
Basic Band Structure Concepts



Crystals: periodic boundary conditions, Bravais lattices, 
Reciprocal Lattice, Brillouin Zone, Bloch Theorem.

Energy in an infinite solid: PlaneWave expansion,
Ewald sums, BZ sampling.

Band structure of materials: metal, insulators, partial 
occupations, ( fictitious ) temperature  

All-electrons vs Pseudopotential methods

Cohen-Bergstressen empirical pseudopotential,
Norm-Conserving PP, Ultra-Soft PP, PAW



Infinite Solid with Periodic Boundary Conditions

Real crystals are finite in size and can present many defects 
(vacancies, impurities, ...). However many properties of a 
solid, the bulk properties, can be studied in the ideal model 
of an infinite crystal where an elementary unit (one or more 
atoms) is repeated throughout space. 
The resulting periodicity greatly simplifies the problem.



Infinite Solid with Periodic Boundary Conditions

In three dimensions the infinite periodic solid is defined by 
three fundamental lattice vectors a1, a2, a3, and by the positions 
of the atoms in the unit cell (nat = # of atoms in the unit cell).

The general atom position Rion is given by

NB: atoms at the same position Ts in different unit cells are of 
the same atomic kind. 



Born-von Kármán Periodic Boundary Conditions

It is convenient to view the infinite solid as a three dimensional 
thorus containing N = N1 x N2 x N3 cells with periodic boundary 
conditions.  Crystal sums are finite, wfc are normalized.
The limit of large Ni is understood.



Crystal lattice
A regular array of atoms periodically repeated in space

The crystal structure is defined by 

1) Bravais lattice : regular periodic arrangement of points
in space defined by the primitive translation vectors (cell shape)



Crystal lattice
A regular array of atoms periodically repeated in space

The vectors  R=n1 a1 + n2 a2 + n3 a3   are the direct lattice vectors; 
they define the crystal lattice. Translation by any lattice vector 
leaves the crystal unchanged. This is by far the most important 
symmetry of the crystal   =>   Bloch Theorem.
Notice that this symmetry only applies to infinite crystals (or crystals 
with BvK periodic boundary conditions) which is why they have 
been introduced !



Primitive unit cell
Any shape that repeated by lattice vectors covers the space.

- can be defined by three fundamentale lattice vectors a1, a2, a3

                               three lenghts (a,b,c) and three angles (            )
- contains exactly one lattice point
- !! the choice of primitive vectors is not unique !!  
- volume of the primitive cell is independent on that choice

The Wigner-Seitz cell (the region closer to the origin than to any 
           other lattice point) is the most symmetric choice



BCC

FCC

Wigner-Seitz cell



Crystal lattice
A regular array of atoms periodically repeated in space

The crystal structure is defined by 

1) Bravais lattice : regular periodic arrangement of points
in space defined by the primitive translation vectors (cell shape)

2) Basis : position of the atoms in the primitive cell



Crystal = Bravais Lattice + basis



Crystal Symmetry

  !! symmetry of the crystal goes beyond translational invariance
           => point group operations !!



Crystal Symmetry

32  point groups

230 space groups: 73 symmorphic, 157 non-symmorphic

14 Bravais lattices: 7 crystal systems

  !! symmetry of the crystal goes beyond translational invariance
           => point group operations !!

The complete group of coordinate transformation of a crystal 
(its space group) is smaller than the space group of its lattice 
The presence of  more than one atom in the unit cell can only 
reduce the number of symmetry operations of the lattice.



14 Bravais Lattices grouped in 7 crystal systems 





Primitive vs conventional cell
Conventional cells are often used instead of the primitive cell

1 atom/cell 4 atoms/cell



Reciprocal Lattice
Besides the Bravais lattice it is useful to introduce its dual
                    the reciprocal lattice

Defined by

if

then

with



Reciprocal Lattice

- spacing in the RL is inversely proportional to the spacing in the BL

- the primitive cell contains exacly one G point

- the choice of primitive cell is not unique but defined by the choice
  made for the direct lattice
- the volume of the primitive cell is

- points defined as



b1

b2

Brillouin zone

Reciprocal 
Lattice cell 







Kohn-Sham equations in a periodic solid

Periodic solid: atoms in periodically repeated positions

is periodic, hence so is 



Periodic effective potential

The effective potential represents the effect of the ions on the 
electrons and has the same periodicity of the crystal

can be expanded in plane waves COMPATIBLE with the 
periodicity of the crystal



Bloch Theorem

 is a good quantum number to label the 
eigenfunctions of a periodic crystal

is a symmetry op.

BvK boundary conds:

There are as many k points in the BZ as cells in the BL



Bloch Theorem

 is a good quantum number to label the 
eigenfunctions of a periodic crystal

Wavefunctions are PWs modulated by a periodic function

with                                                 manifestly  periodic

Crystal periodicity imposes that the crystal wavefunctions 
are linear combinations of PWs with wave-vector k+G







Dual Space Formalism



Bloch Theorem



- each completely filled band contains 2 electrons/cell -





Charge Density of infinite periodic solid

where 

is normalized in the whole crystal volume

where 

is normalized in the unit cell volume



BZ integrals

Assuming f(k) has the full symmetry of the crystal 
if we can find a point where f(k)=<f> we only need 
to compute the function  f  in that single point ! 





