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Polymorphism in real life

Famous example: 
Ritonavir

● HIV/AIDS & HepC med.
● 1996 - Entered in market in 

“Form I” (non-ref. caps)
● 1998 -  Removed from the 

market in “Form II”



Polymorphism

● Aspirin, paracetamol & others
● Al2O3 - catalysis
● Mn-cubane - catalysis
● Coronene & magnetism
● “Jumping crystals”
● 2D-heterostructures layer 

polymorphism and polytypes, 
e.g. CO2 reduction race



Polymorphism

Zhao et al. Advanced Mat. 30, 1802397 (2018)
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1. CSP questions: 
- What is the crystal structure? 
- How stable/soluble/active is it?
- Structure with optimum properties?

3. CSP challenges:
- Many possibilities to explore 
- Big unit cells (Z>1, incomm. layers)
- Several energy & length scales
- Predictive power
- Structure-property - it’s complicated
-

Given a molecule/stoichiometry:

2. CSP Strategies:
- Explore the phase space
- Characterize what is found
- Build descriptors for desired properties

4.Where ML can help:
- Accelerate exploration
- Accelerate characterization
- Recognize descriptors, propose new 
structures with desired properties
(Reinf. Learning, Gen. Models, 
Autoencoders etc.)



Exploring polymorphism with Genetic Algorithm

1. A population of random structures
2. Energy ordering - select champions
3. Champions reproduce: Make offsprings 
4. Decide which children will survive 
5. Repeat 2-4 as long as you can;
6. Repeat 1-5 for different Z

● Heredity operations
● Random members to increase diversity
● Similarity measurement via fingerprinting
● Remembering family history

USPEX J. Chem. Phys. 124, 244704 (2006)



Too big to explore with DFT:

● Found alpha by mimicking nature:
“Random” musicians are not random:
Symmetry group probability 
distribution mimics the one of nature 
using DB of molecular crystals. - “Data 
mining”

● Many more structures, shorter time than 
published work

● But cannot find the alpha phase !
● (A published work also could not find the 

alpha phase - visual inspection :-/)

Lund et al, Chem Phys Lett 262 (2015)



GLY polymorphism



Zeta GLY: what did we do right? Accurate energy & volume

Clustering







Neural Networks for CSP

4.Where ML can help:
- Accelerate exploration
- Accelerate characterization
- Recognize descriptors, propose new 
structures with desired properties
(Just scratched the surface: Reinf. 
Learning, Gen. Models, Autoencoders etc.)

Learn a molecular forcefield for Z=1, 
transfer to Z>1

Learn atomistic forcefield, 
transfer to other molecules

Learn relaxation moves 
For big systems with many atoms,
far from the equilibrium positions

To keep in mind:
● Representation + Architecture + Target are all related
● Model training vs evaluation costs can be very different
● Transferability is good, but data keep changing



A2A, FF network with GLY



A2A, FF network with GLY



Representation

Smith et al, Chem Sci 8 3192 (2017) 
DOI: 10.1039/c6sc05720a

R0=0.5A , Rc= 4.6A
32 bins per pair: 
32x4=128 parameters

J. Behler and M. Parrinello, PRL, 98.14 (2007).



Average G-radial for N in GLY

R0=0.5A , Rc= 4.6A
32 bins per pair: 
32x4=128 parameters



Representation

Smith et al, Chem Sci (2016) 
DOI: 10.1039/c6sc05720a

R0=0.5A , Rc= 3.1A
8 angular bin for each 8 radial bin
64 bins per trimer: 
64x10=640 parameters



Average G-angular in GLY

Halved version:
8 angular for 4 radial
32 per trimer
32x10=320 parameters



Remarks about this representation & CSP

● Representation may have redundant parts
● Representation may have irrelevant parts
● No need for atom centered representations

○ Bond centered, molecule centered representations

● No need for equally spaced representations
○ Allow custom gaussian centers
○ Allow gaussian centers to be learned

● 128+640 = 768-parameters per G-vector
● G-vector → First layer width ≈ First layer of compression

○ 768 : 128 : 128 : 32 : 1
○ ~ 500k parameters for the whole network



Training the A2A-FF, modified BP - GLY data

Stochastic gradient descent with Adam Opt. T ~ learning rate / batch size

● Many trains & restarts
● ~100k epochs min.

(1M GS w 1k batch on 10k data)
● ~10k epochs was enough

(100k GS w 1k batch on 10k data)

● No running validation 
● Annealing regularly, in 

various ways



What network looks like as it trains
Layer 3 biases in a constant-LR run

Tensorflow, Abadi et al. (2015)



Training



Training

Line: +/- 2 mRy per atom.

~10k data, ~500k parameters

Over-fitting to the training data in an 
obvious way is not that easy.

