Advanced DFT




- General Variational Formulation

- Adiabatic Connection Formalism

- Exact Exchange
- Sharp-Horton, Talman-Shadwick,Sham-Shlueter, KLI
- Fluctuation-Dissipation for Correlation (vdW aware)

- RPA, RPAx, ...

- ISI Interaction Strength Interpolation
- SCE Strictly Correlated Electrons
- Kolmogorov optimal transport dual formulation

- LIISA Locally Interpolated Interaction Strength Approx
- Homogeneous Electron Gas: HF, RPA, Wigner Crystal

- Lieb-Oxford Bound

- Virial Theorem and Scaling Relations

- Unambiguous Energy Densities




Optimized Effective Potential

a.k.a.

Exact Exchange in DFT




Stater determinants

N-particle product wavefunctions (Hartree products)

O (1) = g1 (1) B2(r2)...dn (1)

do not belong to the Fermionic subspace;

enters John C. Slater

Received his PhD in
physics from Harvard
University in 1923. He
then studied at
Cambridge and
Copenhagen, and
returned to Harvard
in 1925. From 1930 to
1966, Slater was a
professor of physics at
the Massachusetts
Institute of
Technology




Stater determinants

N-particle product wavefunctions (Hartree products)

O (r) = 1 (r1)p2(r2)...oN (1)

do not belong to the Fermionic subspace; are not acceptable
1

{5} (r) = 4D} (r) = WZ( P81 (1 )27 ) ()
\/——; €(P)¢p1 (71 ¢p2 (12).. Dpn (7nv)
Slater determinants r(ri) - G2(r1) o ON(r)

¢( 2) ¢2( 2) o on(r2)

are acceptable
Fermionic wics

1
VN

can form a basis for Fy P1 (TN) P2(rn) 0 On(TN)




Hartree-Fock Variational Approximation

N
1

He(R) = Z h(ri,pi) + 5210(7“7;»"“3')

i=1 i3

i3]

seek the variational minimum of the energy

expectation value among Fermionic wics given by a
single Slater determinant

. <q>{5}|7_[€l‘q>{5}>
— 111111

EHF _
P{SY=A[p1--dnN] <(I){S}|(I){S}>

The variational parameters are the single particle orbitals

NB: the variational space is not a subspace




Hartree-Fock Energy

EHE — min E7F (015 > E
GS = 8 ( ) > Egs

EGS — Eg,g + Ecorra Ecorr <0

Chemist definition of correlation: whatever is beyond HF

Probability to find one particle in r (and one in r')
(@YTHE(ry — )@Y = [ (7))
(@5 (ry = r)d(ry — 1) | @) = [61(r) P62 ()|




Hartree-Fock Energy

EHE — min E7F (015 > E
GS = 8 ( ) > Egs

EGS — Eg,g + Ecorra Ecorr <0

Chemist definition of correlation: whatever is beyond HF

Probability to find one particle in r (and one in r')
(@1 H8(ry — 7)|@1%F) = n(r)/N

(@110 = )3z = )| 21) = nmng'()N—_Hl(;« )|




Hartree-Fock |

orthogonality conditions

Fnergy Functional

2
BHE0) = 30 = 5 V160 + [ et
Hartree e e?
2 I\ |2 /
Hartre £33 / i) = 16,00 drdr
Eu> 0 t5J
e e?
Exchange T 5 / ¢; (1)9;(r) % (r' )i (r") drdr’
(Fock) energy 2; ! r—r'[
Ex<O

N
- ZAi,j ({pil@;) — d45)

§ EHF P15} =0 leads to the Hartree-Fock eqs




Hartree-Fock equations

i 2 a |2 e’ /-
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Hartree-Fock equations
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Hartree-Fock equations
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Hartree-Fock equations

2 /
—h—Vz + Vegt (1) + 62/ |:(_TT)/| dr’] ¢ (1)

2m

— €

> [ A7) Gi(r")dr’ = €; ¢s(7)

