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Hohenberg - Kohn Theorem
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Hohenberg and Kohn Theorem
The GS density can be uses as basic variable to describe
the status of a quantum many-body system.

All properties of the system are therefore functionals of
the GS density.
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This paper deals with the ground state of an interacting electron gas in an external potential »(r). It is
proved that there exists a universal functional of the density, F[»(r)], independent of v(x), such that the ex-
pression E= [v(r)n (r)dr+ F[(r)] has as its minimum value the correct ground-state energy associated with
9(r). The functional F[x(r)] is then discussed for two situations: (1) #(r) =no+7(r), %/ny<<1, and
(2) n(r) = o(r/ro) with ¢ arbitrary and ro — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their hmltatlons Some new extensions of
these methods are presented.




Hohenberg and Kohn Theorem

1. The Density as Basic Variable
We shall be considering a collection of an arbitrary
number of electrons, enclosed in a large box and moving

under the influence of an external potential »(r) and
the mutual Coulomb repulsion. The Hamiltonian has

the form

H=T+V+U, (1)
where!?
1 |
T f WA@Y, @
V= f WOV, 3)

1 1
= f o oY )

|r—r'|

We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density

in the ground state ¥ by
n(r)=TP* (O ()¥), (5)

which is clearly a functional of o(r).
We shall now show that conversely »(r) is a unique
functional of #(r), apart from a trivial additive constant.

Yy — W — N

is invertible for NonDegenerate GS

n'(r)#n(r) = V'(r)#V(r)+const
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We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density

in the ground state ¥ by
n(r)=TP* (O ()¥), (5)

which is clearly a functional of o(r).
We shall now show that conversely »(r) is a unique
functional of #(r), apart from a trivial additive constant.

The proof proceeds by reductio ad absurdum. As-
sume that another potential o'(r), with ground state
V' gives rise to the same density n(r). Now clearly
[unless v'(r)—v(r)=const] ¥ cannot be equal to ¥
since they satisfy different Schrédinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with ¥ and ¥’ by H, H and E, F/,
we have by the minimal property of the ground state,

E'=W HY) (Y,HY)= Y, (H+V'-V)¥),
so that
E' <E+ f [v' (r)—2(x) Jn(r)dr. (6)

Interchanging primed and unprimed quantities, we find
in exactly the same way that

E<E’+[[v (r)—v'(r) Jn(r)dr. (7)

Addition of (6) and (7) leads to the inconsistency
E+E<E+E. (8)

Thus »(r) is (to within a constant) a unique functional
of n(r); since, in turn, (r) fixes H we see that the full
many-particle ground state is a unique functional of
n(r).




Hohenberg and Kohn Theorem
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Y — W — N is invertible for NonDegenerate GS

Frxn] = (WELIT + Wwlly  with iy — n(r)

Ey,[n| = Fgx|n| —I—/Vo(r)n(r)dr
E()(Vo) < EVO [n] Vn € N, EQ(VO) = EVO [no]




Degenerate Ground States
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Degenerate Ground States
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n'(r) #n(r) = V'(r) # V(r) + const also for Degenerate GS

Frrn] = <\IJ[£]§\T un W|\If[g;g> for any \I![g;’g — n(r)

Ey, [n| = Fgk|n] —I—/Vo(r)n(r)dr
E()(Vo) < EVO [n] Vn € N, EO(VO) = EVO [no]




A few questions about Fuk

Are all “reasonably well behaved” densities pure-state
V-representable ?

NO

If NOT, can one extend the domain to non pure-state

V-representable densities ? o
ensemble V-representable densities

If Vs —-n, V' —=TI"—n" then

n'(r) # n(r) = V'(r) # V(r) + const also for Dens. Matrix GS

Fpykn] =Tr FE%(T + W) for any F[C?g — n(r)

Ev,|n| = FEgk|n| —|—/Vo(r)n(r)dr
E()(Vo) < EVO [n] VYn € N, EO(VO) — EVO [ng]




A few questions about Fuk

Are all “reasonably well behaved” densities pure-state
V-representable ?

NO

If NOT, can one extend the domain to non pure-state

V-representable densities ? o
ensemble V-representable densities

Still there are innoncent-looking densities that are NOT
pure-state or ensemble V-representable.

0
on(r)

Frppkn]+ Vo(r) =0 is not well grounded




Levy's constrained search formulation of DFT
M Levy PNAS 76, 6062 (1979); M Levy, PRA 26, 1200 (1982)
EH Lieb IntJ.Q.Chem 24, 243 (1983)

The original HK theorem is obtained for densities that

are GS densities of some potential V ...
These densities are named V-representable

It can be shown that very reasonable densities are not
V-representable... Then what ?