RMSE on training set: 
0.33 mRy/atom @step:130k
0.41 mRy/atom @step:5M

Target training accuracy 
per molecule
1kcal/mol
( ~43meV ~3.2mRy )
Roughly
~4meV per atom 
~0.3mRy per atom



Training on Z=2, Validating on all Z=1,2,3,4

Target extensibility 
accuracy per molecule
1.8kcal/mol
( ~80meV ~5.8mRy )
~8meV per atom 
~0.6mRy per atom

RMSE @2M steps (@6M>L1)
(in mRy/a)
1.21 (1.51 > 1.61) Z=1
1.04 (2.13 > 2.19) Z=2 
4.86 (6.14 > 5.84) Z=3
4.06 (4.98 > 4.93) Z=4



Forces
Fitting energies
Forces form finite differences

Terrible :-(
Unsampled atomic displacements
Hope - at least continuous?

Bad forces also for the training set.
C or H slightly better but not always

Force RMSE~ 0.100Ry/au
(100 x acceptable threshold ) 



All the variation between different 
crystal structures is expressed via 
Carbon atom alone.

Why? Limited dataset (one 
stoichiometry) + redundancy in 
G-vectors

Does it matter? Bad for information 
transferability between systems, 
but not significant for single system 
CSP. 

What does the network learn? Atomic contribution to energy:



● Restart changes the 
“informant” atom

● Copying weights may increase 
variability 
(Before: black, After: red) 

● Two things affect this behavior:
○ Reducing Rc 
○ Shrinking network

■ Energies get better, 
(0.5mRy/atom) 
Forces are still 10x 
threshold

Atomic contribution to energy:What does the network learn?



● 10k data, 500k parameters: underfitting & overfitting
● BP representation too redundant/expressive for CSP data

+ Hyperparameter optimization may be necessary for each CSP
+ Learning dynamics can be tricky 

● Upon shrinking network (down to 10k parameters) 
Good enough for mild acceleration (0.5mRy/atom), 
But better forces needed for significant improvement 

PANNA: TF based, cpu/gpu, allows different network per atom, freezing the dyn.

What we learned from A2A networks + GLY:



G-vectors

Code-share
reveals a bug:

The reason why 
so many G-bins
so much data 
so long training
was needed?



Reducing error with increasing data?



Training with molecular data

Stoichiometrically varying 100k data 
(out of 800k ANI set)
~500k parameters
384:256:128:64:1

Target validation accuracy 
per molecule
2kcal/mol
( ~90meV )

OK energetics
much less data. 



OK energetics
much much less data. 

Same network as before. Train on 8k, validate on 1k 

Training with molecular data

Target validation accuracy 
per molecule
2kcal/mol
( ~90meV )

Stoichiometrically varying 10k data 
(out of 800k ANI set)
~500k parameters
384:256:128:64:1



Another comparison

A C++ code, written from scratch

Tested on Silicon, Carbon

Original BP symmetry functions

No mini-batching 
>whole data at each step (10k 
dataset)

Kolb et al. Sci.Rep. 1192 (2017)
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Another comparison

What is the culprit? 
Modified PANNA

Original BP symmetry functions

Mini-batch size=whole data

Hits the target validation 
accuracy (~90meV)
at 10k steps 

Difference in optimizer
Rprop (sign,first order) vs 
Adam (magnitude,history of gradients)



NN acceleration of CSP is data-wise feasible

Training dynamics is not straightforward - tools to monitor & manipulate dynamics

Reproducibility

What else we learnt from A2A networks + ANI data



Fingerprinting
Positions? Distances, angles?
Radial distribution function? 

○ Ab initio, sometimes-reversible 
representation of the crystal 

○ Redundant & not every bin is equally 
important. 

○ Doesn’t have built-in hierarchical 
comparison flexibility

○ Differentiable

“SOAP” Bartok et al, PRB 87, 184115 (2013)

“DeepMD” 
Zhang et al. 
PRL 120 
(2017)

USPEX, Valle et al. 
ActaCryst A 66, (2010)



Fingerprinting
● Connectivity & graph based

○ Bag-of-Bonds[1] 
○ Signature[2], 
○ ConvNet[3], 
○ SPRINT[4], 
○ PIV[5]

[1]

[2] [3]

[5]



Unsupervised methods & representation

● A good representation -> good distance measure -> successful clustering

● “much of all intelligence is unsupervised clustering” 

● If we could do successful clustering all the time, we could solve all 
classification problems 
(is it a metal? Is it a magnetic material? Is it an 2d-exfoliate-able material?) 
but also make good approximations on other properties as by expanding the 
property on clusters



Cluster Expansion for Li-Gr

Shaidu et al, JPCC 122, 20800 (2018)

We expand the energy as a sum of “figures” (as in 
cluster expansion method), which is similar to dimer, 
trimer, and higher order filters of the convolution.



