isochoric heat capacity.
This plot is composed of four figures each one showing one quantity. In
red the quantities obtained using the phonon density of states, in blue
those obtained from integration over the Brillouin zone. In some cases
the red curve is not visible because it is exactly below the blue one.

• Atomic B factors as a function of temperature. This plot is composed
of one figure for each atom for cubic solids and of two figures for each
atom in the other cases. One figure contains Bxx (red, pink), Byy (blue,
light_blue) and Bzz (dark_green, green) as a function of temperature. The
first color refers to quantities calculated from generalized phonon den-
sity of states while the second refers to quantities calculated by Brillouin
zone integration. If the curves coincide, only the last one (green) will be
visible. The second figure, when plotted shows Bxy (red, pink), Bxz (blue,
light_blue), and Byz (dark_green, green).

• Debye vibrational energy, free energy, entropy, and isochoric heat capac-
ity. This plot is composed of four figures, one for each quantity. The
curves are in blue and the word Debye appears in the y axis label.

• Crystal parameters as a function of pressure at several temperatures.
Volume as a function of pressure at several temperatures. The number of
plots depends on the crystal system. In these plots the first temperature
is red, the others follow in the order green, blue, yellow, pink, cyan,
orange, black. If there are more temperatures the sequence is repeated.

• Helmholtz free energy as a function of volume (lmurn=.TRUE.). The free
energy calculated using the phonon dos (integral over the Brillouin zone)

75

User’s guide

is red (blue). When required in input this figure contains also the free
energy as a function of volume for several temperatures. The color se-
quence red, green, blue, yellow, pink, cyan, orange, black indicates
the different temperatures. In this case the same figure contains also the
Gibbs energy as a function of pressure for several temperatures, the vi-
brational (plus electronic if available) free energy as a function of volume
for several temperatures and the electronic free energy as a function of
volume for several temperatures.

• The equilibrium volume as a function of temperature (lmurn=.TRUE.).
The equilibrium volume obtained from the free energy calculated using
the phonon dos (integral over the Brillouin zone) is red (blue). When
required in input this figure contains also the volume as a function of
temperature at several pressures. The color sequence red, green, blue,
yellow, pink, cyan, orange, black indicates the different pressures. In
this figure there is also the equilibrium volume divided by the equilibrium
volume at T = 300 K (and the same pressure) is plotted as a function
of temperature. When required in input this figure contains also the
equilibrium volume as a function of pressure at several temperatures
with the same color sequence. In this case also the equilibrium volume
divided by the equilibrium volume at T = 300 K and zero pressure is
plotted as a function of pressure for several temperatures.

• When requested in input, the pressure as a function of volume at several
temperatures (lmurn=.TRUE.). The color sequence red, green, blue,
yellow, pink, cyan, orange, black, indicates the different tempera-
tures. In the same figure there is also the thermal pressure as a function
of volume for several temperatures with the same color sequence and the
thermal pressure as a function of temperature for several volumes with
the same color sequence.

• The isothermal bulk modulus as a function of temperature (lmurn=.TRUE.).
The isothermal bulk modulus obtained interpolating the free energy cal-
culated using the phonon dos (integral over the Brillouin zone) is red
(blue). When required in input this figure contains also the isothermal
bulk modulus as a function of temperature at several pressures. The
color sequence red, green, blue, yellow, pink, cyan, orange, black,
indicates the different pressures. When required in input this figure con-
tains also the isothermal bulk modulus as a function of pressure at sev-
eral temperatures with the same color sequence. The same figure con-
tains also the isoentropic bulk modulus as a function of temperature and
the difference between isothermal and isoentropic bulk moduli. When
required in input this figure contains also the isoentropic bulk modulus
and the difference isoentropic-isothermal bulk moduli as a function of
temperature for several pressures or as a function of pressure for several
temperatures.

• Volume thermal expansion as a function of temperature (lmurn=.TRUE.).

76

User’s guide

The thermal expansion obtained from the free energy calculated using
the phonon dos (integral over the Brillouin zone) is red (blue). The one
obtained from the mode Grüneisen parameters is green. When required
in input this figure contains also the thermal expansion as a function of
temperature at several pressures. The color sequence red, green, blue,
yellow, pink, cyan, orange, black, indicates the different pressures.
When required in input this figure contains also the thermal expansion
as a function of pressure at several temperatures with the same color
sequence.

