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Exchange-Correlation functionals
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FIG. 3. The alphabet soup of approximate functionals available in a code
near you. Figure used with permission from Peter Elliott.
Kieron Burke, “Perspective on density functional theory” JCP 136 (2012) 150901




Jacob's ladder of Density Functlonal Theory
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LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field
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Redox Reactions can be more Problematic

GGA Exp
FePO, + Li -> LiFePO, 28eV  35eV
MnO, + Li -> LiMn,O, 3.6 eV 4.1 eV

V,o(POy); + LI -> LiV,(POy), 3.3eV 4.6eV

All these reactions involve the transfer of an electron from a
delocalized state in Li metal to a localized state in the transition
metal oxide (phosphate)



Self Interaction Error

One important source of error in LDA/GGA that can lead

to qualitatively wrong results is the only approximate
cancellation of self interaction coming from the approximate

treatment of exchange

Mott insulators: what is missing in LDA 7

"“ ( : is OK in LDA

=—— U iswrong in LDA




Energy [eV]

LDA / GGA can badly fail for TMO and in 4f- systems

Electronic Structure of FeO
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SIC, DFT+U, Hybrids

Self interaction correction was proposed as early as in 1981
by Perdew-Zunger. Conceptually important but not widely
used.

Hybrid functionals (like PBEO, B3LYB) mix a fraction of
Self-interaction-free HF with LDA/GGA functionals.

Is the method preferred by chemists.

It is very expensive in a plane-wave basis.

DFT+U has been introduced by Anisimov, Zaanen and
Andersen as an approximation to treat strongly correlated
materials. It has been more recently been applied also in
more normal system with encouraging results.



PHYSICAL REVIEW B VOLUME 23, NUMBER 10 15 MAY 1981

Self-interaction correction to density-functional approximations for many-electron systems

J. P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louistana 70118

Alex Zunger
Solar Energy Research Institute, Golden, Colorado 80401
and Department of Physics, University of Colorado, Boulder, Colorado 80302
(Received 31 October 1980

The exact density functional for the ground-state energy is strictly self-interaction-free (Le., orbitals demonstrably
do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for
exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any
density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the
variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method
introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham
scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-
correlation hole, while substantially improving the description of its shape. We apply this method to a number of
physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic
improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations
include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (i)
accurate binding energies of negative ions, which are wrongly unstable in LSD, {iii) more accurate electron densities,
{iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct long-
range behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band
gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate
of the cohesive energics of transition metals. The LSD spin splitting in atomic Ni and s-d interconfigurational
energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional
occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on
the recent results of Ceperlev and Alder.



Q[ﬂf?ﬂl]= T[ﬂi"?ﬂi]-l- U[ﬂ]+ Exc[ﬂf!ﬂi] 3

E[C appmx[ g {,] Eamﬂ

"Fjﬂ: E ap?mx[ﬂﬂm 1

4]



Derivation

Full-Interacting Hamiltonian
H=T+W+vee = [V), n(r)
Non-Interacting (Khon-Sham) Hamiltonian
Hic = T+ Vs = |¢JE§}, n(r)

then we introduce fictitious systems with scaled interaction AW wich
connect the KS (A = 0) with the Many-Body system (A = 1)

Adiabatic Connection

Hy =T+ AW + v,
A=0

Vext — VKS
A=1
Vo — Vex

m(r) = (WS [A() W) = n(r)




Derivation

According to Hellmann-Feynman theorem

dEA dH,
d\
Integrating over A beetween 0 and 1

OV gyt

(’*U:-u| |‘|J:«) (WAl WWy) + (‘U.ﬂ |‘|’A>
1
Ex—1=Ex—0+ / dA (W[ W[W,) + /dr n(r)[Vexe (r) — vks(r)]
J0 .

With the usual decomposition of energy functional
Exe1 = Ts+ Ey+ Exc + /dr N(r)Vax (r)

Eivig—T% + /dr n(r)vis(r)

we end up with

1
—hT B [ dX (V5| W]V,)
"-D



J. Chem. Phys. 96, 2155 (1992)
A new mixing of Hartree-Fock and local density-functional theories

Axel D. Becke
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

(Received 12 August 1992; accepted 8 October 1992)

Previous attempts to combine Hartree-Fock theory with local density-functional theory have
been unsuccessful in applications to molecular bonding. We derive a new coupling of

these two theories that maintains their simplicity and computational efficiency, and yet greatly
improves their predictive power. Very encouraging results of tests on atomization

energies, ionization potentials, and proton affinities are reported, and the potential for future
development is discussed.

