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Adiabatic approximation

Independent electrons in an effective potential

Hartree-Fock

Density Functional Theory

MBPT - GW




Density Functional Theory
in a nutshell

Every observable quantity of a stationary quantum
mechanical system is determined by the system
ground-state density alone

The ground-state density of the interacting system of
interest can be calculated as ground-state density of
an auxiliary non-interacting system in an effective
potential

There are prescriptions to determine the auxiliary
effective potential with useful accuracy




Many Properties are within the scope of DFT...

-Energetics, relative stability of different structures,
phase diagrams;

-Structural properties, geometry;

-Response to external perturbations: elastic,
dielectric, piezoelectric constants;

-Vibrational properties;

-Chemical potentials, ionization energies, electron
affinities, Fermi energies;

-Defect energetics and transport properties.

... and many are NOT

-Electronic excitations (unless AEgs );
-Fermi surfaces and band structures;

-Defect induces electronic structure changes;
-Electronic transport properties.




There is nothing so practical as a good theory
-— Kurt Lewin
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FIG. 1. Numbers of papers when DFT is searched as a topic in Web of
Knowledge (grey), BALYP citations (blue). and PBE citations (green, on top
of blue).
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Adiabatic approximation

Independent electrons in an effective potential

Hartree-Fock

Density Functional Theory

MBPT - GW




Adiabatic approximation

Independent electrons in an effective potential

Hartree-Fock

Density Functional Theory
- Hohenberg-Kohn theorem

- Kohn-Sham equations

- Exc functionals




Hohenberg - Kohn Theorem
-

This work was begun and, to a considerable extent,
carried out at the University of Paris. One of the
authors (P. Hohenberg) acknowledges with thanks a
NATO Postdoctoral Fellowship; the other author (W.
Kohn) a Guggenheim Fellowship.




Hohenberg and Kohn Theorem
The GS density can be uses as basic variable to describe
the status of a quantum many-body system.

All properties of the system are therefore functionals of
the GS density.
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Inhomogeneous Electron Gas*

" P. HOHENBERGT
Ecole Normale Superieure, Paris, France
AND

W. Konni
Ecole Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France
and
University of California at San Diego, La Jolla, California

(Received 18 June 1964)

This paper deals with the ground state of an interacting electron gas in an external potential »(r). It is
proved that there exists a universal functional of the density, F[»(r)], independent of v(x), such that the ex-
pression E= [v(r)n (r)dr+ F[(r)] has as its minimum value the correct ground-state energy associated with
9(r). The functional F[x(r)] is then discussed for two situations: (1) #(r) =no+7(r), %/ny<<1, and
(2) n(r) = o(r/ro) with ¢ arbitrary and ro — . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their hmltatlons Some new extensions of
these methods are presented.




Hohenberg and Kohn Theorem

1. The Density as Basic Variable

We shall be considering a collection of an arbitrary
number of electrons, enclosed in a large box and moving
under the influence of an external potential »(r) and
the mutual Coulomb repulsion. The Hamiltonian has
the form

H=T+V+U, 1)
where!®
1
T f WA@Y, @)
V= f WOV OP @, 3)

1 1
= [ o oY )

|r—r'|

We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state ¥ by

n(r)= (Y¥* (O ()¥), (5)

which is clearly a functional of o(r).
We shall now show that conversely »(r) is a unique
functional of #(r), apart from a trivial additive constant.

The proof proceeds by reductio ad absurdum. As-
sume that another potential o'(r), with ground state
V' gives rise to the same density n(r). Now clearly
[unless v'(r)—v(r)=const] ¥ cannot be equal to ¥
since they satisfy different Schrédinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with ¥ and ¥’ by H, H and E, F/,
we have by the minimal property of the ground state,

E'= HY) (Y HY)= (Y, (H+V'—-V)¥),
so that
E' <E+ f [v' (r)—2(x) Jn(r)dr. (6)

Interchanging primed and unprimed quantities, we find
in exactly the same way that

E<E'+ f [o(r)— (r) Jn(r)dr. )

Addition of (6) and (7) leads to the inconsistency
E+E<E+E. (8)

Thus »(r) is (to within a constant) a unique functional
of n(r); since, in turn, (r) fixes H we see that the full
many-particle ground state is a unique functional of
n(r).




Levy's constrained search formulation of DFT
M Levy PNAS 76, 6062 (1979); M Levy, PRA 26, 1200 (1982)

The original HK theorem was obtained for densities that
are (non degenerate) GS densities of some potential V ...
These density are named V-representable

But ... what are they ? How can we define the domain of
definition for the HK theorem ?

It can be shown that very reasonable densities are not
V-representable

The extension
n(r) — Fln] = inf (U|T, + W,.|T)
—n

i1s defined for all N-representable densities

ze vV n(r) >0, /n(r)dr = N, / (me dr < oo




Hohenberg and Kohn Theorem

An analogy with a well known case...