=

independent electrons in a self-consistent potential

/
Vser (1) = Ve (1) + 62/ ‘:J(_TT)/‘ dr’ +V,

non-local exchange (Fock) operator




IIHYSICAL REVIEW VOLUME 81, NUMBER 3 FEBRUARY 1, 1951

A Simplification of the Hartree-Fock Method

J. C. SLATER
Massachusetts Institute of Technology,* Cambridge, Massachuseilts

(Received September 28, 1950)

It is shown that the Hartree-Fock equations can be regarded as ordinary Schrodinger equations for the
motion of electrons, each electron moving in a slightly different potential field, which is computed by
electrostatics from all the charges of the system, positive and negative, corrected by the removal of an
exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being in-
vestigated. By forming a weighted mean of the exchange charges, weighted and averaged over the various
electronic wave functions at a given point of space, we set up an average potential field in which we can
consider all of the electrons to move, thus leading to a great simplification of the Hartree-Fock method, and
bringing it into agreement with the usual band picture of solids, in which all electrons are assumed to move
in the same field. We can further replace the average exchange charge by the corresponding value which we
should have in a free-electron gas whose local density is equal to the density of actual charge at the position
in question; this results in a very simple expression for the average potential field, which still behaves quali-
tatively like that of the Hartree-Fock method. This simplified field is being applied to problems in atomic
structure, with satisfactory results, and is adapted as well to problems of molecules and solids.




Local approximations for Vx

independent electrons in a self-consistent potential

/
Vser (1) = Vgt (1) + 62/ ’:JYQT)./‘ dr' +V,

non-local exchange (Fock) operator

Vx¢z(r) — 62 7(T7 T/) sz’(’l“/)dT/

. . | — /|
local approximations:
Slater Potentzal
vf L A Z o; (r x@ statistical average

Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951)

When computed for the HEG and then applied locally it
gives the X, method




Homogeneous Electron Gas

N

Consider a periodic system of electrons and ions (neutral)
and let's smear the ionic charge distribution
‘<, the external potential tends to a constant (-infinity)




Hartree-Fock in the HEG

Z / Pion (T dr’
- TJ| - 7“@|

1 e?
_I__//O’Lon( )| pzon( ) drdr’

2 r—r!|

In the Jellium model (homogeneous electron gas) the ionic
density is uniform and the system is neutral N
Pion(T) =N = i
The system is translational invariant w/o ext magnetic field
It is postulated that so is the HF scf hamiltonian (to be verif).
HF wifcs are therefore just plane waves.

Vko(T) = L<f3+ilma|(7>
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Hartree-Fock in the HEG

The system is translational invariant w/o ext magnetic field
It is postulated that so is the HF scf hamiltonian (to be verif).
HF wifcs are therefore just plane waves.

Vo (1) = Leﬂkr\@

Yo

The density is uniform

~ 1%
pel(T) =) Y [po7) Z 1 » = )3/d3k
o |k|<kp |k|<kF k
9 9 3 k3
— V3 /d3/<: — 4w/k2dk 2—n
RV i<rr  (27)° o 3T ‘

n neutrality
p+(r) = py(r) = = — non magnetic sol.




Hartree-Fock in the HEG

PelT) = Pion(T) =1
The total electrostatic energy of jellium is zero

Etot.e.s. — EH + Eel—ion + Eion—ion

Etot.e.s. —
62/pel(r)pel(r/)drd,r/ _62/pel(r)pion(/r/)drdr/+ 62/pion(r)pion(rr,)drd,r/
2 I — /] |7 — 1| 2 =7

2 /
_ € /ptot(r)ptot(r )dT‘dT/ — O

2 | — /|




Hartree-Fock in the HEG

In general ...
2 /
Fiote.s. = : /ptOt(T)ptOt(T )drdr’
2 =7
2 1 /
V -E(r) = e pior(r), \Y4 - = —4n 6(r — 1)

