GW




Self-consistent equations [Kohn-Sham, 1965]

n(r’) OE,.[n]
on(r)

Voir(r,R) = Viue(r, R) + €2 / i’

v —r'|

It is as simple as a Mean-field approach but it is exact !

E.c|n] is not known exactly — approximations




Kohn-Sham eigenvalues

The eigenvalues are Lagrange multipliers of the auxiliary
unphysical system.

No formal justification to give them a physical meaning.

Except for the highest occupied molecular orbital (HOMO)
in a finite system for which

—egomo = 1P

exactly for the exact functional !

The prooft relies on the way the charge density decays as
one moves away from a finite system.




Photoemission experiment

Energy conservation: before after
hv + E(N,0) FE(N —1,i)+ Ekin

IP,=FE(N —1,1) — E(N,0) = hv — Ekin




Inverse Photoemission experiment

Ekin

N

=

Energy conservation: before after
FEkin+ E(N,0) E(N+1,1) 4+ hv

EA; = E(N,0) — E(N +1,i) = hv — Ekin




Janak's theorem J.F. Janak PRB 18,7165 (1978)

The theory can be extended to partial occupations
:Zfz-lcbi r))>, 0<fi<1l, » fi=N

T Zfz ¢z o —V2’§b@>

n— N

BN) = i { la) + Bulo) + Buclil + [ Ve (0pnir)ae |

OF
dfi
) fi=life;<p, O0<fi<lite;=p, fi=0ifeg >p

It can be shown that = £;
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Thermal Properties of the Inhomogeneous Electron Gas*

N. Davip MErMINT
Department of Physics, University of California, San Diego, La Jolla, California
(Received 8 October 1964)

A variational property of the ground-state energy of an electron gas in an external potential »(x), de-
rived by Hohenberg and Kohn, is extended to nonzero temperatures. It is first shown that in the grand
canonical ensemble at a given temperature and chemical potential, no two 2(r) lead to the same equilibrium
density. This fact enables one to define a functional of the density F[»(r)] independent of v(r), such that
the quantity @= fv(r)» (r)dr+F[»(r)] is at a minimum and equal to the grand potential when #(r) is the
equilibrium density in the grand ensemble in the presence of v(r).

Fln(r)]= inf Tr |p(T 4+ Wee) + %plnp

p—n(r)

1
Tsin(r)]= inf Tr |pT + Eplnp

p—n(r)
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Density-Functional Theory for Fractional Particle Number:
Derivative Discontinuities of the Energy

John P. Perdew
Depavrtment of Physics and Quantum Theovy Group, Tulane University, New Orleans, Louisiana 70118

and

Robert G. Parr
Department of Chemistry, University of North Carolina, Chapel Hill, North Cavrolina 27514

and

, Mel Levy
Department of Chemistry and Quantum Theory Group, Tulane University, New Ovleans, Louisiana 70118

and

Jose L. Balduz, Jr.
Depaviment of Physics, Carnegie-Mellon Univevsity, Pitisbuvgh, Pennsylvania 15213

(Received 16 August 1982)

The Hohenberg-Kohn theorem is extended to fractional electron number N, for an
isolated open system described by a statistical mixture. The curve of lowest average
energy Ey versus-N is found to be a series of straight line segments with slope discon-
tinuities at integral N. As N increases through an integer M, the chemical potential
and the highest occupied Kohn-Sham orbital energy both jump from Ey —FE ., to Ey. 4

—E, . The exchange-correlation potential 6 E ,./6n (¥) jumps by the same constant, and
lim,_, ,8E 4o/ () > 0.




Derivative Discontinuity of the Energy Functional
JP Perdew, RG Parr, M Levy, JL. Balduz, PRL 49,1691 (1982)

The theory can be extended to systems with a fractional
number of electrons in contact with a reservoir.

The energy as a function of the number of electrons in
a finite system is piece-wise linear .

The corresponding slope equals the IP or the EA depending
on whether w < (0Qor w>0 with N, = N 4+ w

As the number of electrons in the system crosses an
integer value the (xc) potential experiences a jump.




Kohn-Sham gap problem ?

