
ACFDT in a nutshell

For given density, n(r), we can define a family of Hamiltonians, Ĥλ, with electron-electron repulsion scaled
by a factor λ and an external potential, V λ, such that the density remains unchanged:

Ĥλ = T̂ + λŴ +

∫
V λ(r)n̂(r)dr. (1)

This allows to define corresponding HK functionals, via Levy’s constrained search if necessary, as

Fλ[n] = min
Ψ→n
〈Ψ|T̂ + λŴ |Ψ〉 = Tλ[n] + λWλ[n], (2)

with obvious meaning of the kinetic-energy and Coulomb interaction contributions as the expectation values
of the corresponding operators on the λ-dependent GS wavefunction, Ψλ

GS(r1, r2, .., rN ) (spin-dependence
and/or density-matrix character integrated out for the time being).

In particular one can define the density

n(r) = N

∫
dr2dr3...drN |Ψλ

GS(r, r2, r3, ...rN )|2, (3)

and the 2-particle distribution function

n
(2)
λ (r, r′) = N(N − 1)

∫
dr3...drN |Ψλ

GS(r, r′, r3, ...rN )|2, (4)

such that the scaled Coulomb interaction Wλ[n] can be expressed as

Wλ[n] =
e2

2

∫
drdr′

n
(2)
λ (r, r′)

|r − r′|
. (5)

The Fλ functionals are variational w.r.t. (neutral) density variations, hence:

dFλ
dλ

= F ′λ = Wλ, T ′λ + λW ′λ = 0, T ′′λ + λW ′′λ > 0, (6)

where the last inequality stems from the fact that each Fλ is a minimum w.r.t to density. Taking a further
derivative of the above second equality one obtains

T ′′λ + λW ′′λ + λW ′λ = 0 =⇒ W ′λ < 0. (7)

Hence the positive definite Coulomb interaction energy monotonically decreases from the Hartree+Exchange
value for λ = 0 to the Strictly Correlated Electron (SCE) value for λ =∞; the physical λ = 1 case being in
between.

The physical HK functional then becomes

F [n] = F1[n] = F0[n] +

∫ 1

0

dλWλ[n] = Ts[n] + EH [n] + Exc[n] (8)

where it is convenient, or maybe just conventional, to isolate the direct (Hartree) Coulomb interaction that
does not depend on λ since so does the density,

EH [n] = U [n] =
e2

2

∫
drdr′

n(r)n(r′)

|r − r|
, Exc[n] =

∫ 1

0

dλWλ[n]− U [n]. (9)
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Let us define the Exchange energy from Wλ in the limit of vanishing interaction: Ex[n] = W0[n] − U [n].
Correlation is therefore defined as

Ec[n] =

∫ 1

0

dλ (Wλ[n]−W0[n]) =

∫ 1

0

dλ
(
〈Ψλ

GS |Ŵ |Ψλ
GS〉 − 〈Ψ0

GS |Ŵ |Ψ0
GS〉

)
. (10)

We can play with the second-quantization definition of the interaction

Ŵ =
1

2

∫
dxdy

φ†(x)φ†(y)φ(y)φ(x)

|x− y|
=

1

2

∫
dxdy

n̂(x)n̂(y)

|x− y|
− N̂

2
vc(0), (11)

where the last term is divergent but since the number of electrons does not change while variing λ it cancels
exactly in taking the difference,

Ec[n] =
1

2

∫ 1

0

dλ

∫
drdr′

{
vc(r − r′)

[
〈Ψλ

GS |n̂(r)n̂(r′)|Ψλ
GS〉 − 〈Ψ0

GS |n̂(r)n̂(r′)|Ψ0
GS〉

]}
. (12)

We can then insert a resolution of the identity and play with the basic integral
∫∞

0
1

12+x2 dx = π and the
possible electronic transitions to transform it in the FD formula

Ec[n] = − ~
2π

∫ 1

0

dλ

∫ ∞
0

duTr
{
vc
[
χλ(iu)− χ0(iu)〉

]}
. (13)

NB: These steps require some further analysis, especially in the degenerate case since the excluded GS term
is not anymore the Hartree energy and therefore does not cancel exactly.