1
Fioten = o / B(r)2dr

ptot(r) =0 — V- -E(r)=0 = E(r)= const

in metals the field is completely screened

‘<, DO macroscopic electric field in insulating samples




Hartree-Fock in the HEG

Etot.e.s. — EH + Eel—ion + Eion—ion =0
For the same reason
‘/tat.e.s.(fr'> — ijon —|_ VH( )

/
= —¢ /|T_T,|d7“’+62 ’p (r )dr 2 [ Prod ™ )dr’ =0

r— 1’| I — 7|

The average value of the electrostatic potential is actually
arbitrary and is conventionally set to zero.

There is no simple way to compare the eigenvalues of two
different periodic calculations.




Hartree-Fock in the HEG

Exchange potential:
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Hartree-Fock in the HEG

Exchange potential-

2

ik €
Vithio(r) = _Z / (k' —k)( >|T_T/|

|]€’|<]€F

= |~ Z V(k — k/) %a("“)

a k-dependent constant
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]
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Hartree-Fock in the HEG

Exchange potential-

Vatbrolr) = | — Z V(k—E)| ¥rolr)

This integral is done, for instance, in Kittel “QTofS”

1 Are? 1 / Are? 2¢?
— = d’ k' = —kpF(k/kF)
V2 - WP~ @it - BE
Where F is the Lindhard function 1
1 1 — 2 1+ 2
F(x) = = 4 ]
(:13) 2 4 H 1l —=x
F(l) =1/2,

F'(1) = —o00 | X




Hartree-Fock in the HEG

h 2e?
= 5V = 2 ke () | k) = enond)
m™m 70N
RPk? 2e?
ko = 5 — - %kFF(k/kF)
kF — (37?271)1/3
(k) n(e) e(k) n(e)

N4
=N

kinetic energy dominates at any finite density n




Slater approximation for Vx

In the HEG the exch. potential is a simple function of n (and k)
3MNg

V. (k, o) = —Q%kFF(k/kF) _ _4e? ( = ) Fk/kp)

Slater approx is to apply it locally with some effective F

3 n, 1/3
Vsc(ra 0') = —4e? < Zfﬂ'(r)> F

1) average over the occupied states

1
F=(F)= kd F(x)d’z = B/xQF(:c)da: =3/4
7 )01<1 0 2 (3 n,(r)\"*
Ve(r,o) = —3e ( )
2) vglue good for the Fermi energy 4T

F = F(kp/kp) =1/2

Va(r, o) = —2¢’ (3;17:(7«))1/3




Slater approximation for Vx

In the HEG the exch. potential is a simple function of n (and k)

Valk.) = — 2 kp F(k/hp) = —4e’ (347;“) Fk/kr)

Slater approx is to apply it locally with some effective F

1/3
3 ng . . 1 ~ 3
Vi(r,o) = —4e” ( ZT(T)> F with 5 <F < 1

3 no(r)\"? 2
or  V,(r,o)=-3e"« ( Z(T)) with 3 <a&< !
T

In the X, method @ is used as a parameter to generate
orbitals to be used in the HF energy evaluation




Local approximations for Vx

independent electrons in a self-consistent potential

/
Vser (1) = Vgt (1) + 62/ ’:JYQT)./‘ dr' +V,

non-local exchange (Fock) operator

Vx¢z(r) — 62 7(T7 T/) sz’(’l“/)dT/

=

local approximations:

Slater Potential
oA (r Z O (1) Vs (1) statistical average

x

Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951)

Optimized Effective Potential

vIEE (1) The best local potential in a variational sense

Sharp and Horton, Phys. Rev. 90, 317 (1953)
Talman and Shadwick, Phys. Rev. A 14, 36 (1976)




Physical Review 90, 317 (1953)