Wi
Half-Half c=1U%c+3Uxc
0 % 1
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B3LYP [edit]

For example, the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr)[1l5] exchange-correlation
functional is:

EE:IﬁLYP = Einﬂ-f-ﬂﬁ(E;{F-—E;DA)+ﬂx(EJ?GAF-E}I;DA)-{—E{I:DA-I-H-C(EfGA-——EcI."DA).,

where a, = 0.20, a, = 0.72, and a. = 0.81. Efﬂ‘b‘ and EEG‘J‘ are generalized gradient
approximations: the Becke 88 exchange functionall®! and the correlation functional of Lee, Yang and
Parrl?1 for B3LYP, and EJJD*"" is the VWN local-density approximation to the correlation functional.[8]

Contrary to popular belief, B3LYP was not fit to experimental data. The three parameters defining
B3LYP have been taken without modification from Becke's original fitting of the analogous B3PW91
functional to a set of atomization energies, ionization potentials, proton affinities, and total atomic
energies.[®]



PBEO [edit]

The PBEO functionall191 [11] mixes the PBE exchange energy and Hartree-Fock exchange energy in a
set 3 to 1 ratio, along with the full PBE correlation energy:

. 1 .
Eji_EE.ﬂ - IE}:P + ZEEBE + E,:.PBE,

where EfF is the Hartree-Fock exact exchange functional, E)E:EE is the PBE exchange functional,
and ESBE is the PBE correlation functional.[12]




HSE [edit]

The HSE (Heyd-Scuseria-Ernzerhof)[13]1 exchange-correlation functional uses an error function
screened Coulomb potential to calculate the exchange portion of the energy in order to improve
computational efficiency, especially for metallic systems.

wPBEh __ HF SR PBE,SRy, | PBE,LR/, | PBE
Exr: = H'Ex (“‘J) + (1 o H)Ex ('r'“) x g Ex ("‘"’) + Ec ’
where a is the mixing parameter and w is an adjustable parameter controlling the short-rangeness

of the interaction. Standard values of ¢ = — and w = ().2 (usually referred to as HSE06) have been

shown to give good results for most of systems. The HSE exchange-correlation functional
degenerates to the PBEO hybrid functional for ¢y = (). EfF‘SR(u) is the short range Hartree-Fock

exact exchange functional, EEEE‘SR(,;U-) and EfBE*LR(u) are the short and long range
components of the PBE exchange functional, and EEBE(W) is the PBE [14] correlation functional.



The LDA+U energy functional

Erpasu[n(r)] = Erpa[n(0)] + ABww([{n,),}]
[Anisimov, Zaanen and Andersen, PRB 44, 943 (1991) ]

A simplified LDA+U model:

ABp[{n!5,}] = = 3 Tr[n!”(1 - n')].

In the diagonal basis, where 17 - 717 = A7 %17 | the

LDA-+U correction is simply u/s - .
m??l 2 I | | | | | | | 1 |
e 0 A 1

Fractional occupation are strongly discouraged for large U.
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LDA/GGA failure in the atomic limit

&

— LDA/GGA
exact

correction

Total energy

M-1 M M+1 MN+2
Number of electrons

A correction is needed to remove spurious self-interaction
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Electronic Structure of Fe

GGA
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Electronic Structure of Ceria

a)CeO, LDA - Cedf EXPT LDA+U
BBVY VWY TV

b) Ce;O5 LDA met.
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Evaluating the U parameter

In atoms: U is the (wrong) LDA/GGA curvature of the
total energy as a function of occupation number.

In solids: U should be extracted from the curvature of E*"*
with respect to occupation number, after correcting for band
structure effects present also for-non interacting system :

2 LA 2 LD A
d°E d*E!

d(n)2  d(nl)?

i i

M. Cococcioni (SISSA PhD 2002)
% DEMOCRITOS
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Evaluating the U parameter

2 LA 2 LA
_ d&B 4’ E|

d(nh)? d(nh)?