• The isochoric heat capacity as a function of temperature (lmurn=.TRUE.).
The isochoric heat capacity calculated using the phonon dos (integral
over the Brillouin zone) is red (blue). When required in input this figure
contains also the isochoric heat capacity as a function of temperature
for several pressures. The color sequence red, green, blue, yellow,
pink, cyan, orange, black, indicates the different pressures. When re-
quired in input this figure contains also the isochoric heat capacity as
a function of pressure at several temperatures with the same color se-
quence. The same figure contains also the isobaric heat capacity as a
function of temperature and the difference isobaric-isochoric heat capac-
ity. When required in input this figure contains also the isobaric heat
capacity and the difference isobaric-isochoric heat capacity as a func-
tion of temperature for several pressures or as a function of pressure for
several temperatures.

• Average Grüneisen parameter as a function of temperature (lmurn=.TRUE.).
The parameter obtained from phonon dos (integral over the Brillouin
zone) is red (blue). The one obtained from the mode Grüneisen pa-
rameters is green. When required in input this figure contains also the
average Grüneisen parameter as a function of temperature at several
pressures. The color sequence red, green, blue, yellow, pink, cyan,
orange, black, indicates the different pressures. When required in input
this figure contains also the average Grüneisen parameter as a function
of pressure at several temperatures with the same color sequence.

• Crystallographic parameters, volume, Helmholtz (or Gibbs at finite pres-
sure) free energy, thermal expansion tensor, volume thermal expansion,
constant strain heat capacity (Cϵ), isobaric heat capacity (CP), difference
CP − CV of isobaric and isochoric heat capacities, difference Cσ − Cϵ of
constant stress and constant strain heat capacities (note that Cσ = CP),
difference CV −Cϵ of isochoric and constant strain heat capacities, differ-
ence BS − BT of the isoentropic and isothermal bulk modulus, and aver-
age Grüneisen parameter as a function of temperature (lmurn=.FALSE.).
The number of figures in this plot depends on the crystal system and on
the presence of one or more files with the elastic constants. It shows a
as a function of temperature for cubic solids, a, c/a, and c for tetrago-
nal and hexagonal solids. For orthorhombic solids it shows also b/a and

77

User’s guide

b while for trigonal solids it shows a and cosα. For monoclinic solids it
shows a, b/a, b, c/a, c, and cosα (c-unique) or cos β (b-unique). All the
six crystallographic parameters as a function of temperature are shown
for triclinic solids. All quantities calculated using the phonon density of
states are in red, those calculated integrating over the Brillouin zone are
in blue with the exception of the thermal expansion tensor. When this
tensor is diagonal with all identical components it follows the above rules
while the tensor computed from mode Grüneisen parameters is in green.
For hexagonal, tetragonal and trigonal solids αxx follows the above rules
while αzz is pink, cyan, and orange when computed from phonon den-
sity of states, Brillouin zone integration, or mode Grüneisen parameters,
respectively. In the orthorhombic case αxx and αzz have the same colors,
while αyy is gold, olive, and light-blue in the three cases, respec-
tively. For the other crystal systems the thermal expansion tensor is not
given. The thermal expansion tensor from the mode Grüneisen parame-
ters is calculated only when the elastic_constants directory contains
at least one file with the elastic constants. In this case also CP − CV ,
Cσ − Cϵ, CV − Cϵ, and the average Grüneisen parameters are calculated
using this thermal expansion tensor and plotted in green. The volume
used in these calculations is the blue curve if ltherm_freq=.TRUE. or
as in the red curve if ltherm_freq=.FALSE. and ltherm_dos=.TRUE..
When both ltherm_freq=.FALSE. and ltherm_dos=.FALSE. the vol-
ume is kept fixed at the equilibrium volume at T = 0 K. The same applies
for the bulk modulus calculated from a single elastic constant file when
the flag lb0_t=.FALSE. or computed within the “quasi-static” approxi-
mation when lb0_t=.TRUE.. The CP , Cσ − Cϵ, CV − Cϵ, and the average
Grüneisen parameter are plotted only in presence of one or more elastic
constants file.

• Thermal stresses as a function of temperature. This plot is composed of
one figure in cubic solids and of two figures in the other cases. One figure
contains bxx (red, pink), byy (blue, light_blue) and bzz (dark_green, green)
as a function of temperature. The first color refers to quantities calcu-
lated from phonon density of states while the second refers to quantities
calculated by Brillouin zone integration. If the curves coincide, only the
last one (green) will be visible. The second figure, when plotted, shows bxy
(red, pink), bxz (blue, light_blue), and byz (dark_green, green).