A Variational Approach to the Unipotential
Many-Electron Problem

R. T. SHaArRr AND G. K. HORTON
University of Alberta, Edmonton, Canada
(Received January 26, 1953)

PHYSICAL REVIEW A VOLUME 14, NUMBER 1 JULY 1976

Optimized effective atomic central potential*

James D. Talman and William F. Shadwick
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B9
(Received 13 November 1975; revised manuscript received 24 February 1976)

A self-consistent set of equations is derived for an atomic central potential such that the energy given by the
orbitals for the potential is minimized. It is shown that this effective potential behaves like — e?/r for large r
values. The equations have been solved for carbon, neon, and aluminum, and the resulting total energies
exceed the Hartree-Fock total energies by less than 0.005%. The theory leads to an effective, local, central
exchange potential analogous to the Xa potential.




OEP Variational Approximation

N
1
Ha(R) = Zl h(ri,pi) + 5210(7“7:»"“3')
1= iy’éjj
seek the variational minimum of the energy
expectation value among Fermionic wics given by a

single Slater determinant of a local potential

i (2 [Mal®)

EOEP L
voaisy (OIS PISTH)

The variational parameters determine the local potential




O]

P vs Hartree-Fock

IECLS — l; '+'lycorr7

P15}

V—o>d{S}

numerically ~ FOEF ~ EHF

conceptually FEas’ # EEL

Energy
EHE — min EEF(915}) > Eqg

lacorr <0

Chemist definition of correlation: whatever is beyond HF

ESEP = min FHF(®5Y) > AL > Eag

DFT definition of correlation: what is beyond OEP (aka EXX)




OEP Energy Functional

EO%focgs] = 3 (01l = 5= 92100) + [t (@)n(r)

.

N 2

Hartree 1 e
energy T §Z/|¢z(r)|2 1] |¢j(r’)\2 drdr’

Eu> 0 1,7

1 o

Exchange — / (1) (x (') : (v') drdr’
(Fock) energy Q;j P )¢3( ) r — 1| ¢j( )oi(r’)

Ex< O

h _,

such that [—%V + Ueff(r):| ¢i(r) =¢e;p;(r), i=1,...N

§ EOFF Verf] =0 leads to the OEP eqs for Vefs




OEP equations

occC

2% Z ¢’L| _—VQ +veajt_|_VH + V |5¢’L> V5U€ff
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h2
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Let  Veff(r) = Vext(r) + Vi (r) + v,(r)
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OEP equations
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with

OEP equations

occ empty
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Vex (r)

1
FIG. 2. Optimized effective exchange potential, solid
curve, and the Xa exchange potential, broken curve,
for neon.

FIG. 3. Optimized effective exchange potential, solid
curve, and the Xa exchange potential, broken curve,
for aluminum.




MR Norman & DD Koelling Phys Rev B 30,5530 (1984)

TABLE 1. Total eiler'gi_es tabulated for set of light atoms where the self-interaction correction should
have its most dramatic effect. We give the experimental (Expt.) number followed by the difference
from that number of the result obtained by the various calculations. All energies are in Ry.

Atom - Expt.® OEP-HF® HF*® OEP-SIC SIC LSD
Exchange only |
14.955 0.090 0.089 0.086 0.087 0.568
29.333 0.188 0.187 0.174 0.177 0.886
49.304 0.248 0.246 0.204 0.207 1.177
75.684 0.311 0.307 0.191 0.194 1.460
109.170 0.374 0.368 0.155 0.157 1.752
150.121 0.506 0.502 - 0.193 0.196 '2.138
- 199.445 0.629 - 0.626 0.172 0.173 2.498
257.850 0.759 0.756 0.129 0.131 2.870
324.482 0.770 . 0.764 0.044 0.045 3.194
400.076 0.854 0.847 - 0.016 0.017 3.578
484.663 0.917 0.910 —0.027 —0.024 3.946
578.686 0.985 0.977 —0.080 —0.076 4.323
682.468 1.040 1.030 —0.145 —0.140 4.692
796.186 1.186 1.176 —0.129 —0.123 5.184
920.285 1.328 1.322 —0.132 —0.124 5.597
1055.084 1.464 1.449 —0.144 —0.136 5.995.
3277.875 3277.926 3277.410 3282.418 3270.501
3555.665 3555.696 3560.397 3560.393 3547.846
5504.082 5504.110 5509.996 5509.958 5493.790