BZ integrals

Actually it is zero up to         ! 





BZ integrals

A regular grid of k-points with                       integrates 

exactly up to                      (in a cubic system) 



Monkorst-Pack meshes

●Regular equispaced meshes in the Brillouin Zone  



Monkorst-Pack meshes

●Symmetry is exploited in order to reduce the number of 
inequivalent points to be considered



Brillouin Zone integration
●In insulators the quantity to be integrated is smooth 
across the BZ (exponentially localized Wannier functions) 

 insulator

●The integral is computed exactly if the WF are localized 
inside the SuperCell corresponding to the k-point grid



Brillouin Zone integration

●Sampling at the Gamma point (isolated molecules, clusters)
●Sampling on a regular grid  (Baldereschi,Chadi-Cohen,
                                                                 Monkhorst-Pack)

●In metallic systems, the function to be intergrated is 
sharply varying across the Fermi surface. Integration can 
be improved by introducing a finite (ficticious) temperature.

 metal insulator



Brillouin Zone sampling

●In metals the quantity to be integrated is discontinuous 
due to the presence of the Fermi surface



Brillouin Zone sampling
●Integration is improved by introducing a finite (ficticious) 
temperature. [Fermi-Dirac, Gaussian, Methfessel-Paxton, 
Marzari-Vanderbilt]



The larger is     the smoother is the function and therefore 
smaller is the number of k-points in the grid needed to 
integrate accurately

The step function makes the integral badly convergent



Unfortunately, the larger is     the more the function differs 
from the original one and the integral deviates from the      
            limit that corresponds to the physical situation.

The step function makes the integral badly convergent















Brillouin Zone sampling
●Integration is improved by introducing a finite (ficticious) 
temperature. [Fermi-Dirac, Gaussian, Methfessel-Paxton, 
Marzari-Vanderbilt]



Brillouin Zone sampling



Step 1 : defining V_ext



The external potential

Electrons experience a Coulomb potential due to the 
nuclei.

This has a known simple form.

For a single atom it is



Periodic potential



Periodic potential

  atomic form factor  crystal structure factor



nuclear potential

The Coulomb potential due to any single atom is

The direct use of this potential in a Plane Wave code
leads to computational difficulties!



Problems for a Plane-Wave based code

Core wavefunctions:
Sharply peaked close 
to nuclei due to deep
Coulomb potential.

Valence wavefunctions:
Lots of wiggles near nuclei 
due to orthogonality to 
core wavefunctions

High Fourier components are present
i.e. large kinetic energy cutoff needed









Solutions for a Plane-Wave based code

Core wavefunctions:
Sharply peaked close 
to nuclei due to deep
Coulomb potential.

Valence wavefunctions:
Lots of wiggles near nuclei 
due to orthogonality to 
core wavefunctions

Don't solve for
core wavefunction

Remove wiggles from
valence wavefunctions

Replace hard Coulomb potential 
by smooth PseudoPotentials

This  can be done on an empirical basis by
 fitting experimental band structure data ..



Empirical PseudoPotentials 

Cohen & Bergstresser, 
        PRB 141, 789 (1966)

 transferability to other systems is problematic



ab initio Norm Conserving PseudoPotentials 

Let's consider an atomic problem ...

… in the frozen core approximation: 

if           and          do  not overlap significantly:



ab initio Norm Conserving PseudoPotentials 

... hence 

 or in case of overlap we have (non-linear core correction) 

 with 

 with

 with a Coulomb tail corresponding to 



ab initio Norm Conserving PseudoPotentials 

 

 

 

                is further modified in the core region so that the 
reference valence wavefunctions are nodeless and smooth and 
properly normalized (norm conservation) so that the valence 
charge density (outside the core) is simply:

The norm-conservation condition ensures correct electrostatics 
outside the core region and that atomic scattering properties 
are reproduced correctly 

this determines transferability 



An example:      Mo 

l-dependent
     potential

Hamann, schlueter & Chiang, PRL 43, 1494 (1979)



An example:      Mo 

Hamann, schlueter & Chiang, 
                  PRL 43, 1494 (1979)



ab initio Norm Conserving PseudoPotentials 

 semilocal form

is local with a Coulomb tail 

is local in the radial coordinate, short ranged
 and  l-dependent

where projects over  L = l(l+1)

is a full matrix !   NO use of dual-space approach

2



ab initio Norm Conserving PseudoPotentials 

 … to Kleinman-Bylander fully non-local form

is local with a Coulomb tail 

                                 are localized radial functions 
such that the transformed pseudo acts in the same 
way as the original form on the reference config.

 from semilocal form ... 

One has 



ab initio Norm Conserving PseudoPotentials 

 

 

 

Kleinman-Bylander fully non-local form

is local with a Coulomb tail 

                                 are localized radial functions 
such that the transformed pseudo acts in the same 
way as the original form on the reference config.