The extension

TL(I‘) — FLL[TL] — \I}I_lanIf’Te + Wee|\If>

is defined for all N-representable densities

i.e. Yn(r) >0, /n(r)dr = N, / (Vm)z dr < 400




N-representable densities

The inf exists if the setof ¥ —n  is not empty
In 1 dimension let's set

f@) =n@/N = o) =2 [ )y
du(@) = VI(@) explHikd(@)]
e (z)|? =n(x)/N VkeZ, (Yrlp) =0k

V= A[¢k1 (ml)v oy Wy (CUN)] — N(CE)

For an extension to 3D see for instance

“Siz,) G Zumbach and K Maschke, Phys Rev A 28, 544 (1983); 29, 1585 (1984)
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The original HK theorem is obtained for densities that

are GS densities of some potential V ...
These densities are named V-representable

It can be shown that very reasonable densities are not
V-representable... Then what ?
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N-representable densities
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Levy's constrained search formulation of DFT
M Levy PNAS 76, 6062 (1979); M Levy, PRA 26, 1200 (1982)
EH Lieb IntJ.Q.Chem 24, 243 (1983)

The original HK theorem is obtained for densities that

are GS densities of some potential V ...
These densities are named V-representable

It can be shown that very reasonable densities are not
V-representable... Then what ?

The extension

TL(I‘) — FLL[TL] — \I}I_l>fn<\lf’Te + Wee|\If>

is defined for all N-representable densities

i.e. Yn(r) >0, /n(r)dr = N, / (V\/Wr))z dr < 400

Is a convex set, actually an Hilbert space
~=, However Fr1[n] is not necessarily a convex functional




Levy's constrained search formulation of DFT
M Levy PNAS 76, 6062 (1979); M Levy, PRA 26, 1200 (1982)
EH Lieb IntJ.Q.Chem 24, 243 (1983)

The original HK theorem is obtained for densities that

are GS densities of some potential V ...
These densities are named V-representable

It can be shown that very reasonable densities are not
V-representable... Then what ?

The extension

n(r) — Frln| = I}gfn Tr T'(|T, + Wee)

is defined for all N-representable densities

i.e. Yn(r) >0, /n(r)dr = N, / (V\/Wr))z dr < 400

Is a convex set, actually an Hilbert space
/<, and Fr|n] (£ Frp|n]) is a convex functional !




Hohenberg and Kohn Theorem and Legendre transform

An analogy with a well known case...

Consider the structural stability problem: E(V') = fI{niI\l/ E(R)
%

Volume V and pressure P are equally legitimate variables to
describe the status of the system, each with its own
thermodynamic potential, linked by a Legendre transform

H(P) :m‘;n{E(V)+PV}, g—]; =V

OE

E(V) =max{H(P)~ PV}, = =-P




Hohenberg and Kohn Theorem and Legendre transform

In QM potential V(r) determines the GS density n(r)

Egs[V] = min(¥|T, + Wee + V|¥)

B 5EGS

Vir) = ¥ = n(r)=(|nv) SV ()

Ecs[V] is the Legendre transform of Frr|n]

Eqs|V] = min | min (V|T, + W |¥) —I—/V(r)n(r)dr}

n U—n

But Frr[n] is notthe Legendre transform of Egs|V]




Hohenberg and Kohn Theorem and Legendre transform

In QM potential V(r) determines the GS density n(r)

Egs[V] = min(¥|T, + Wee + V|¥)

B 5EGS

Vir) = ¥ = n(r)=(|nv) SV ()

Eas[V] is the Legendre transform of £r[n]

Eqs|V] = min |min Tr I'(T, + Wee) + /V(r)n(r)dr}

n I'—n

And Fpr[n] isthe Legendre transform of Egs|V]




Hohenberg and Kohn Theorem and Legendre transform

In QM potential V(r) determines the GS density n(r)

Egs[V] = min(¥|T, + Wee + V|¥)
E
V) = ¥ — mﬂ:awmngﬁﬁ

Performing the Legendre transform

zﬁm:mm{&ﬂm—/ium®m}

.2
= Imj)% Tr I'(T, + Wee)

_ 0Fn]

niry = I' = V(r)= _5n(r)

The GS density n(r) determines the potential V(r)




Fractional Particle Number

[ nw)dr =N 4

.2
= min Tr I'(T, + W,)

I'—>n

Fln] = max {EGS[V] _ / V(r)n(r)dr}

with 1 a mixed particle number Density Matrix

It is well defined if FEqgg|V] is convex w.r.t. particle number

For Coulomb systems it is believed to be the case
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Fractional Particle Number

[ nw)dr =N 4

v = A
OE,N]
sy v = I(N)
OE,[N],
sy v = AN)