Density Functional
Perturbation Theory

and

Response Functions




Total KS energy

hQ
Eeivion = <90i‘v2‘90i> ‘|‘/Vext(7“),0(7“)d7° +

- 9m &

(/
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KS self-consistent equations

—— V2 4+ Vis(r) —ei| wi(r) =0

2m




KS self-consistent equations




KS self-consistent equations




KS self-consistent equations




Total KS energy

hQ
Eeivion = <90i‘v2‘90i> ‘|‘/Vext(7“),0(7“)d7° +

- 9m &

(/




Total KS energy

hQ
LEeition = <907;‘V2‘90,,;> ‘|‘/Vext(7“),0(7“)d7° =+

- 9m &
Eglp| + Exclpl + EwerLp

(/

Hellmann-Feynman Theorem

al?el—l—ion avea:t(r> aEWVVLD
F _ — _— — d —
fe aRIoz aRla IO(T) g aRla
aEel—l—ion L a‘/eazt(r) | 8EWLD
o / N>

the linear variation of the GS density is not needed




KS energy expansion

hQ
Eel—l—ion — <90z‘v2‘§07,> -+ / Vext(’l“)p(fl“)d’l“ -+

9m &

(/




KS energy expansion

hQ
Eeition = <907;‘V2‘90,,;> ‘|‘/Vext(7“),0(7“)d7“ =+

- 9m &
Eglp| + Exclpl + EwerLp

(/

aEel—l—ion L 6%xt(r) | aEVVLD
o / ox Prdr + —53
82E'el-l—ion aQVext (T) 8‘/;3:1375 (T) aﬂ(T)
— d
NIy o P+ / o on
0°EwLp
e
OO

the linear variation of the GS density is needed




static density response

Ap(r) = /X(r, ) AVepe(r") dr’
Interacting electron density-density response function
8p(r) = [ xolr ) AVies(r) di”

Non-interacting electron density-density response function

AVics(r) = AVopi(r) + 62/ ﬁp_@: />| i /5(;;(757;) Ap(r')dr

X = X0 + Xo(Ve + fre)X Dyson-like equation

Random Phase Approximation f,. =20




non-interacting response function
h2

_%VQ + Vis(r) —ei| wi(r) =0

Vks = Vks +0Vks, ¢i = ¢i +0¢;, n(r) — n(r)+ on(r)

§¢ ) 60 (r) + c.c., 0¢i(r) = Z ¢ (7) <¢j|é“VKS.|¢i

I‘ I' —QS‘ S‘ ¢J( )¢ ( )¢Z(I‘)

’L gj




KS self-consistent equations




DFPT self-consistent equations




DFPT self-consistent equations

2m

[_h_2v2 + Vis(r) — 52} Api(r) = — (AVks — Ag;) p;(r)




DFPT self-consistent equations

[_h_2v2 + Vis(r) — 52} Ap;(r) = = (AVks — Ag;) pi(r)

2m




DFPT self-consistent equations

[_h_ZVQ + Vis(r) — 57;} Api(r) = —FP. AVkgs(r) @i(r)

2m




DFPT self-consistent equations

{_E_QVQ + Vis(r) — 52} Api(r) = —P. AVks(r) ©i(r)

2m

_22907, ASOZ




DFPT self-consistent equations

{_h_2v2 + Vis(r) — 57;} Api(r) = —P. AVks(r) oi(r)

2m




DFPT self-consistent equations

{_h_2v2 + Vis(r) — 57;} Api(r) = —P. AVks(r) oi(r)

2m




DFPT self-consistent equations

{_h_2v2 + Vis(r) — 57;} Api(r) = —P. AVks(r) oi(r)