The eigenvalues are Lagrange multipliers of the auxiliary
unphysical system.
No formal justification to give them a physical meaning.

Still it's common practice to analyze the band structure

of a system and compare it with the experimental results
obtained from photoemission and inverse photoemission
experiments... with generally favorable agreement but a
systematic underestimation of the fundamental energy gap.

Is this an LDA problem ... 3 . wo " |
O |
or a DFT feature ? g .| s
E q; .I:":i..- -
E I“_._.-.-ﬁ._-., "
E l.'.llE:I.-"'---.-. -
E g.;-!':'-* g
= "

Expernmental band gap [eV]
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Kohn-Sham gap problem ?




Kohn-Sham gap problem ? ... and/or HF gap problem ?

16 | I I | | | [ | .
| . _
14— i =
12 =
e _

Calculated band gap [ eV |
oo
|

B Hartree-Fock

ta
l
|
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Physical Content of the Exact Kohn-Sham Orbital Energies:
Band Gaps and Derivative Discontinuities

John P, Perdew
Institute for Theovretical Physics, University of California, Santa Barbava, California 93106, and
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118

and

Mel Levy
Department of Chemistry and Quantum Theory Group, Tulane University, New Ovleans, Louisiana 70118
(Received 17 June 1983)

The local-density approximation for the exchange-correlation potential underestimates
the fundamental band gaps of semiconductors and insulators by about 40% . It is argued
here that underestimation of the gap width is also to be expected from the unknown exact
potential of Kohn-Sham density-functional theory, because of derivative discontinuities
of the exchange-correlation energy. The need for an energy-dependent potential in band
theory is emphasized. The center of the gap, however, is predicted exactly by the Kohn-
Sham band structure.
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JB Krieger, Y Li & G]J Iafrate, in
Density Functional Theory, Plenum press, 1995
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“What do the Kohn-Sham orbital

5 .
energies mean ? How do atoms

Dissociate ?” p. 205 in

Density Functional Methods in

Physics, NATO ASI series 123
(1983)

‘ s RM Dreizler & J da Providenza Eds.

Electron density and Kohn-Sham potential for a model
of two "one-dimensional one-electron atoms" at separa-

tion £. a) £ = 3 bohr, b) £ = 9 bohr.




Adiabatic approximation

Independent electrons in an effective potential

Hartree-Fock

Density Functional Theory

MBPT - GW




MBPT GW approximation

PHYSICAL REVIEW VOLUME 139, NUMBER 3A p. 796 2 AUGUST 19065

New Method for Calculating the One-Particle Green’s Function with
Application to the Electron-Gas Problem*

Lars HEDINT
Argonne National Laboratory, Argonne, Illinois
(Received 8 October 1964; revised manuscript received 2 April 1965)

A set of successively more accurate self-consistent equations for the one-electron Green’s function have been
derived. They correspond to an expansion in a screened potential rather than the bare Coulomb potential.
The first equation is adequate for many purposes. Each equation follows from the demand that a corre-
sponding expression for the total energy be stationary with respect to variations in the Green’s function. The
main information to be obtained, besides the total energy, is one-particle-like excitation spectra, i.e., spectra
characterized by the quantum numbers of a single particle. This includes the low-excitation spectra in




p(r,t) = (N,0
v(r,r",t) = (N, 0

iG(rt,r't’) = {

The Green's Function

The Green's function is the propagation amplitude for
an added electron or an added hole

(N,0|®(r,t)¥T(+',¢)|N,0), t>t
—(N,0|UT(r' ¢ )U(r t)|N,0), t >t

iG(r,r, t —t') = (N,0|T[¥(r,t), ¥ (+',¢)]|N,0)

Ot (r,t)U(r,t)|N,0) = —iG(rt,rt™)
O (r,t)U(r" t)|N,0) = —iG(r't,rt™)




The Green's Function

iG(r, 7, t —t") = (N,0|T[¥(r,t), ¥T(+',¢)]|N,0)

t >t

iG(r, 7't =) = 3 (N, 0/ (r, ) N+1,5) (N+1, 5|01 (", /)| N, 0

_ Z e—i(E(N—l—l,s)—E(N,O))(t—t’) (N,()\\If(r)|N+ 178> <N+ 1,5|\I/Jf (,,J)| N,O)