In practice: we introduce localized perturbations in large supercells

dn! dPEFPA d oy

E : I J d I

V_ ,t+ 'l.’_}:',l'_P — Tt _ 7] = . g —

I i i

dn! dPEFPA ey
I J d 0 I
Viks+ E arP;, — In%} = yorg = : — 1
- dNr:::af-:?F{ 1} day’  d(nl)? dn!

and compute the variation of the energies with respect to
occupation numbers, via inversion of the response function:

The Hubbard U thus results: U = (}m_l - x_l)”

M.Cococcioni and S. deGironcoli, PRB 71, 035105 (2005)
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Hartree-Fock energy

My o > [ @ﬁv(rwkxf'(:)iﬁ:iﬁ&r*)m(r’) e

k' of
e Hartree-Fock

« Exact Exchange (OEP)

« Hybrid Functionals: HH, B3LYP, PBEO
(range separated) HSE

) hCICRTS
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HF Vx using PWs

* FFT pseudo wfc to real space
So(k +G) TET gy (r)

* For each gpoint and each occupied band build “charge density”

ﬁ'q(I") — ¢E—qﬁ’(r) (bkv{r)

* FFT charge to recip.space and solve Poisson eq.
dmre

lq + G|?

2
pqa(a+G)

pa(r) 50 pa(atG) = Vo(qtG) =

* FFT back to real space, multiply by wfc and add to result

Val@a+G) 57 Vy(r) = Vidio(r) = Vaio(r) + dre_qu(r) Va(r)

) hCICRTS

INFM ~—




The q+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)

; {} —q,v'
pt—‘q,u’(r) = ';bk-—q,uf(r)(/bk,ﬂ(r) — A(q—'_ G) = (Zﬂ)E/dk |pt,-1?q? (q—l_ G)lz
1 —q,V
= 2 A @+ G)P
k

_ 4weé? () Alq + G) ,
Epp=——5 X% e / dqzﬂ: q+ GP Integrable divergence

5 DEMOCRITOS
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The g+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)

Ipl}: —q, 4 ( ) = ¢th,uf(r)¢k,u[r) = A(Q"‘ G) = (Zi:)

lek (g +@)|?

f d |09 (q+ G)|?

_ e |0 Alg+G) - AD)e e g (-al+Gf
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The g+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)

. ()
rav () = g uObio(t) = Ala+G) = 55

f I |02 (q+ G)J?

- le“ (g +G)

( ; )
)
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Simple Molecules

HF PBE PBED EXP

PW G PW  PAW G PW PAW G
Ny 114 115 239 244 244 221 225 226 227
O3 36 33 139 143 144 121 124 125 118
G 113 105 265 209 269 252 295 20D 261

PAW : Paier Hirschl,Marsman and Kresse, J. Chem. Phys. 122, 234102 (2005)

Energies in kcal/mol = 43.3 meV

2 DEMOCRITOS _|

.
=
=
=N

L INFM




Scaling

Kinetic energy and local Potential

NPW +2« FFT + NRXX
Non local potential

2« NBND « NPW

*Fock operator

2%« FFT + NBND* NQ+ (NRXX + FFT)+ 2+ NRXX

) hCICRTS

INFM ~




Kinetic energy and

Scaling

local Potential

NPW 4+ 2%« FFT + NRXX

Non local potential

2« NBND « NPW

*Fock operator

2%« FFT + NBND* NQ+ (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case

Moore's law: computer power doubles every 18 months
( a factor of 10 in 5 yrs)

) hCICRTS
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Kinetic energy and

Scaling

local Potential

NPW 4+ 2%« FFT + NRXX

Non local potential

2« NBND « NPW

*Fock operator

2%« FFT + NBND* NQ+ (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case
Separation of long- and short-range part in X can help

) hCICRTS
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Scaling

Kinetic energy and local Potential

NPW +2« FFT + NRXX
Non local potential

2* NBND « NPW

*Fock operator

2%« FFT + NBND* NQ+ (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case

{5 DEMOCRTOS
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LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field




van der Waals

van der Waals interaction is relatively weak
but widespread in nature.
An important source of stability for molecular

solids and physisorption of molecules on
surfaces.