The basic ingredient becomes then the (imaginary-)frequency density-density response function, whose
expansion in powers of λ can be obtained from perturbation theory. It is convenient to express this depen-
dence via a Dyson-like equation, which amounts to take a Taylor expansion of the inverse of the response
function,

χλ(iu) = χ0(iu) + χ0(iu)(λvc + fλxc)χλ(iu) ⇐⇒ χ−1
λ (iu) = χ−1

0 (iu)− (λvc + fλxc) (14)

where each term in the xc kernel can be obtained from perturbation theory of appropriate order.
Nice and clean but high-order perturbative expansion is in general tedious and cumbersome and the

desired value of λ may well be outside its convergence radius. Truncation can introduce other problems, as
for instance the case of RPAx (linear term in fxc) that becomes unstable in the low density limit in the HEG
and probably in general.

Some kind of analytical continuation or interpolation, to extend the domain of applicability of the ex-
pansion and avoid diverging solutions, may be desirable.

from Perturbation Theory to Interaction Strenght Interpolation

Since the λ = 0 KS case is the one system that we are able to compute exactly it is natural to start from
there and epxlore the behavior of the functional as λ is switched on,

Wλ = W0 +W ′0λ+ ..., λ ∼ 0. (15)

The W0[n] term is the expectation value of the interaction evaluated on the KS state. It corresponds to
the Hartree energy (see above) and the Fock Exchange energy, evaluated with che KS orbitals:

Ex = −e
2

2

∫
drdr′

∑
σ

∑
i,j

ρσi,j(r) ρ
∗
σi,j(r

′)

|r − r′|
, ρσi,j(r) = ϕ∗σi(r)ϕσj(r). (16)
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The linear term in the interaction strength is (twice) the second-order term in the Goerling-Levy per-

turbation expansion W ′0[n] = 2E
(2)
GL and can be calculated exactly in the ACFDT formalism at the RPAx

level.
In the strongly interacting limit, λ→∞, the dependence is instead

Wλ = W∞ +W ′∞/
√
λ+W ′′∞/λ+ ..., λ→∞, (17)

where W∞ = limλ→∞Wλ, W ′∞ = limλ→∞
√
λ(Wλ −W∞) and W ′′∞ can be shown to vanish identically.

In the λ→∞ limit the electrons become strictly correlated in the sense that their wavefunction squared
becomes a superposition of product of delta functions where electrons are localized in correlated positions
defined by “co-motion” functions such that as one electron moves the other adjust their positions to minimize
the electrostatic energy while on average keeping the prescribed density. The wavefunction can be described
as a kind of floating Wigner crystal and the corresponding minimization problem becomes essentially classical.

Indeed sending λ→∞ is equivalent to sending ~2 in the kinetic energy to zero. Since in the semiclassical
expansion the “small” parameter is ~, in the large λ regime the proper expansion parameter is 1/

√
λ. This

can be seen independently considering that the first non-constant term in the expansion is associated to
the zero-point vibrational energy of electrons around their classical minima in the floating Wigner crystal
(proportional to ~ω, where ω2 ∼ K/mλ).

The Interaction Strenght Interpolation (ISI) approach introduces an interpolation between the two limits
that satisfies these conditions exactly or at least approximately when this is not possible. More than one form
has been proposed and there is some arbitrariness. There are coordinate-scaling relationships for Wλ[n] (see
later) that can be used to limit somehow this arbitrariness, but do not count too much on these, typically
they are trivial to satisfy.

Another (approximate) way to constrain the interpolation is to reproduce the small λ expansion up to
a given power of a given approximation thought to be accurate. For instance, considering RPAx, that is
exact only to the linear order in λ but via the Dyson equation is defined at every order, one could calculate
higher (quadratic, cubic, ...) orders and force the interpolation to reproduce them in addition to the large λ
behavior. In this way for systems where the convergence radius of the expansion is larger than 1, and RPAx
is probably accurate, its behavior can be recovered. I don’t know whether this is a good idea. My feeling is
that the λ dependence in Wλ should be relatively dull and too much tweeking might introduce instabilities
rather than cure them. One could probably compare the approximate Wλ otained from RPAx, ISI, and the
combination of the two for a few systems and see how they perform.

size consistency and the need for LIISA

In the original ISI approach the interpolation is performed between system-integrated quantities, obtaining
in this way encouraging results. However interpolation of global quantites cannot be size consistent (that
is the energy of A+B would not in general be the energy of A + the energy of B) unless the interpolation
ingredients enter olny linearly, which is not what have been proposed so far and is kind of awkward because
then the switching value between the two limits would not depend on the system but be somewhat universal,
which appears unlikely.