2m

_22907, ASOZ

AVKS(T) — Avext(r) T 6/AIO( )dT‘|‘ f:ccAp( )d /

=

e AVis—AGi(r)— Ap(r)




DFPT self-consistent equations

{_h_v2 + Vis(r) — 57;} Api(r) = —P. AVks(r) oi(r)

2m

_22907, ASOZ

AVKS(T) — Avext(r) T 6/AIO( )dT‘|‘ f:ccAp( )d /

=

e AVis—AGi(r)— Ap(r)

Evaluate second order derivatives

2 , 2
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PHYSICAL REVIEW A VOLUME 45, NUMBER 1 1 JANUARY 1992

Construction and application of an accurate local spin-polarized Kohn-Sham potential
with integer discontinuity: Exchange-only theory

J. B. Krieger and Yan Li
Physics Department, Brooklyn College, City University of New York, Brooklyn, New York 11210

G. J. Iafrate
U.S. Army Research Office, Research Triangle Park, North Carolina 27709-2211
(Received 25 April 1991)

PHYSICAL REVIEW A VOLUME 46, NUMBER 9 1 NOVEMBER 1992

Systematic approximations to the optimized effective potential:
Application to orbital-density-functional theory

J. B. Krieger and Yan Li
Physics Department, Brooklyn College, City University of New York, Brooklyn, New York 11210

G. J. Iafrate
U.S. Army Research Office, Research Triangle Park, North Carolina 22709-2211
(Received 8 July 1992)
PHYSICAL REVIEW A VOLUME 47, NUMBER 1 JANUARY 1993

Self-consistent calculations of atomic properties
using self-interaction-free exchange-only Kohn-Sham potentials

Yan Li and J. B. Krieger
Department of Physics, Brooklyn College, City University of New York, Brooklyn, New York 11210

G. J. Iafrate
U.S. Army Research Office, Research Triangle Park, North Carolina 27709-2211
(Received 1 Mav 1992)




KLI equations
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KLI equations

occ

0a(r) = LA (x Z'@ i~ V)

H

Dot = / 0o (0)| i (0)2dr, Vo = (6:|Valor)
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TABLE 1. Comparison of overestimates of the OEP total energy E°, calculated in various approximations compared with the
overestimate of the Hartree-Fock total energy by E° (in mRy) for ten atoms with closed subshells. [E.,. was calculated using V,,

given by Eq. (48).]

Atom —EHF (Ref. [22)) (Ry) E° (Ref. [18]) —EHF E...—E° EWS (Ref. [21)) —E° ESP—E° ES—E°
Be 29.1460 1.1 0.3 2.0 8.7 22.1
Ne 257.0942 3.4 1.1 6.9 35.7 89.4
Mg 399.2292 6.0 1.8 10.6 28.5 157.2
Ar 1053.6350 10.6 3.4 15.8 34.4 218.3
Ca 1353.5164 12.6 4.4 18.6 32.2 291.5
Zn 3555.6962 27.5 7.3 29.5 101.6 516.1
Kr 5504.1100 24.1 6.3 26.9 64.3 574.0
Sr 6263.0914 24.5 7.1 28.3 58.5 648.5
Cd 10930.2662 37.4 12.0 434 88.7 837.8
Xe 14 464.2768 35.0 12.1 39.9 68.0 897.5

O 0.5

3 \

o g _\-\ Neon g

= (:; 03F ~ e Vo

= ~ \ — OEP-HF

2 = 02 E ‘N --- LSDX
o T '~

i = 01} ~.

[ b) 1 ~N.

g' T_\ 0 ----- = - — — —

S = P e et et |

< ~3 S
» - — -

Ry 0.1

" e aaaal 1 Lidd -0.2 1 1 | |
10° 10' 0 0.5 1.0 1.5 2.0 2.5
r(a.u.) r (a.u.)




THE END
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