It is due to truly non-local correlation effects.
It is contained in the true XC functional but
LDA/GGA/MetaGGA and Hybrids do not describe it properly.




van der Waals

Van der Waals interaction is relatively
weak but widespread in nature.

An important source of stability for
molecular solids and physisorption of
molecules on surfaces.

It is due to truly non-local correlation effects.
It is contained in the true XC functional but

LDA/GGA/MetaGGA and Hybrids do not describe it
properly.



vdW : non local correlation

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping



vdW : non local correlation

Instantaneous dipole d 4 generated
from charge fluctuations.

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping



vdW : non local correlation

Induced dipole

Instantaneous dipolu_e d 4 generated dp = apda R—3
from charge fluctuations.

Two neutral atoms separated by R much larger
than the atomic size, a limit that ensure that the
corresponding wavefunctions are not overlapping

E = (Khwoopap) R°

cyBA



Density Functional Theory

E({R}) = Ty[n(r)] + % / ”|(:)_”7(f|' D drdr’ + Eyeln(r)] + / Veat (r)n(r)dr + Ex({R})

n(r) =2 Z P (1)]? KS self consistent egs.
2 22':1
[—%V + VKS(T)] ¢n(T) = 5nn(7a) B 5E:1:c




LDA/GGA
Semilocal Density Functionals

DFT within LDA and GGA functionals has been extremely
successful in predicting structural, elastic, vibrational
properties of materials bound by metallic, ionic, covalent

bonds.

These functionals focus on the properties of the electron
gas around a single point in space.

BLPA = [ nr)ehem (n(r))dr BSOA = [ n(r) PSS (). [Vn(r) e

As such they do not describe vdW interaction.

The same is true for Hybrids, DFT+U and SIC etc...



Failure

of semilocal functionals
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How to deal with van der Waals ?

- neglect it

- add an empirical damped dispersion correction
Grimme, Tkatchenko-Scheffler, MBD

- develop a truly non local XC functional starting from the
Adiabatic Coupling Fluctuation Dissipation formula
Vdw-DEF, vdw-DF2, VV09, VV10

- RPA and beyond RPA



How to deal with van der Waals ?

- add an empirical damped dispersion correction
S. Grimme , J. Comp. Chem 27, 1787 (20006)

Eorr.o= Eprr + Edisp

N
ll'_l lt “'

fj
Edlbp = —36 L 2 6 fdmp U)

=1 j=i+1 ”

Here, N, is the number of atoms in the system, Cl; denotes the dispersion
coefficient for atom pair Jj, sz is a global scaling factor that only depends on the
DF used, and R; is an interatomic distance. In order to avoid near-singularities

for small R, a damping function f,,,, must be used

. : l
~l1] ~ Y Y =
("6 — \f (‘"6C6 fdmp(Ru) — T (,_d{R,;,-/Rr—ll
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Barone et al. J. Comput. Chem. 30, 934-939 (2009)




How to deal with van der Waals ?

- add an empirical damped dispersion correction
A Tkatchenko and M Scheffler, PRL 102, 073005 (2009)

EvdW S Zfdamp(RAB’ RO’ R )C6ABRAB!

1
I+ exp[—d(; 4 RAB —1)]’

fdamp (RAB’ R?ug) —

0 — pO 0
where R, = R, + Rjy, d and sy are free parameters.

Veff Kiff asz B ijf B (j'r3w (I' }’l(l')dg )
ff free f f free 3_f 3
Coan = (Vfree) Coan- Ky oy Vi [ ruc(r)dr
( ) free(r)
WAL ZB nfree

Hirshfeld partition



Calculated Cg (hartree*bohr”)

—

o

o

o

T
1

100 X 2 of _-
_?,&
At.Eq.6 +
At: Square root -
Mol: Our method
*  Mol: Chalmers-Rutgers =
PN AP, . il i o8
10 100 1000

Reference Cg (hartree-bohre)

FIG. 1 (color online). Comparison of the Cg coefficients for
atom-atom interaction (At) and atom-molecule and molecule-
molecule interaction (Mol). The reference results for atom-atom
interaction are from accurate wave function calculations [26—
28]. For molecules, DOSD results are taken as a reference
[5,8,20,21]. Our results (only 211 values out of 1225 are shown)
are compared to those of Chalmers-Rutgers collaboration [15]
and Johnson-Becke [8]. The only outliers for our method are
cases involvine the H> molecule (20—-44% deviation).