Another possibility is to define the ISI on top of some range separation, that would split the integral in
disjoint pieces. I don’t know exactly and I don’t like it because again this range separation appears artificial
while it should emerge naturally from the properties of the system.

A viable solution is to define a position-dependent xc energy density and interpolate it. With this Locally
Interpolated Interaction Strenght Approximation (LIISA) size consistency is automatic if the energy density
depends on the local (in a broad sense) properties of the system.

There is however some arbitrariness in the definition of the xc energy density since the interaction is by
definition non local and the xc energy is a system-integrated quantity, so it is not so clear how to define it.
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a physically motivated exchange-correlation energy density defini-
tion

One prescription that is often (always?) found in the literature defines the energy density at a given point
r in terms of the interaction energy of an electron located there with the (coupling constant averaged) xc
hole it generates around itself. Looks nice and people are drawn to this definition by the sum-rule that the
xc-hole satisfies and could be used to constraint the functional form, but the role of r and r′ in the defining
integrals is very symmetric and I see no reason to focus on only one of the two. Applying the same approach
to the Hartree term one would identify the Hartree energy density with half the Hartee potential which is
not what J.C. Maxwell teaches us.

Actually, for a classical distribution of charges the electrostatic interaction energy can be defined as the
integral of an energy density defined as

wH(r) =
1

8π
|E(r)|2. (18)

It is quite natural to generalize this results to the exchange term as

wx(r) = − 1

8π

∑
σ

∑
i,j

|Eσi,j(r)|2, (19)

where Eσi,j(r) is the electric field generated by the auxiliary charge distribution ρσi,j(r) previously defined.
It is easy to see that wx(r) is invariant for unitary transformations among the orbitals in the occupied
manyfold.

More in general we can use the following basic electrostatic identity

1

|r′ − r′′|
=

1

4π

∫
dr∇

(
1

|r − r′|)

)
· ∇
(

1

|r − r′′|)

)
, (20)

(that is most easily demonstarted by feeding the Fourier transform representation of the Coulomb kernel)
to get the following expression

wλ(r) =
1

8π

∫
dr′dr′′∇

(
1

|r − r′|)

)
· ∇
(

1

|r − r′′|)

)
n

(2)
λ (r′, r′′) (21)

that for λ = 0 reduces to w0(r) = wH(r) + wx(r).
For general λ we can use the ACFDT expression in terms of the response function to define

wc(r) = − ~
2π

∫ 1

0

dλ

∫ ∞
0

du

∫
dr′dr′′∇

(
1

|r − r′|)

)
· ∇
(

1

|r − r′′|)

)[
χλ(r′, r′′, iu)− χ0(r′, r′′, iu)〉

]
. (22)

The term inside the integral is the (imaginary-)frequency-dependent electric field induced at the position r
by the response of the system to an oscillating elemental dipole in r. It looks very much like a classical FD
results except that the eigenmodes being excited are the ones of the quantum system.

Stricly Correlated Electrons from (quantum) Langevin dynamics

The λ→∞ strictly correlated electrons (SCE) system is a quite pathological one when seen as a quantum
system but we can think of it as a system of classical charges at a small finite temperature in an external
potential such that the average density is as desired. All is needed is a way to sample the canonical
distribution at a conveniently low temperature. Langevin dynamics is a possible methods for this and
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there is also the option of using colored noise to sample the harmonic excitations according to quantum
statistics thus giving access to the ZPE W ′∞ term as well.

W cl
λ [n] = 〈〈e

2

2

∑
i,j
i 6=j

1

|ri − rj |
〉〉λ (23)

where 〈〈...〉〉λ means the statistical average over the distribution associated to a given value of λ. I dont
know the details but I would say the classical result should correspond to λ = ∞ while a finite “quantum”
result should give access to ZPE.

NB: It should be possible to test the approach on unidimensional systems where the SCE equation can
be solved numerically in another way.

