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Quantum Mechanics of the Electronic Problem 



Quantum Mechanics of the Electronic Problem 

single particle operator e-e interaction
2-particle op.

constant



Variational formulation of Quantum Mechanics 

define                                on the physically acceptable
                                          wavefunctions of   N   electrons

1)           is an eigenstate of the problem with eigenvalue     
                                                  

2)            makes stationary the functional       with 

given

1) and 2)   are  equivalent



Variational formulation of Quantum Mechanics 

1)  => 2)   
                  
                  
              

hence



Variational formulation of Quantum Mechanics 

Similarly it can be shown that           2) => 1)

in particular it can be shown that ….



Variational Principle of Quantum Mechanics 

is stationary on the eigenstates of the
QM problem and has its only minimum 
when        is the Ground State

>0 unless  



Variational Method to Approximate the GS  
of Quantum Mechanical Systems 

Seek the minimum of                                  on a set     of
 
physically acceptable trial wavefunctions.

The wavefunction corresponding to the minimum in      
is the variational best solution and the value  of             
is the corresponding variational GS energy  

If                  the exact solution can be obtained.
       usually it is not the case and           is an approximation



Back to the Electronic Problem 

Electrons are all alike and the Hamiltonian is invariant w.r.t. 
permutations of the particles
The mathematical Hilbert space of   N  particles can be 
decomposed in invariant subspaces under the group of 
particle permutations.



Back to the Electronic Problem 

Electrons are all alike and the Hamiltonian is invariant w.r.t. 
permutations of the particles
The mathematical Hilbert space of   N  particles can be 
decomposed in a fermionic subspace, a bosonic one and a 
reminder. 

:  antisymm. wfcs.

:  symm. wfcs.



Back to the Electronic Problem 

Electrons are fermions    =>   totally antisymmetric wfcs. 

 only wfcs in       are physically acceptable

for any



The Antisymmetrizer

projects on         ,  projects on 

is a projector iff     

projects on the subspace of 



Stater determinants

N-particle product wavefunctions (Hartree products)  

can form a basis for the mathematical Hilbert space, but ...



Stater determinants

N-particle product wavefunctions (Hartree products)  

do not belong to the Fermionic subspace; 

enters



Stater determinants

N-particle product wavefunctions (Hartree products)  

do not belong to the Fermionic subspace; are not acceptable

Slater determinants
are acceptable 
Fermionic wfcs

can form a basis for



Hartree-Fock Variational Approximation

seek the variational minimum of the energy 
expection value among Fermionic wfcs given by a 

single Slater determinant

The variational parameters are the single particle orbitals

NB: the variational space is not a subspace



Slater Determinant Normalization

The Slater determinant is normalized if the single-particle 
orbitals are orthonormal (not a loss of generality)



Slater Determinant Expectation Values

For single particle operators :
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Slater Determinant Expectation Values

For  2-particle operators : 



Slater Determinant Expectation Values

For  2-particle operators : 

Density  and  1-particle Density Matrix of 



Hartree-Fock Energy Functional

Hartree 
energy
     EH > 0

Exchange 
(Fock) energy
     Ex < 0

orthogonality conditions

leads to the Hartree-Fock eqs



Hartree-Fock equations
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Hartree-Fock equations



independent electrons in a self-consistent potential 

non-local exchange (Fock) operator

Hartree-Fock equations



Douglas Hartree and Phyllis Nicolson attending 
the operation of the Differential Analyzer



Hartree-Fock Energy

Chemist definition of correlation: whatever is beyond HF

Probability to find one particle in r  (and one in r')



Hartree-Fock Energy

Chemist definition of correlation: whatever is beyond HF

Probability to find one particle in r  (and one in r')



Local approximations for Vx 
independent electrons in a self-consistent potential 

non-local exchange (Fock) operator

local approximations:

Sharp and Horton, Phys. Rev. 90, 317 (1953)
Talman and Shadwick, Phys. Rev. A 14, 36 (1976)

:   The best local potential in a variational sense

Optimized Effective Potential

statistical average 

Slater Potential

Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951)



Let's talk about spin

Restricted HF

Unrestricted HF

If the system is closed-shell single particle orbitals are 
doubly occupied  with 

For open-shell systems  one can consider



Let's talk about spin

Exchange interaction favours parallel spins



Symmetry

The symmetries enjoyed by the MB Hamiltonian are often 
used to constraint the variational freedom of the single 
particle orbitals.   