Fractional Particle Number
/ n(r)dr = N 4+ w

if

} E, (X)oE, (V)
I(X)> A(Y) VX,Y

molecules dissociate in
neutral fragments

10)-A )
In general the fragments
have integer charges

1 -ayy for the exact functional

Ex(Xl* E'(Y) -------- | SRR, P IO




Finite Temperature DFT

ND Mermin Phys Rev 137, A1441 (1965)

A - ~ ~ 1
QV] :mjnTrﬁ<T—|—W+V—,uN—l—Elnﬁ>
0

p = exp[—p(H — uN)|/Z
The DFT functional is therefore

A 2 1
F|n] :minTrﬁ<T+W+—ln,6>
p—n 6

and the variational principle becomes

Q[V] = min <F[n] + / o(r)n(r)dr — 1 /n(r)dr)

It may be convenient to think of the 8 — oo limit




HK Theorem: take home messages

- for fixed integer number of particles and fixed interaction
it is possible to define a universal functional of the density
for all N-representable densities and this functional F[n] is
the Legendre transform of the functional E[V].

- the definition can be extended to non integer number of
electrons and/or to finite temperature.
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Self-Consistent Equations Including Exchange and Correlation Effects*

W. KonN aND L. J. SHAM
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of %.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.




HK: n(r) — Fn] = min(V|T, + W,.|¥)

v —n

It is useful to introduce a ficticious system
of non-interacting electrons

KS: n(r) — TS[’I’L] = min <\IJ‘T6‘\I}>

v—n

F[TL] — TS [’I’L] - EH [’I’L] + Eazc[n] This defines Exc

The energy becomes

En| =Tsn| 4+ Egn| + Ecn| + / Vezt(x)n(r)dr




Kohn-Sham equations

- Interacting svstem

Eln| =Tsn| 4+ Egn] + E.c|n] /Vext(r)n(r)dr

— ( / n(r)dr — N)

_O0Kn]  T4n]  OFEg([n|  0Ei[n]
= on(r)  on(r) i on(r)  on(r)

- non-interacting system

Exsn| = Tsn] —I—/VKS(r)n(r)dr

—p' | [ n(r)dr — N
% : 5?5@ [)n] _ (iqu;([:)] o p ( / )

lr Veaf;t (I')




Self-consistent equations [Kohn-Sham, 1965]

n(r') ., 0Eg[n]
ar - on(r)

VKs(I‘, R) — Vext(r, R) —+ 62/

v — 1’|

It is as simple as a Mean-field approach but it is exact !

E.c|n] is not known exactly — approximations




Formal expression for Exc[n]
via coupling-constant integration

AO) = 7, + AW, + V)

ext

= mm(\If\T + AW, | D)

N/|\If>\ r,ro,..rN)|°dry...dry, VA
non-interacting electrons
A=0 Py =T, Vi =Vis
interacting electrons .
=1 Fin]=Fh], V5 =V

Fln] = Tu[n] + /dx%




L dF,

F|n] = Ts|n] +A d)\ﬁ

thanks to Hellmann-Feynman theorem ....

F[n] = Ts[n] —I—/O d>\<\If>\‘Wee‘\If)\>

F[n] = Tg[n] +/O d)\%/drdr' n‘(rr)fg‘,)g(r,r’,)\)

g(r,r’, \) pair correlation function for interaction AW,
n(r)n(r)g(r.v’,A) = n{ (r,1r')

— ng\2) (I’, I’/) — N(N o 1)/‘\11)\(1‘, I’/, rs,..., rN)‘QdFS---dI'N




if |[r—r'|—o00  then  g(r,r',)\) —1
(g(rarla)\) o 1) — 0

Fln) = Tu] + & / gy’ M)

v —r'|
FExc > 62 /drdr/n(r n(r,)
2 r—r

Exchange-correlation hlole

Nge(r;1" — 1) = n(r’)/o dA[g(r,r', \) — 1]

Ereln] = 2 / drdy! ) Me(r: T — ')

e
2 r — 1/




Fi[n] = min (|7, + AW,..|¥)= Tx[n] + AWy [n]

U —n
with Th[n] = (WTL [0, Wyln] = (B[ o)
(if need be think of it as the £ — 00 limit)

clearly Th|n| >0, Wjx[n]>0 VA

F\[n] is variational w.r.t. iIsodensity perturbations

dF’
d—)\/\:F/’\:WA, T, + AW, =0, TV + AW} >0
but also Y+ MW 4+W, =0 = W;<0




Fln] = Tuin] + /1d)\<\If,\|W T, )

F[n] = T,[n] - /|r v drdr

Fic - +/O [<\If,\yW T, — Eyln]







THE END