When an interaction energy density is desired one should use the classical expression

wclλ (r) = 〈〈 1

8π

∑
i,j
i 6=j

Ei(r) · Ej(r)〉〉λ (24)

where Ei(r) is the electric field generated in r by particle i, possibly smoothed for a finite size set in such
a way that two different electrons never overlap (due to Gauss theorem the integrated interaction energy
should not depend on that).

about scaling relationship for the energy and the energy density

Coordinate scaling can be used to connect functionals values at different interaction strength. It is relatively
easy to see that if Ψ(r1, r2, ..., rN ) is a solution corresponding to density n(r) for the physical λ = 1 interaction
strength, then Ψγ(r1, ..., rN ) = γ3N/2Ψ(γr1, ..., γrN ), corresponding to density nγ(r) = γ3n(γr), is a solution
for the Hamiltonian with scaled interaction strength λ = γ with energy and energy components linked as

Eγ [nγ(r)] = γ2E1[n(r)], Fγ [nγ(r)] = γ2F1[n(r)], Tγ [nγ(r)] = γ2T1[n(r)], Wγ [nγ(r)] = γW1[n(r)],
(25)

with the 1-body potential scaled as V γ(r) = γ2V 1(γr).
Coming to the ingredients used in the ISI method the scaling becomes

W0[nγ(r)] = γW0[n(r)], W ′0[nγ(r)] = W ′0[n(r)], W∞[nγ(r)] = γW∞[n(r)], W ′∞[nγ(r)] = γ3/2W ′∞[n(r)],
(26)

where the auxiliary relationship Wαγ [nγ(r)] = γWα[n(r)] is handy when taking the limits α→ 0 and α→∞.
In order to respect these conditions, an interaction strength interpolation formula

W ISI
λ ([n]) = F (λ,W0[n],W ′0[n],W∞[n],W ′∞[n]) (27)

must be such that
F (λ, λW0,W

′
0, λW∞, λ

3/2W ′∞) = λF (1,W0,W
′
0,W∞,W

′
∞) (28)

or equivalenty

F (λ,W0,W
′
0,W∞,W

′
∞) = λF (1,

W0

λ
,W ′0,

W∞
λ

,
W ′∞
λ3/2

) (29)

for all accessible values of its arguments and any positive λ. Therefore the interaction energy at the physical
strength (λ = 1) can be used to define the scaled interaction strength at every scaling factor.

When moving to the interaction-energy density one finds that

n(2)
γ (r, r′, [nγ ]) = γ6n

(2)
1 (γr, γr′, [n]) =⇒ wγ(r, [nγ ]) = γ4w1(γr, [n]) (30)
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hence
w0(r, [nγ ]) = γ4w0(γr, [n]), w′0(r, [nγ ]) = γ3w′0(γr, [n], (31)

w∞(r, [nγ ]) = γ4w∞(γr, [n]), w′∞(r, [nγ ]) = γ4 1
2w′∞(γr, [n]). (32)

In order to respect these conditions, a local interaction strength interpolation formula

wLIISAλ (r, [n]) = f(λ,w0(r, [n]), w′0(r, [n]), w∞(r, [n]), w′∞(r, [n]), n(r)) (33)

must be such that
f(λ, λ4w0, λ

3w′0, λ
4w∞, λ

4 1
2w′∞) = λ4f(1, w0, w

′
0, w∞, w

′
∞), (34)

or

f(λ,w0, w
′
0, w∞, w

′
∞) = λ4f(1,

w0

λ4
,
w′0
λ3
,
w∞
λ4

,
w′∞

λ4 1
2

), (35)

for all values of its arguments and any positive λ.
It may be convenient in some cases, like in the homogeneous electron gas–that contains an infinite number

of particles–to define the local quantities in a per-particle basis; though it may result somewhat artificial
as the energy density is not really particle-based. However since everything is in the end a function of the
density why not...

Let’s define then wλ(r, [n]) = n(r)wλ(r, [n]) with wλ(r, [n]) the interaction energy per particle associated
to point r.