For instance if the MB Hamiltonian is spin-independent 
(non-relativistic without an ext. magnetic filed) the single 
particle wfcs are taken to be spin eigenstates.

If the system has rotational symmetry (atoms) the single 
particle wfcs are taken as  

and so on ... 



Symmetry Dilemma

If the MB Hamiltonian enjoys some symmetry its GS and 
the other eigenstates do transform according to a 
representation of the symmetry group.  

Broken symmetry solutions may have a better (lover) 
energy than symmetry-respecting solutions.  

If the GS is non degenerate (closed shell) usually this 
representation is the totally symmetric one, the HF 
effective Hamiltonian is also symmetric and the single 
particle states are symmetry-abiding. 

Life is not always so simple.

Open-shell systems are more complicated.



Hund's Rules

#1  The term with maximum 
multiplicty lies lowest in energy

#2  For a given multiplicity, the 
term with the largest value of L 
lies lowest in in energy.

#3 For atoms with less than half-
filled shells, the level with the 
lowest value of J lies lowest in 
energy.

Hund's rules assume combination to form S and L, or imply L-S (Russell-Saunders) 
coupling and presume that the electrons can be considered to be in a unique configuration. 
Neither is always true. For heavier elements, the "j-j coupling" scheme often gives better 
agreement with experiment.

#3 For atoms with less than half-
filled shells, the level with the 
lowest value of J lies lowest in 
energy.



Hund's Rules



Meaning of Hartree-Fock Eigenvalues



Meaning of Hartree-Fock Eigenvalues

The HF eigenvalues are NOT  single particle contribution 
to the total energy ! 

what do they represent then  ?



Koopmans' First Theorem

occupied-orbital eigenvalues are approximations to 
Ionization Potentials (energy required to remove an electron)

Let            be the GS for N particles :

Let                       be the stationary state of N-1 particles 
obtained removing electronic orbital i :

The Ionization Potential is 

Within HF we have

Koopmans': neglect 
    orbital relaxation
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Koopmans' First Theorem

occupied-orbital eigenvalues are approximations to 
Ionization Potentials (energy required to remove an electron)



Koopmans' Second Theorem

unoccupied-orbital eigenvalues are approximations 
to Electron Affinities (energy gained by adding an electron)

Let            be the GS for N particles :

Let                      be the stationary state of N+1 particles 
obtained adding electronic orbital     :

The Electron Affinity is 

Within HF we have
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Koopmans' Second Theorem
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Koopmans' Third Theorem

Eigenvalue differences are approximations to 
(single particle) Excitation Energies 

Let            be the GS for N particles :

Let                be the stationary state of N particles where 
orbital  i  is promoted to orbital       :

neglecting orbital relaxation
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Koopmans' Third Theorem

Eigenvalue differences are approximations to 
(single particle) Excitation Energies 

Let            be the GS for N particles :

Let                be the stationary state of N particles where 
orbital  i  is promoted to orbital       :

neglecting orbital relaxation

e-h interaction
excitonic effects 

neglecting it is very bad for localized excitations



atomic examples

The system has rotational symmetry and is spin independent 
in Restricted HF the single particle wfcs are taken as  

Hydrogen:

Helium:

no bound states above 1s => no negative ion 
no bound excitations



Lithium:

Beryllium:

no bound states above 2s => no negative ion 

atomic examples



… and so on filling the lowest eigenvalues according to  the 
Aufbau principle

until Potassium (K, Z=19) is reached after  Argon with 
electronic configuration

atomic examples



 Potassium (Z=19) 

atomic examples



… and so on filling the lowest eigenvalues according to  the 
Aufbau principle

until Potassium (Z=19) is reached after  Argon with 
electronic configuration

orbitals        and        have similar energy and HF correctly 
gives the         solution as more stable.