How to deal with van der Waals ?

- add an empirical damped dispersion correction +
long-range many-body dispersion correction

A Tkatchenko, RA Di Stasio, R Car, and M Scheffler,
" "Accurate and efficient method for many-body
van der waals interactions'', PRL 108, 236402 (2012).

A Ambrosetti, AM Reilly, RA DiStasio, and A Tkatchenko,
" "Long-range correlation energy calculated from coupled
atomic response functions', JCP 140, 018A508 (2014).

Random Phase Approximation

* dw | L o
.E,ﬂ — — Ir {]I](]. — l'\“( '?LAJI:I :l —l‘ 'L’\Hl:lll;).,‘l:l} .
[
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MBD@rsSCS long-range correlation energy

STEP 1: Tkatchenko-Scheffler atomic polarizabilities
from DFT electron density and free atom
reference data

A o(iw)
o 9-
‘0 9

| |

STEP 2: Short-range (SR) range-separated self-
consistent screening (rsSCS)

rs=CS (

o iw) = a(iw) — o’ Tsra™ > (iw)

STEP 3: Long-range (LR) correlation energy from
rsSCS polarizabilities

1 e
E. MBDarsscs = — / dwTr[In(1 — ATLR)]
2m Jy

_ SR LR
C_Ec —I_EC ’



EMBD@rsSCS ®TS
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FIG. 2. The mean absolute relative error of PBEO+MBD@rsSCS and
PBEO+TS (in %) at each of the S66x7 inter-fragment separations.
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FIG. 3. MAE (upper panel in kcal/mol) and MARE (lower panel in %) for
the S66, S12L., and X23 databases computed with MBD@rsSCS and TS com-
bined with both the PBE and PBEO functionals.



Derivation

Replacing v with ks = Yo

g1 [ arar ZE i )oi(r)

Y r—r|

The exchange-correlation energy can thus be separated

1
Exc — Ex = = E,—: — Ex - 2_ d)l. / dUTr{ Ue [1/\(”1) = \[}(“1)]}

Adiabatic connection formula for correlation energy

1

o= cu[ duTr {ve [xx(it) — xo(iu)]}

(i) = xo(iu) + xa(iv)[Ave + fie (iv)]o(iu)




How to deal with van der Waals ?

- develop a truly non local XC functional

] |
EY = EdeF &Pr' n(F)d(F, 7 n(r'),

¢(n(r), Vn(r),n(r’), Va(r'), |r — | )

-vdw-DF : Dion et al, PRL 92, 246401 (2000)
-vdW-DF2 : Lee et al, PRB 82, 081101 (2010)

-VVO09 : Vydrov and Van Voorhis, PRL 103, 063004 (2009)
-VV10 : Vydrov and Van Voorhis, JCP 133, 244103 (2010)



Truly non-local functionals

TZU 7“ ’LU

E®) — _3he /dr/d’r

E.=E. + E!

u — 0o : aliu) = Ne? /mu?

a(r, tu 262 n(r)
(s 4u) m wi(r) + u?

] .
EM = —/dr/dr’ n(r)®(r,r" )n(r’) 6 dim
2 Integra
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3e? 1
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How to deal with van der Waals ?

- develop a truly non local XC functional

AFE (kcal/mol)

1
EM = Efd:”rd?’r” n(F)b(r, F')n(r’),

Phi(n(r),grad n, n(r'), grad n', |r-r'|)
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Efficient mtegratlon

Roman-Rerez Soler interpolation scheme
If it's possible to express the complex density depende e
on r, r' via a single q(r) ( and g(r') ) function then ...

O(q1,q2:m12) ~ Y (qas 48, m12) Palq1) Ps(g2) T N. .