• Mode Grüneisen parameters. In this plot the mode Grüneisen parameters
have the color of the irreducible representation of the phonon dispersion
curve of which they are the derivative. The same comments made for the
band structure plot apply here.

• Generalized average Grüneisen parameters as a function of temperature.
This plot is composed of one figure in cubic solids and of two figures in
the other cases. One figure contains γxx (red, pink), γyy (blue, light_blue)
and γzz (dark_green, green) as a function of temperature. The first color

78

User’s guide

refers to quantities calculated from phonon density of states while the
second color refers to quantities calculated by Brillouin zone integration.
If the curves coincide, only the last one (green) will be visible. The second
figure, when plotted shows γxy (red, pink), γxz (blue, light_blue), and γyz
(dark_green, green).

• Phonon dispersions at the geometry that corresponds to a given temper-
ature. The colors are assigned on the basis of the irreducible representa-
tion of each mode. The same comments made for the band structure plot
apply here.

• Temperature dependence of the isothermal and isoentropic elastic con-
stants within the “quasi-static”, “fixed geometry quasi-harmonic” or “quasi-
harmonic” approximation. There is a plot for each non-zero elastic con-
stant and a plot of the bulk modulus. The number of plots depends on
the Laue class. Elastic constants interpolated at the geometry computed
using the phonon density of states are in red (isothermal) and green
(isoentropic), those calculated from integration over the Brillouin zone
are in blue (isothermal) and orange (isoentropic).

• Temperature dependence of the isothermal and isoentropic elastic com-
pliances within the “quasi-static”, “fixed geometry quasi-harmonic” or
“quasi-harmonic” approximation. There is a plot for each non-zero elas-
tic compliance and a plot of the compressibility. The number of plots
depends on the Laue class. Elastic compliances interpolated at the ge-
ometry computed using the phonon density of states are in red (isother-
mal) and green (isoentropic), those calculated from integration over the
Brillouin zone are in blue (isothermal) and orange (isoentropic).

• Temperature dependence of the isothermal elastic constants within the
“fixed geometry quasi-harmonic” approximation for all the geometries of
the mesh. There is a plot for each non-zero elastic constant and a plot
of the bulk modulus. The number of plots depends on the Laue class.
Elastic constants of the different geometries are in the sequence red,
green, blue, yellow, pink, cyan, orange, black. When there are more
than eight geometries the sequence is repeated. The same colors are
used for the elastic constants obtained with the phonon density of states
or from the integration over the Brillouin zone.

• Temperature dependence of the isothermal elastic compliances within the
“fixed geometry quasi-harmonic approximation” for all the geometries of
the mesh. There is a plot for each non-zero elastic compliance and a plot
of the compressibility. The number of plots depends on the Laue class.
Elastic compliances of the different geometries are in the sequence red,
green, blue, yellow, pink, cyan, orange, black. When there are more
than eight geometries the sequence is repeated. The same colors are used
for the elastic compliances obtained with the phonon density of states or
from the integration over the Brillouin zone.

79

User’s guide

• Anharmonic quantities as a function of temperature (pressure) plotted for
several pressures (temperatures) chosen using npress_plot (ntemp_plot).
Each pressure (temperature) is plotted with a different color, in the se-
quence red, green, blue, yellow, pink, cyan, orange, black from
press_plot(1) to press_plot(npress_plot). If there are more than
eight pressures (temperatures) the sequence of colors is repeated.

80

Chapter 9
Documentation

In addition to this user’s guide, this directory contains the following docu-
ments:

• tutorial.pdf: a short guide that indicates where to find the information
needed to compute a given quantity.

• point_groups.pdf: a description of the crystallographic point groups,
character tables of the irreducible representations of point groups and of
the double point groups and tables of the projective representations, for
the interpretation of the color codes in the band and phonon dispersion
plots.

• thermo.pdf: some notes on the thermodynamic expressions implemented
in THERMO_PW.

• developer_guide.pdf: some notes on the internal logic of THERMO_PW.

• unit.pdf: some notes on the atomic units used in THERMO_PW.

• equilibrium.pdf: some notes on the atomic units used in THERMO_PW

for the equilibrium thermodynamic tensors.

81