' >t

iG(r, 't —t') :—Z(N, oW (r', t')|N—1,s)(N—1,s|¥(r, t)|N,0)

==Y e (EROZENLNEO N OWT (r | N —1,9 (N = 1s| (r)| N0




The Green's Function

1

o

G(r,r'\w) =) fo(r)J: ()

w—¢es+insign(es — W)

G(r,r',w) = /ei‘*’(t_t/)G(’r, r' t—1t") d(t—t")

S

~ [E(N+1,5)— E(N,0)  -EAs
*s = Y E(N,0)— E(N —1,s) 1P

fs(r) = (N,0]¥(r)|N+1,s) if e4>p

fs(r) = (N—=1,s]¥(r)|N,0) if es<upu
= E(N +1,0) — E(N,0)




What is W ?

Interaction between electrons in vacuum:;

il #= 1 e’ ./

drtg, |r—r’|

Interaction between electrons in a homogeneous polarizable medium:

1 e

dre,e, |[r—r'

\ Dielectric constant

of the medium

Wir,r')=

Dynamically screened interaction between electrons
in a general medium:

,, -I (r,r'", o)
Idr

W(r il (1) ”_f"|

43‘[80




Hedin's coupled equations
In the Hartree-Fock approximation we have
HY = Hy+V,

Where Ho is the hamiltonian including Hartree pot. and

occC 2 2

qu@ |r v/ =G (r,t; 0, 1)

T, /|
from

(e — HINHGHY =T, (e — Hy)Go =1

we get
GHE — Go + GonGHF

More in general we can write

G(12) = Go(12) + / d34G(13)%(34)G(42)




Hedin's coupled equations

£(12) = i / 434 G(13)WW (14)T(423)

G(12) = Go(12) + / d34 G (13)2(34)G(42)
5%(12)

I'(123) = 6(12)6(13) /d4567 5G(45)

7(12) = —i / d34 G(13)G(41)I'(342)

G(46)G(57)L(673)

W (12) = v(12) +/d34v(13)§5(34)W(42)




Hedin's coupled equations

£(12) = i / 434 G(13)WW (14)T(423)

self-energy

G(12) = Go(12) + / d34 G (13)2(34)G(42)

Dyson equation

[(123) = 5(12)5(13) / d4567 giig G(46)G(5T)T(673)

vertex correction

Y(12) = —i / d34 G(13)G(41)I'(342)
polarizability

W (12) = v(12) +/d34v(13)§5(34)W(42)

screened Coulomb interaction




Hedin's coupled equations

£(12) = i / 434 G(13)WW (14)T(423)

self-energy

G(12) = Go(12) + / $31Go(13)(

yson equatlon

T'(123) = §(12)5(13) / d4567% (46)G(57)[(673)

vertex correction

Y(12) = —i / d34 G(13)G(41)I'(342)
polarizability

W(12) = v(12) + / 434 v(13)%(34) T (42)

screened Coulomb interaction




Hedin's coupled equations

»(12) = iG(12)W (12)

self-energy

G(12) = Go(12) + / d34 Go(13)5(34)G(42)

Dyson equation

'(123) = §(12)5(13)
vertex correction

X(12) = —iG(12)G(21)
polarizability

W (12) = v(12) +/d34v(13)§5(34)W(42)

screened Coulomb interaction




Hedin's coupled equations

»(12) = iG(12)W (12)

self-energy

G(12) = Go(12) + / d34 Go(13)5(34)G(42)

Dyson equation

T(123) = 5(12)5(13)

X(12) = —iG(12)G(21)
polarizability

W (12) = v(12) +/d34v(13)§5(34)W(42)

screened Coulomb interaction
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Exchange and correlation in density-functional theory

L.J. Sham
Department of Physics, University of California—San Diego, La Jolla, California 92093
(Received 15 April 1985)

- Expressions for the exchange-correlation energy and potential are given in terms of the perturba-
tion series of the Coulomb interaction. The asymptotic behavior of the exchange-correlation poten-
tial for a confined system is derived. Improvement over the local-density approximation is explored.