Convolutional neural networks
Between the black box learner & handcrafting (e.g. force field fitting)

Image: e-Lab, E. Culurciello lecture notes.



Convolutional neural networks for atomistic graphs
Molecule

Atomic 
type Pair features

Bond 
lengths Trimer

features

angles
Higher 
features

Torsions
Property



Convolutional neural networks for atomistic graphs
Molecule

Atomic 
type

E =   Atomic contribution + dimer contribution + trimer contribution + higher contributions...

Pair features
Bond 
lengths Trimer

features

angles
Higher 
features

Torsions

The number of features detected at each layer increase exponentially: 
1- Nspec 
2- Nspec * Nspec * Nbond
3- Nspec * (Nspec * Nbond) * (Nspec * Nbond) *Nangle

Property



CNN -- in practice
Input: Atomic positions 

Activations:

+Positions

Layer 1: Bonds 
(mask index: c) 

Activations:

+Positions

+Bond directions

Layer 2: Valence-angle trimer
(mask index: d) 

Activations:

+Positions

+Trimer Orientations

R() is for ReLU, G() is gaussian. 
All distances, angles, features can be equally weighted activators (wc & wd=1) 
or separately weighted for a more expressive network (& more nonlinearity)



MolCNN
Same 10k data 

6 nearest neighbors

Nbond =4; Nangle =4

1-10k:only bond 
10-20k:only angle
20-30k:both 
30-40k:both but slower (1d-3)

Params
Pbond ~ 4*4*4 = 64
Pangle ~ 4*4*4*4 = 256

Batch size: 100; lr=1d-2; mask-eq-weighted network; validation



MolCNN -- Where to go?
Layer 1: Bonds 
(mask index: c) 

Activations:

+Positions

+Bond directions

Layer 2: Valence-angle trimer
(mask index: d) 

Activations:

+Positions

+Trimer Orientations

Test for network 
shapes/sizes 

Trimers that 
share an edge 
(torsion angle 
layer). 

Generalize 
trimer-trimer 
convolution 
beyond angles

Long-range 
correction layer Target: Flexible force field replacement for CSP



Autoencoders:

Unsupervised data compression: 
Coupled encoder+decoder able to reconstruct input passing from a much smaller 
representation.

May help finding compact representation, to be then used for learning, clustering or 
even de-noising.

Already a successful use case published - but with a
Graph based representation (SMILES)
(Gomez-Bombarelli et al ASC Cent. Sci. 2018)



Reinforcement learning:

Machine learning to decide on “actions” to maximize “reward”.

Main idea: sample environment to estimate “value” of a configuration, based on 
future expected reward, then pick the best (Q-learning). 
Value function can be learnt with a NN.

Proved effective in Atari, Go, Chess… 
Useful to learn “intrinsic value” of a configuration 
to guide a complex optimization procedure

Google DeepMind’s AlphaFold used to win the protein folding challenge.



Take home:
● Crystal structure prediction is a tough problem, NN can help 
● Lowest hanging fruit for NN in CSP is exploration and geometry optimization
● GLYdata +A2A network : 

○ Variability in data vs the representation 
○ Overfitting vs Underfitting & the need to monitoring/control the dynamics

● ANIdata +A2A network:
○ Data variability > amount
○ Open source/Reproducibility

● ANIdata +MolCNN
○ WIP - Few parameters, easy to train, potentially interpretable

● Where next?  

Credits: 
     (SISSA) R Lot, F Pellegrini, Y Shaidu, S de Gironcoli
     (MIT) S Wyant, A Kolpak The End.



Notes



ab initio NMR

Induced field due to electron shielding

Density Functional Perturbation Theory in 
Linear Response:
● Perturbation to Hamiltonian
● Perturbed Eigenstates
● Induced stationary current 
● Induced field from induced current

Chemical shift

  Time \propto (Nat x (Nk x (Ni x (NbxNlogN))))



ab initio NMR with Projector Augmented Wave

Blochl, PRB 50,17953 (1994) 



13C NMR for CLR

Guo et al, Biophys. J. 71: 2857-2868 (1996)



Geometry optimization

Cournia et al. JCompChem 26, 1383(2005)

Lousy DFT

Force field



Force fields for geometry optimization

Force field was not good 
enough to distinguish the 
spectra of different 
polymorphs, 
or even to verify the same 
polymorph

Cournia et al. JCompChem 26, 1383(2005)



CNN -- in practice
Layer 2: Valence-angle trimer
(mask index: d) 

Activations:

+Positions

+Trimer Orientations

Number of possible feature masks 
(and weights to get their contribution to energy) increase dramatically: 
1- Nspec
2- Nspec^2 * Nbond 
3- Nspec^3 * Nangle

Layer 1: Bonds 
(mask index: c) 

Activations:

+Positions

+Bond directions

Trimers are 
convolutions of two 
2-atom nodes that 
share a corner. 