Consider the structural stability problem: E(V') = fI{niI\l/ E(R)
%

Volume V and pressure P are equally legitimate variables to
describe the status of the system, each with its own
thermodynamic potential, linked by a Legendre transform

H(P) :m‘;n{E(V)+PV}, Z—IZ =V

OE

E(V) =max{H(P)~ PV}, = =-P




Hohenberg and Kohn Theorem
In QM potential V(r) determines the GS density n(r)

Egs[V] = m\I%Il<\I/|[Te + Wee + V|\If> + %{é




Hohenberg and Kohn Theorem
In QM potential V(r) determines the GS density n(r)

Egs[V] = min(¥|[T, + Wee + V| ¥)

_ oFgs
- 6V (r)

Performing a Legendre transform we obtain

Fln] = max {EGS[V] _ / V(r)n(r)dr}

Vir) = ¥ = n(r)=(|nv)

.2
= min (U|T, + We|V)

_ 0Fn]

niry = ¥ — V(r)= _5n(r)

The GS density n(r) determines the potential V(r)




DFT variational principle
T, +Wer + Wee + Wi @, (r|R) = E,(R)®,(r|R)

HK: n(r) — F[’n] = min <\P‘Te -+ Wee‘lp>

V—n

Ecs(R) depends only on the GS density n(r)
(3D function) and satisfies the variational principle
|[Hohenberg and Kohn, 1964 ]

Fes(R) = min {F[n(r)] + / Vit (T, R)n(r)dr}

+Wir(R)




Kohn - Sham equations
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n(r) is a smooth and simple function of r, so...
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FIG. 1. Spherically averaged density »(7) in ground state of
carbon atom as a function of distance 7 from nucleus.




. FIn] is a very non trivial functional of n(r) !
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FIG. 1. Spherically averaged density »(7) in ground state of
carbon atom as a function of distance 7 from nucleus.
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Self-Consistent Equations Including Exchange and Correlation Effects®

W. KonN anDp L. J. SsAM
University of California, San Diego, La Jolla, California
(Received 21 June 1965)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of %.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for
systems with short-wavelength density oscillations.




HK: n(r) — Fn] = min(V|T, + W,.|¥)

v —n

It is useful to introduce a ficticious system
of non-interacting electrons

KS: n(r) — TS[’I’L] = min <\IJ‘T6‘\I}>

v—n

F[TL] — TS [’I’L] - EH [’I’L] + Eazc[n] This defines Exc

The energy becomes

En| =Tsn| 4+ Egn| + Ecn| + / Vezt(x)n(r)dr




Thomas-Fermi approximation to Ts

Eln| =Tsn| + Egn| 4+ Eicn| + / Vezt(x)n(r)dr

Tinl & [ehio(e)n(e)ds = [ 250 Kb @)n()dr

EH Lieb, Rev Mod Phys 53, 605 (1981)
Thomas-Fermi and related theories of atoms and molecules




Simple approximations for Ts are only qualitative

Eln| =Tsn| + Egn| 4+ Eicn| + / Vezt(x)n(r)dr

1500 - Fov 5
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FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).
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Kohn-Sham equations

- Interacting svstem

Eln| =Tsn| 4+ Egn] + E.c|n] /Vext(r)n(r)dr

— ( / n(r)dr — N)

_O0Kn]  T4n]  OFEg([n|  0Ei[n]
= on(r)  on(r) i on(r)  on(r)

- non-interacting system

Exsn| = Tsn] —I—/VKS(r)n(r)dr

—p' | [ n(r)dr — N
% : 5?5@ [)n] _ (iqu;([:)] o p ( / )

lr Veaf;t (I')
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Self-consistent equations [Kohn-Sham, 1965]

/
E...
VKS(I', R) — ‘/Gilit(r7 R) + 62/ |:(_r2,| dI'/ | 0 [n]

on(r)

The density is exact if Vks(r) is, however {Cbz‘(r)}/s & {57;}/8

are auxiliary functions w/o clear physical meaning




construct V_ext

guess rho_in ¢
1
compute V_KS
1
diagonalize H_KS T
1
compute rho_out

mix to get
new rho_in

ho in = rho_out ?

yes

compute energy, forces
and other properties




Self-consistent equations [Kohn-Sham, 1965]

n(r') ., 0Eg[n]
ar - on(r)

VKs(I‘, R) — Vext(r, R) —+ 62/

v — 1’|

It is as simple as a Mean-field approach but it is exact !

E.c|n] is not known exactly — approximations




Simple approximations to Exc are possible

Eln| =Tsn| + Egn| 4+ Eicn| + / Vezt(x)n(r)dr
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FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).




Local Density Approximation

The simplest approximation is LDA that exploits
nearsightedness of the electronic matter

W. Kohn, PRL 76,3168 (1996)

EEPA[n(r)] = / hom (1 () ) (r)

Analogous to the Thomas-Fermi approximation for the

Kinetic Energy term but applied to the much smaller
Exchange-Correlation term
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Local Density Approximation

BEPAn) = | <

-100

Energy (mRy)
-150
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The simplest approximation is LDA that exploits
nearsightedness of the electronic matter

W. Kohn, PRL 76,3168 (1996)
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Total Energy expression in DFT

1)

FE(R)=min {TS p|+ 622/'0‘(74?&)_'053;]) drdr'+ E.[p] —I—/Vo(r)p(r)dr}

+ W]](R)




Exchange-Correlation functionals
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FIG. 3. The alphabet soup of approximate functionals available in a code
near you. Figure used with permission from Peter Elliott.
Kieron Burke, “Perspective on density functional theory” JCP 136 (2012) 150901




Jacob's ladder of Density Functional Theory

® John P. Perdew




Jacob's ladder of Densitv Functional Theorv

Chermical Accuracy

unoceupied ¢ (1) l O exact exchange and exact partial correlation
occupied ¢, (r') exact exchange and compadtible correlation
7(r) meta-generalized gradient approximation
Vn(r) generalized gradient approximation

n(r) | T O local spin density approximation

Hartree World

FIGURE 1. Jacob’s ladder of density functional approximations. Any resemblance to the Tower
of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascending
and descending. Users are free to choose the rungs appropriate to their accuracy requirements
and computational resources. However, at present their safety can be guaranteed only on the two
lowest rungs.




How people in science see each other

undergraduate PhD student postdoc Pl / Professor technician

seen by

undergraduate

seen by

PhD student
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THE END
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