1 -

i L Z / / ®(qus ap, |r — ')Op(r") drds’
- E Zz@a G (I) Qa7q57 |G|)@5(G) @a(T) — n(T)Pa(Q(T))

o, G

The vdW energy can be expressed as a sum of simple 3d integrals



Several Non-L.ocal Functionals

o/

Yo

%

7

Ce
wWo n E((F) E:chA/GGA error
9h [ 2 AT DA -
vdWDF o |kr(l+ps™) o5e with 1 =0.09434 g1 A+PW+RPBE- 18.5
gh [ 2 47T LDA- .
vdWDF2 g, |kr(l+ps7)o5e with p=0.20963 g1 A+ PW+RPWS86- 60.9
VAWDF-00 o Kh(1+pus?) with =022 SLA+PW+RPBE- 10.4
vn |

with C = 0.0089 SLA+PW+RPW86+PBC 10.7

n

2 2
vv10 \/ﬁ+0h—

3 m2

%

vdWDF - functional can exploit the Roman-Perez Soler interpolation
Vv10 - functional does not fulfill the needed conditions
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Axes langth (A)

Alanine evolution with Pressure

Axes langth [A)
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Volume {Aa}

500

450

400

350

Alanine evolution with P
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——=— Exp. (Olsen et. al. 2008)
—£— Exp. (Tumanov et. al. 2010)

Pressure (GPa)




VV10 functional

VV10 e’ 1
¢ (7“, r ) 2 n %
2m2 gg'(g + ¢') k(r) = 3b (97)
g = wo(r)R* + k(1)
w2 h? vn|* dne?
0T “?“fﬂ“@zc(a%)7fv Y=
z(r) = wO(T)Rz +1 i

q)vvm( 3¢ 1 1 E ] . .

5 2.0

R {Angstrom)

rr) = — ; =
) Im2 k3/2L'3/2 zz’( N /)

2 ?:‘éj |
a(r) = wo(n(r), V() /k(n(r) B Sit=tmue
0 20 40 60 80 100
364 1 1 Rho %
(I)TVVH)(’I“, 7”,) _

2m? k3/2k73/2 (qR? + 1)(¢'R? + 1)(qR?> + ¢’ R?> +2)  Separable !



VV10 vs rVV10

A(I)VVH) (I)VV10( ) (I)TVVH)(T‘, ’I“,)

R=01au F=0Bau F=15au

F=3Dau F=50au

03

The error in the kernel is small except when the density itself is very small !

il D1 gy D2



S22 - hydrogen bonded

rVV10 validation

S22 - Mixed complexes

BE vdW-DF2
/= WVV10
—

rvvio

S22 - dispersin dominate

[ —
J — ) I , .
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rVV10 applications

Argon dimer

Noble gas dimer are classical 0 ——
examples of dispersion dominated <  |\\" T
systems where the quality of [
different functionals can be 2 10—
explored. g
----- ¢ .15
““““ g .’ — Exp.
T _an * # —-— EXX/RPA =—-— RevPBE
hE; 20 ut‘. .‘.'_'# B S
- —— vdW-DF2 = == vdW-DF
&3 | | | | |
3.5 4.0 4.5 5.0 5.5
Distance (A)

Graphite cel parameters (A)

a C
C vdW-DF 2.48 7.19
vdW-DF2 2.47 7.06
rVV10 2.46 6.72

exp 2.46 6.71



Phonon frequency (cm-1)

Kz

Phonons in Graphite

1600 5 O S aB000 o
= [ A
1400 — A PRB 76, 035439 (2007) G
< PRL 92, 075501 (2004) j Ky;
1200 — E;SEZEE ‘{ K §
S P
1000 —
800 — |
600 - Stiff intralayer
modes
400 —
200 /
01 i | i
G K M G
LDA vdW-DF vdW-DF?2 rvvi1o
MAE (cm-1) 39.86 24.57 28.29 18.29
MARE (%) 3.21 1.85 2.04 1.30

Comparison of DFPT results at high symmetry points



Phonon frequency (cm-1)

Phonon frequency (cm-1)

140 4—— 1O
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0 - + .
G A
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G A G A
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MAE (cm-1) 5.50 13.50
MARE (%) 10.51 28.17
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/K
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Soft interlayer modes

vdW-DF2 rvv1o
10.00 7.50
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SUMMARY

LDA and LSDA
simple and well defined. good geometry, overbinding

GGA : PW91, PBE, revPBE, RPBE, BLYP
many options, improved energetics, good geometry