The resulting scaling relation is the same as for the integrated quantities but defined locally on the scale
coordinate:

wγ(r, [nγ ]) = γ4w1(γr, [n]) =⇒ wγ(r, [nγ ]) = γw1(γr, [n]), (36)

hence
w0(r, [nγ ]) = γw0(γr, [n]), w′0(r, [nγ ]) = w′0(γr, [n], (37)

w∞(r, [nγ ]) = γw∞(γr, [n]), w′∞(r, [nγ ]) = γ3/2w′∞(γr, [n]), (38)

and the associated local interaction strength interpolation formula, where an explicit dependence on the
density has been added,

wLIISAλ (r, [n]) = f(λ,w0(r, [n]), w′0(r, [n]), w∞(r, [n]), w′∞(r, [n])) (39)

must satisfy
f(λ, λw0, w

′
0, λw∞, λ

3/2w′∞, λ
3n) = λf(1, w0, w

′
0, w∞, w

′
∞, n) (40)

f(λ,w0, w
′
0, w∞, w

′
∞, n) = λf(1,

w0

λ
,w′0,

w∞
λ
,
w′∞
λ3/2

,
n

λ3
) (41)

for all accessible values of its arguments and any positive λ.

from interaction strength to correlation energy and return

let us remind the definition of the correlation energy

Ec[n] =

∫ 1

0

dλ (Wλ[n]−W0[n]) (42)

and the basic scaling relationship

Wλ[nλ] = λw1[n] =⇒ Wλα[nλ] = λWα[n] =⇒
{
W0[nλ] = λW0[n]
W∞[nλ] = λW∞[n]

(43)
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then we can manipulate the above definition as

Ec[nγ ] =

∫ 1

0

dλ (Wλ[nγ ]−W0[nγ ]) =

∫ 1

0

dλγ
(
Wλ/γ [n]−W0[n]

)
= γ2

1/γ∫
0

dλ (Wλ[n]−W0[n]) . (44)

Hence

d

dγ

[
Ec[nγ ]

γ2

]
=

d

dγ

1/γ∫
0

dλ (Wλ[n]−W0[n]) =
(
W1/γ [n]−W0[n]

) d

dγ

(
1

γ

)
= − 1

γ2

(
W1/γ [n]−W0[n]

)
(45)

and finally

Wλ[n] = W0[n]− γ2 d

dγ

[
Ec[nγ ]

γ2

]
, γ = 1/λ =⇒ Wλ[n] = W0[n] +

d

dλ

[
λ2Ec[n1/λ]

]
, (46)

and similarly for the per-particle quatities

wλ(r, [n]) = w0(r, [n])−γ2 d

dγ

[
εc(r/γ, [nγ ])

γ2

]
, γ = 1/λ =⇒ wλ(r, [n]) = w0(r, [n])+

d

dλ

[
λ2εc(λr, [n1/λ])

]
,

(47)
and the energy densities

wλ(r, [n]) = w0(r, [n])−γ2 d

dγ

[
εc(r/γ, [nγ ])

γ5

]
, γ = 1/λ =⇒ wλ(r, [n]) = w0(r, [n])+

d

dλ

[
λ5εc(λr, [n1/λ])

]
.

(48)
Therefore knowledge of the interaction energy as a function of the coupling constant for any given density
allows to compute the correlation energy and, conversely, knowledge of the correlation energy for all scaled
densities allows to compute the interation energy as a function of the coupling constant.

homogeneous electron gas: a case study

Let us see what all this bring us in the homegeneous electron gas case.
There is only one parameter defining the system, its uniform density or, conventionally, its Wigner-Seitz

radius: n = 3
4πr3s

. The correlation energy per particle is a function of rs whose functional dependence can

be considered (numerically) known and have the known limiting behaviors:

εc(rs) = A ln rs + C + rs(A1 ln rs + C1) + ..., rs ∼ 0, (49)

εc(rs) =
f0

rs
+

f1

r
3/2
s

+
f2

r2
s

+ ..., rs →∞. (50)

We can then calculate the interaction energy per particle

wλ(rs) = w0(rs) +
d

dλ

[
λ2εc(λrs)

]
= w0(rs) +

1

rs

d

dx

[
x2εc(x)

]
x=λrs

= λ

[
w0(x) +

1

x

d

dx

(
x2εc(x)

)]
x=λrs

,

(51)
or if you wish

wλ(rs) = λw1(λrs), w1(rs) = w0(rs) +
1

rs

d

drs

(
r2
sεc(rs)

)
=
fx
rs

+
1

rs

d

drs

(
r2
sεc(rs)

)
, (52)
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that corresponds to the following conditions:

w0 =
fx
rs
, w′0 = −∞, w∞ =

fx + f0

rs
, w′∞ =

1

2

f1

r
3/2
s

, n =
3

4πr3
s

(53)

which describe a one-dimesional line in a 5-dimesional parameter space describing the interaction energy per
particle and could be used to constraint the LIISA interaction energy density interpolating function.