An alternative here, 
would be to add a 
non-corner-sharing 
dimer-dimer mask. 
Ongoing.

We can keep only some 
trimers that get activated the 
most (max-pooling ~ coarse 
graining) 



Fingerprint references

○ Ref1: K.  Hansen,  F.  Biegler,  O.  A.  von  Lilienfeld,  K.-R.  M€uller,  A.  Tkatchenko,Nat. 
Commun. https://pubs.acs.org/doi/pdfplus/10.1021/acs.jpclett.5b00831 Ref2: 
https://pubs.acs.org/doi/pdfplus/10.1021/ci020345w Ref3: https://arxiv.org/pdf/1509.09292.pdf 
ref4: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.085504 
ref5:https://aip.scitation.org/doi/10.1063/1.4818005 

https://pubs.acs.org/doi/pdfplus/10.1021/acs.jpclett.5b00831
https://pubs.acs.org/doi/pdfplus/10.1021/ci020345w
https://arxiv.org/pdf/1509.09292.pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.107.085504
https://aip.scitation.org/doi/10.1063/1.4818005


Brainstorming for NNs in CSP

● Neural networks and where CSP can help:
○ Accelerating the exploration of polymorphic phase space - 

■ the supposedly low hanging fruit is the geometry relaxation. This means having a very 
flexible and well performing force field/potential for the molecule at hand. Next step 
would of course be a force field transferable across different molecules.

■ Relaxation as a winning move: As number of atoms, species, network parameters 
increase, calculating forces as derivatives might become the bottleneck. Reinforcement 
learning methods, where the value of each atomistic move is learnt, can be viable 
alternatives to making quick optimization steps.

■ Evolutionary algorithm accelerated: A jump here would be accelerating the phase space 
search by exploring more intelligently than evolutionary algorithm using reinforcement 
learning where the reward this time can be finding a low energy or increasing population 
diversity or matching the experimental characterization. 

○ Accelerating characterization:
■ Characterization could simply be total energy, but also possibly enthalpy, NMR, EPR, 

elastic constants etc. Challenges: Efficiency & accuracy (representation, ground truth, 
transferability)



Recurrent networks:

Neural networks useful to analyze “time series”.

Main idea: add to the input at time t some information from the output at time t-1 → 
acts like a “memory” for the network.

Typically one takes N timesteps and optimizes all output with SGD or similar. This 
can lead to “gradient dilution” for long time correlation → introduce “gated units” to 
preserve memories for longer times (see GRU, LSTM).



- At each layer information is processed to remove 
the inessential (data processing inequality)

- In the information plane we can follow the training 
as deeper layer gain mutual info with output

- There seem to be 2 phases: fitting and compression
- SGD → “compression by diffusion”
- More layers seem to be useful to break diffusion in 

simpler steps





13C NMR for CLR

Guo et al, Biophys. J. 71: 2857-2868 (1996)

Shift reference:



Spectral editing

ChM



Different functionals before secondary referencing
For ab initio non-local functionals (i.e. van der 
Waals aware functionals) one should be careful in 
not comparing apples to oranges:

In vdW functionals, we have F[n(r),n(r’)] terms. 
Hence this means they also include local 
correlations as well as non-local. Due to this 
source of ‘double counting’, when people fit the 
parameters of a vdW functional, they don’t do it 
for any local XC functional but they choose one in 
particular. For example vdW-DF is parametrized 
assuming revPBE xc, while vdW-DF2 is built on 
rpw86.

People often forget as they compare vdW 
treatments, that the other parts of the functional 
change also, and it might be the significant part. 
So, compare vdw-DF to revpbe first, if you want to 
see the effect of exchange. 



ab initio NMR

Chemical shielding

New addition to 
hamiltonian (p):

Chemical shift



Some terms in GIPAW:



How does QE scale?

Time spent in scf calculation: Tscf

Niter*Titer + Tinit ; Titer=Nk*Tdiag + Trho + Thxcv ; Tdiag=NhpsiThpsi + Torth + Tsub

Thspi=aNbandNpw + bNbandN123log(N123) + cNbandNpwProjall      [N123~8Npw]

Torth=dNpw(Nbandtrial)^2~dNpw(2Nbnd)^2 ; Tsub = e(2Nbndtrial)^3

Trho=fNbdn(8Npw*)log(8Npw*) + gNbnd(8Npw*) + Tpaw

Thxcv=j(8Npw*) + k8Npw*log(8Npw*)

For NMR via linear response ~Natom (as an approximation to Nproj) x (7directions x 
Nk) x (Nband x N123logN123)