META-GGA: PKZB, TPSS,
more complicated, not very much used

SIC, DFT+U, Hybrids
address the self-interaction error with some drawback

Van der Waals functionals
truly non local, very active field



How people in science see each other

undergraduate PhD student postdoc Pl / Professor technician

seen by
undergraduate

seen by

PhD student

seen by

postdoc

seen by

Pl / Professor

seen i}'y'
technician
created by

@biomatushig
http://sotak,info/sci.jpg




THE END



Some Remarks on DFT Calculations

@ DFT is an exact theory BUT approximations for the
exchange-correlation energy are required for practical

applications
@ LDA, GGAs succesfully predict properties of a wide class of

electronic systems

Local or Semi-Local nature of LDA, GGAs functionals

ELOA = | dr L0 [n(r) n(

ECCA — / dr S [n(r). Vn(r)] n(r)

@ [here are many systems where DFT within LDA and GGAs
fails e.g. strongly correlated materials AND weakly vdW
bonded compounds



ACFDT : an exact definition for the correlation energy

Adiabatic Connection formula for correlation energy:

Bomgs : d\ / drdr'— {/:, du [x(iu) —.m(fu}]}

where y . (iu) is given by

a(iu) = xks(iu) + xa(iu) [fwc - fx.:;"(fu)] xks(iu)

ADVANTAGES LIMITATIONS

@ computationally very

@ practical (so to speak) way to :
demanding

calculate xc-energy explicitely
@ affected by a circular

@ theoretical framework for
argument?

systematic development of
functionals



Derivation

Full-Interacting Hamiltonian
H=T+W+vee = [V), n(r)
Non-Interacting (Khon-Sham) Hamiltonian
Hic = T+ Vs = |¢JE§}, n(r)

then we introduce fictitious systems with scaled interaction AW wich
connect the KS (A = 0) with the Many-Body system (A = 1)

Adiabatic Connection

Hy =T+ AW + v,
A=0

Vext — VKS
A=1
Vo — Vex

m(r) = (WS [A() W) = n(r)




Derivation

According to Hellmann-Feynman theorem

dEA dH,
d\
Integrating over A beetween 0 and 1

OV gyt

(’*U:-u| |‘|J:«) (WAl WWy) + (‘U.ﬂ |‘|’A>
1
Ex—1=Ex—0+ / dA (W[ W[W,) + /dr n(r)[Vexe (r) — vks(r)]
J0 .

With the usual decomposition of energy functional
Exe1 = Ts+ Ey+ Exc + /dr N(r)Vax (r)

Eivig—T% + /dr n(r)vis(r)

we end up with

1
—hT B [ dX (V5| W]V,)
"-D



Derivation

.. L @
(WA|WIWy) = > / drdr T —rj|”'}‘ (r,r)

nf}(r: v') = (6n(r)an(r’))y + n(r)n(r’) — é(r — r")n(r)

Inserting a resolution of the identity in the expectation value and using

2 ™= v _
— / dy———= =1, for all v > 0
T Jo ¥ + U

Fluctuation-Dissipation Theorem
Density Fluctuation = Energy Dissipation i.e. Im|x]

L8 JI|I
nf](r, ') =— / {—“u(r. t':iu) + n(r)n(r’) — 6(r — r')n(r)
J0 T



Derivation

1 TR
(W |W|Wy) = E/ drdr’|rf i ng (r,¥)

nf}(r, r') = (6n(r)én(r"))y + n(r)n(r') — &(r — r')n(r)

Fluctuation-Dissipation Theorem

nf}(r,r") = — /.I ﬁu(r.r’; i) + n(r)n(r') — 5(r — " )n(r)

Exchange-Correlation Energy from ACFDT
0

{/ dux(r, v iu) + 7o (r — r’]n(r)}

1
r—r|

1 1
2’ﬂ_ 0




Derivation

Replacing v with ks = Yo

g1 [ arar ZE i )oi(r)

Y r—r|

The exchange-correlation energy can thus be separated

1
Exc — Ex = = E,—: — Ex - 2_ d)l. / dUTr{ Ue [1/\(”1) = \[}(“1)]}

Adiabatic connection formula for correlation energy

1

o= cu[ duTr {ve [xx(it) — xo(iu)]}

(i) = xo(iu) + xa(iv)[Ave + fie (iv)]o(iu)




SISSA PhD 1999  SISSA PhD 1999
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