
  

Forces, Stress 

and 

structural optimization



  

 Forces

* finite step methods
 Steepest Descent
 Damped Dynamics (friction,quickmin)

* Line Minimization methods:
 Conjugate Gradients
 Quasi Newton methods BFGS

* Stress, VCS relaxation and MD



  

Hellmann-Feynman forces
In the Born-Oppenheimer approximation the total energy                     
is a function of the ionic coordinates       and define a 3N-dimensional 
hyper-surface, called the Potential Energy Surface (PES) 

The forces acting on the ions are given by (minus) the gradient of the PES.
Using  Hellmann-Feynman  theorem

where the electron-nucleus  and the  ion-ion electrostatic interactions

are the only terms explicitly dependent on the ionic positions

It is just what we would compute classically !



  

Hellmann-Feynman forces
When using a plane-wave basis set no corrections (Pulay's forces) are 
needed to the previous formula ! 

….except taking care of the modified form of the external (pseudo)-potential.

The evaluation of the forces is then a cheap byproduct of the electronic 
structure calculation.                                   The quality of the forces depends on the quality of 
the electronic structure calculation.

From the forces:
● Structural optimization from the equilibrium condition

  
● Molecular dynamics
● Higher-order derivatives (phonons, ...) 



  

Structural Optimization
Several algorithms for searching an equilibrium configuration, close to the 
initial ionic configuration ( a local minimum of the PES).     For instance:

Steepest Descent Optimization

discretizinig



  

VERLET DYNAMICS 
Rnew = 2 R - Rold + dt*dt*F/M

V = (Rnew – Rold) / 2 dt

DAMPED VERLET DYNAMICS
As above but stop the particle whenever    <F|V>   <  0
Or rather project the velocity in the direction of the force

V_new =  F  max ( 0,<F|V>) / <F|F>

VELOCITY VERLET DYNAMICS 
V = Vaux + dt/2 * F / M                       vel @ time t

Vaux = V + dt/2 * F / M            aux vel @ time t+dt/2

Rnew = R + Vaux dt                        pos @ time t+dt



  

Conjugate Gradients

E = ½ x A x - b x + c

F = -dE/dx = b  - Ax = g(x) 

Xn = Xn-1 + λ hn

hi * A * hj = 0,   hi  * gj = 0  for i≠j

small memory needs, good for quadratic functions, may need preconditioning



  

Quasi-Newton ionic relaxation
The Broyden-Fletcher-Goldfarb-Shanno algorithm

Taylor expansion of the energy around a point (hopefully) close 
to a stationary point (           )

gradient vector

Hessian matrix

displacement



  

Quasi-Newton ionic relaxation
The Broyden-Fletcher-Goldfarb-Shanno algorithm

Equivalently, for the gradient vector we have the condition:

The stationary condition is The Newton-Raphson step is



  

Quasi-Newton ionic relaxation
The Broyden-Fletcher-Goldfarb-Shanno algorithm

The inverse Hessian matrix is updated  using the BFGS scheme:

trust radius
Newton-Raphson step

where



  

Structural Optimization : Convergence



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

THE END
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