VOLUME 56, NUMBER 22 PHYSICAL REVIEW LETTERS p.2415 2 JUNE 1984

Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity
on Addition of an Electron

R. W. Godby and M. Schliiter
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

and

L. J. Sham

Department of Physics, University of California at San Diego, La Jolla, California 92093
(Received 10 February 1986)

We obtain an accurate density-functional exchange-correlation potential, V,.(r), for silicon, from
calculations of the self-energy =(r,r’,w). No local-density approximation (LDA) is used for V,..
The band structure with this V. is in remarkably close agreement with that obtained with the LDA,
while both differ significantly from the quasiparticle spectrum of . The 50% band-gap error found
in LDA calculations is therefore not caused by the LDA but by the discontinuity, A, in the exact
V+c on addition of an electron.




The exact Vxc is very similar to LDA Vxc.
RW Godby, M Schlueter, and L] Sham PRL 56, 2415 (1986)

Im [GDFT (Z — ch) G]r, dw =0
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FIG. 1. Contour plots in the (110) plane containing the
zigzag bond chain of (a) the true DFT exhange-correlation
potential V,. and (b) the RPA LDA potential (Ref. 14)
VLPA in electronvolts. The close similarity illustrates the
high quality of the LDA for the creation of the ground-state
electron density n(r). In each case 169 plane waves were
included in the summation.




Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies

Mark S. Hybertsen and Steven G. Louie
Department of Physics, University of California, Berkeley, California 94720
(Received 31 March 1986)

PHYSICAL REVIEW B VOLUME 37, NUMBER 17 p.10159 15 JUNE 1988

Self-energy operators and exchange-correlation potentials in semiconductors

R. W. Godby
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974
and Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom

M. Schliter
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

L. J. Sham
Department of Physics, University of California at San Diego, La Jolla, California 92093
(Received 12 November 1987)
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GW improves the description of energy gaps

RW Godby, M Schlueter, & L] Sham PRL 56, 2415 (1986)

MS Hybertsen & SG Louie PRB 34, 5390 (19806)
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GW recap

The GW approximation

The calculations are extremely heavy, so that we
resort to many additional technical approximations:

The complexity comes from

 Dependance upon empty states
 Non-local operators

 Dynamic operators that requires freq.
convolutions

There are still some other abproximations like the
Plasmon-Pole model...




Bevond single particle excitation

Bethe — Salpeter Equation

» The equation was actually first

published in 1951.
» describes the bound states of a two-body

Hans Bethe  Edwin Ernest Salpeter (particles)systemin a formalism.

1906 - 2005 1924 - 2008
Nobel Prize for Physics (1967)

Original article : A Relativistic Equation for Bound-State Problems
E.E.Salpeter and H.Bethe , Phys.Rev. 84, 1232-1242 (1951)

. . AH ' i lpmeh |0 rpt\ g (M oAqH
[E{?;{_ i E‘l‘;'f ]...f ek + Z <VCA. IA ‘V C ;1- >J—I1_.r{?rk.f — gz <Lk
viek'

C.Spataru, S.Ismail Beigi “ Excitonic Effects of SWNT ”, Phys.Rev.Lett.92 , (2004 )




Beyond single particle excitation

The Bethe-Salpeter Equation

effective Schrodinger equation for the electron-hole pair

e—h
;!chk,v’c’k’ A, el E’\Avck
v’k

He—h — Hdiag _I_ HdZ?‘ + Hm

diag T}
vek,v'e’k! T (Eck 1l Et’k) OOt Okk!

1)
v —r’|

ngi vk = / %k(r)%k(l") ;k;(l‘)’gbcfkr(r;)dr dr’

;rkx(rf)'ﬁb (I‘)%k(l‘)@bakf(r )

|

dr dr’

(%
Hﬁck,v"c’k’ i f




Bevond single particle excitation

Silicon
Optical Absorption
| !

| I
= EXT
= BSE
= RPX
= = TDLDA




o-9. 2 .8, o @
P lm\\

Hartree Fock I
Second order




THE END
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