
Machine Learning basics
Application to electronic structure calculations



● Machine Learning

● Bayes theorem and maximum likelihood

● Linear regression

● Regularization (ridge regression)

● KRR

● Perceptron

● (Deep) Feed forward neural networks

● Training & Optimization techniques



What is Machine Learning (ML)?
“Machine learning is a field of computer science 

that uses statistical techniques to give computer 

systems the ability to "learn" (i.e., progressively 

improve performance on a specific task) with 

data, without being explicitly programmed.”

--Wikipedia



Representation
● Make a hard problem simple 

(and vice versa)

● Not easy to define (can we 

make the system define it?)

● More is not always better



Bayes’ Rule

Typically used for inference as:

posterior
likelihood prior

evidenceparameters
data

assumptions



Maximum likelihood
Choosing the parameters that maximize the likelihood

(often easier to work with logarithms)

[cf. minimizing the cross entropy]

Calculate for a Gaussian the MLE of mean and variance.

[for proper marginalization see McKay chap. 24]



Linear regression
Given           , find the best linear function describing their relation.

Least squares: minimize the estimator 

In matrix form:

One could do numerically or take derivative: 

MLE: Assume a Gaussian per point, with means from linear equation. 



Ridge regression (Tikhonov regularization, weight decay, ...)
We can add a penalty for large weights:

The minimum is now:

This tends to produce small weight for less important dimensions.

Regularization is controlled with hyperparameter λ (how to tune it?).



Regularization
Regularization is a process of introducing additional information in order to solve an 

ill-posed problem or to prevent overfitting.

Ridge regression is L2 regularization.

In other cases we use L1 regularization (least absolute shrinkage and selection operator 

LASSO).

Can be seen as effect of prior distribution.



Kernel trick
We want to fit nonlinear functions, but we like linear algebra…

→ Why not to do linear algebra on a basis of nonlinear functions?

In principle it means substituting

but it is often fast to just compute the kernel function

working in the data space instead of the original dimensions.



Kernel Ridge Regression (KRR)
We found for regression:

So our prediction for a new x’ is:

which is now like a projection on previous observations.

If we move to kernels  , if we can calculate the kernel between two data 

points we get

For example the k function could be a Gaussian.



Perceptron
The simplest neural network: one layer binary

classifier, with step function

We update weights with 

(we cannot backpropagate through the step function)



Logistic regression
Regression for a binary dependent variable y=0, 1

We model with a sigmoid or logistic function:

Where t are the log-odds, which we take as linear combination of inputs.

Cost function (log likelihood):

then optimize weights with backpropagation and SGD or similar… 

Can be used as a classification model.



Feedforward neural networks
Parallel/serial stack of single neuron units (cf. perceptron):

Activation function f can be: step, sigmoid, ReLU, gaussian, … 

Define cost function C(w), then optimize through backpropagation.



Simplest deep neural network
Stack multiple hidden units.

Why does this work?



Gradient descent
For linear regression we saw that

We can find the minimum by updating

But how hard is this to compute?

Also: what do we really want to achieve?



Stochastic gradient descent
What if we calculated the cost only on a subset of B data points? → (mini)batch

This is an estimator for the mean, plus a stochastic term of width

[cf. overdamped Langevin dynamics]

Can we improve this?



Backpropagation
Given a network and some new example:

- Calculate current predictions

- Calculate cost of current prediction (supervised/unsupervised)

- Calculate gradients with chain rule

Can have problems with vanishing gradients.