Thus  K:             , then  Ca:             ,    then Sc:

As it proceeds       becomes more localized than     

atomic examples



Titanium (Z=22)  is a case of Anomalous Filling

It is an artifact of Restricted HF.
For completely Unrestrited HF filling is always normal !
V Bach, EH Lieb, M Loss, & JP Solovej, PRL 72, 2981 (1994)

atomic examples



… and so on..

atomic examples





binasuan - 
wineglass 
philippino dance



Energy Conversion Factors





First Ionization Energies

Jones & Gunnarsson



 s-p  Transfer Energies



 s-d Transfer Energies



Homogeneous Electron Gas

Consider a periodic system of electrons and ions  (neutral)

and let's smear the ionic charge distribution

the external potential tends to a constant  (-infinity)



In the Jellium model (homogeneous electron gas) the ionic 
density is uniform and the system is neutral

The system is translational invariant w/o ext magnetic field
It is postulated that so is the HF scf hamiltonian (to be verif).
HF wfcs are therefore just plane waves.

Hartree-Fock in the HEG



The system is translational invariant w/o ext magnetic field
It is postulated that so is the HF scf hamiltonian (to be verif).
HF wfcs are therefore just plane waves.

The density is uniform

neutrality
non magnetic sol.

Hartree-Fock in the HEG



The total electrostatic energy of jellium is zero

Hartree-Fock in the HEG



Hartree-Fock in the HEG

In general ...

no macroscopic electric field in insulating samples
in metals the field is completely screaned 



For the same reason

The average value of the electrostatic potential is actually 
arbitrary and is conventionally set to zero.

Hartree-Fock in the HEG

There is no simple way to compare the eigenvalues of two 
different periodic calculations.



Exchange potential:

Hartree-Fock in the HEG



Exchange potential:

    a  k-dependent constant

where

Hartree-Fock in the HEG



Exchange potential:

This integral is done, for instance, in Kittel  “QTofS”

Where F is the Lindhard function

Hartree-Fock in the HEG



Hartree-Fock in the HEG

at any finite density n
 

for
kinetic energy dominates



Slater approximation for Vx 

In the HEG the exch. potential is a simple function of n (and k)

Slater approx is to apply it locally with some effective F

1) average over the occupied states

2) value good for the Fermi energy



Slater approximation for Vx 

In the HEG the exch. potential is a simple function of n (and k)

Slater approx is to apply it locally with some effective F

In the          method      is used as a parameter to generate 
orbitals to be used in the HF energy evaluation

or with

with



Hartree-Fock in the HEG

Total energy is



Hartree-Fock in the HEG

Total energy is

where



Hartree-Fock in the HEG

The homogenous spin compensated solution is self-consistent 
but is not the only possible solution

There can be homogeneous paramagnetic solutions



Hartree-Fock in the HEG

The homogenous spin compensated solution is self-consistent 
but is not the only possible solution

There can be homogeneous paramagnetic solutions



Hartree-Fock in the HEG

 if correlation is included one needs

 in typical alkali metals

Non Magn
solution

Magnetic
solution

simple metals are not magnetic
Li      Cs Be     Ba



Stoner Criterium for Ferromagnetism

Still    Fe    is magnetic and so are    Cr, Ni, Co

However …

             Fe:

How is it so ?



Broken Symmetry solutions in the HEG

The homogenous spin compensated solution is self-consistent 
but is not the only possible solution

At even lower density (larger  rs ), where kinetic energy is not 
relevant anymore, there are non homogeneous solutions that 
become competitive

There can be homogeneous paramagnetic solutions

Wigner crystal:



Broken Symmetry solutions in the HEG
Wigner crystal wfc:

where

 and           are the lattice sites of the electronic crystal



Ewald Sums

Electrostatic energy of a lattice of point charges in a 
neutralizing uniform background.

MP Tosi in Solid State Physics 16, p.1 



A turning point in Freeman Dyson's life occurred during 
a meeting in the Spring of 1953 when Enrico Fermi 
criticized the complexity of Dyson's model by quoting 
Jhonny von Neumann:” With four parameters I can fit an 
elephant, ...”

J Mayer, K Khairy, & J Howard,  Am J Phys 78, 648 (2010)



A turning point in Freeman Dyson's life occurred during 
a meeting in the Spring of 1953 when Enrico Fermi 
criticized the complexity of Dyson's model by quoting 
Jhonny von Neumann:” With four parameters I can fit an 
elephant, and with five I can make him wiggle his trunk”

J Mayer, K Khairy, & J Howard,  Am J Phys 78, 648 (2010)



THE END
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