other “solvable” models and the way to go

Other systems that one could study to extract information to define/constrain/train LIISA:
Helium-like atoms: 2 electrons that can be solved by full CI leading to a 2 dimensional slice of the energy

density, parameterized by the nuclear charge and the radial distance.
Other spherical atoms that can be solved by full CI. Be to mention one and its isoelectronic series.
H2-like molecular dissociation: 2 electrons that can be solved by full CI leading to a 5-dimensional

exploration of the energy density parameterized by Z1, Z2, (allowing the two nuclei to have different charges),
R (the atoms’ separation), z (the coordinate along the line connecting the nuclei), ρ (the radial cilindrical
coordinate).

Other diatomic molecules with more electrons (Be2 to mention one) that would give access to different
regions of the parameter space and/or sample the same regions thus providing a measure of the spread of
the interaction energy density values corresponding to given parameters.

The challenge is how to visualize the collected information and see how strong is the variability of the
interaction energy density in given regions of the parameter-space ? Is it possible/accurate to express
the energy density as a function of the coefficients of its weak- and strong-coupling limits ? Does the
energy density of all systems collapse on the same energy-density surface fLIISA(λ,w0, w

′
0, w∞, w

′
∞) when

parameterized by these values ? how to incorporate deviation/additional knowledge in the process ? adding
an explicit dependence on n(r) and its detivatives ? or space derivatives of the ‘energy-density ingredients‘
? what else ?

what about spin polarized systems ?

To be understood at alater time ...

more about the interaction energy density

The total interaction energy operator is

Ŵ =
e2

2

∑
i,j
i 6=j

1

|ri − rj |
or Ŵ =

e2

2

∫
dxdy

φ†(x)φ†(y)φ(y)φ(x)

|x− y|
(54)

in first and second quantization respectively.
The interaction energy density operator can therefore be defined as

ŵ(r) =
e2

8π

∑
i,j
i6=j

∇ 1

|r − ri|
∇ 1

|r − rj |
or ŵ(r) =

e2

8π

∫
dxdy∇φ

†(x)φ†(y)

|r − x|
∇φ(y)φ(x)

|r − y|
(55)

respectively.
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The λ-dependent interaction energy density is therefore the expectation value of this operator on the GS
wavefunction Ψλ

GS (or the density matrix Γλ) corresponding to a given value of λ.

wλ(r, [n]) = 〈Ψλ
GS |ŵ(r)||Ψλ

GS〉 = TrΓλ[n]ŵ(r) (56)

and the coupling constant could be considered position dependent and the functonal generalized to

F[λ][n] = min
Ψ→n
〈Ψ| T̂ +

∫
λ(r)ŵ(r)dr |Ψ〉 = T[λ][n] +

∫
λ(r)w[λ](r, [n])dr (57)

The F[λ] functionals are variational w.r.t. all (neutral) density variations, in particular all those generated
by an arbitary coupling constant variation, λ(r) −→ λ(r) + δλ(r), hence:

δF[λ]

δλ(r)
= w[λ](r, [n]),

δT[λ]

δλ(r)
+

∫
λ(r′′)

δ

δλ(r)
w[λ](r

′′, [n]) dr′ = 0,
δ2T[λ]

δλ(r)δλ(r′)
+

∫
λ(r′′)

δ2w[λ](r
′′, [n])

δλ(r)δλ(r′)
dr′′ > 0,

(58)
where the last inequality has to be understood in a matrix sense and stems from the fact that each F[λ] is
a minimum w.r.t to density variations induced by any δλ. Taking a further variation of the above second
equality one obtains

δ2T[λ]

δλ(r)δλ(r′)
+

∫
λ(r′′)

δ2w[λ](r
′′, [n])

δλ(r)δλ(r′)
dr′′ +

δ

δλ(r)
w[λ](r

′, [n]) = 0 (59)

from where one can deduce that the last term must be a symmetric function of r and r′ because the other
two terms obviously are. Moreover comparing with the third inequality in the previous line one gets thatt
it must be negative definite:

δw[λ](r, r
′, [n]) =

δ

δλ(r)
w[λ](r

′, [n]) < 0 (60)

to be understood as a “matrix” inequality. In particular all diagonal elements are negative definite. This
however is not enough to show that the derivative of wλ(r, [n]) with respect to a uniform scaling is negative
definite.
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