The pseudopotential reduces to a sum of dot products

One has 



ab initio Norm Conserving PseudoPotentials 

 Kleinman-Bylander fully non-local form

When this happens the pseudopotential has GHOST states 
and should not be used.

The KB form is more efficiently computed than the original 
semi-local form.

By construction it behaves as the original form on the 
reference configuration … but … there is no guarantee that 
the reference configuration is the GS of the modified 
potential.



ab initio Norm Conserving PseudoPotentials 

Desired properties of a pseudopotential are

  - Transferability  (norm-conservation,  small core radii,
                       non-linear core correction, multi projectors) 

  - Softness  (various optimization/smoothing strategies,
                     large core radii)

For some elements it's easy to obtain “soft” Norm-Conserving
PseudoPotentials. 

For some elements it's instead very difficult!

Expecially for first row elements (very localized 2p orbitals)
      and 1st row transition metals (very localized 3d orbitals)  



Norm-Conserving PseudoPotentials 
           basic literature 

 <1970   empirical PP.   es: Cohen & Bergstresser, PRB 141, 789 (1966)
  
1979 Hamann, Schlueter & Chang,  PRL 43, 1494 (1979), ab initio NCPP
1982 Bachelet, Hamann, Schlueter, PRB 26, 4199 (1982), BHS PP table 
1982 Louie, Froyen & Cohen, PRB 26, 1738 (1982), non-linear core corr.
1982 Kleinman & Bylander, PRL 48, 1425 (1982), KB fully non local PP

1985 Vanderbilt, PRB 32, 8412 (1985), optimally smooth PP
1990 Rappe,Rabe,Kaxiras,Joannopoulos, PRB 41, 1227 (1990), optm. PP
1990 Bloechl, PRB 41, 5414 (1990), generalized separable PP
1991 Troullier & Martins, PRB 43, 1993 (1991), efficient PP
….

1990 Gonze, Kackell, Scheffler, PRB 41, 12264 (1990), Ghost states

1991 King-Smith, Payne, Lin, PRB 44, 13063 (1991), PP in real space



Ultra Soft PseudoPotentials  

In spite of the devoted effort NCPP’s are still “hard”and 
require a large plane-wave basis sets (Ecut > 70Ry) for
first-row elements (in particular N, O, F) and for transition
metals, in particular the 3d row: Cr, Mn, Fe, Co, Ni, …

                                                                Copper 3d orbital
                                                                              nodeless

RRKJ, PRB 41,1227 (1990)



Ultra Soft PseudoPotentials  

Even if just one atom is “hard”, a high cutoff is required. 

UltraSoft (Vanderbilt) PseudoPotentials (USPP) are devised 
to overcome such a problem.

                                                                Oxygen 2p orbital
                                                                              nodeless

Vanderbilt, PRB 41, 7892 (1991)



Ultra Soft PseudoPotentials  

where the “augmentation charges” are 

are projectors

are atomic states (not necessarily bound) 

are pseudo-waves (coinciding with        beyond some core radius) 



Ultra Soft PseudoPotentials  

where 

leading to a generalized eigenvalue problem

Orthogonality with USPP: 



Ultra Soft PseudoPotentials  

where 

There are additional terms in the density, in the energy, in the hamiltonian
in the forces, ... 



Ultra Soft PseudoPotentials  

Electronic states are orthonormal with a (configuration dependent) 
overlap matrix 

There are additional terms in the density, in the energy, in the hamiltonian
in the forces, ... 

The “augmentation charges” typically require a larger cutoff for the 
charge density:  

QE Input parameter: ecutrho (SYSTEM namelist)

Default value is ecutrho = 4 × ecutwfc (OK for NC PP)

For USPP a larger value ecutrho  is often needed.



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

all-electron wave function

pseudo wave function

all-electron atomic partial waves

pseudo atomic partial waves

 localized projectors on the atomic
 partial waves such that

It is always possible to express the AE wfc via augmentation
of a smooth   (pseudo) wfc using atomic reference states

an all-electron method !

where...



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

It is always possible to express the AE wfc via augmentation
of a smooth   (pseudo) wfc using atomic reference states

an all-electron method !

pictorially

's   coincide outside the core region
                                 and we can truncate them 

's and 

The      's  projectors are localized in the core region...

is a localized operator !



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

AE matrix elements of any operator can then be computed as

an all-electron method !

for local operators (kinetic energy, potential,...) one can show

if the        expansion is complete 

and normalization of wfc is computed with



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

AE results can be computed from the PS matrix elements 
augmented by KB-like contributions that can be computed 
from atomic AE and PS reference calculations. 



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore

 but it is convenient to add/subtract a compensating charge
 so that the AE and PS atomic references have the same
 Multipole expansion 



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

The charge density is therefore



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

…

The different energy contributions so become



Projector Augmented Waves  
Bloechl, PRB 50, 17953 (1994)

an all-electron method !

Finally the KS eigenvalue problem is as for USPP 

with

where



Step 2 : initial guess for rho_in



Initial choice of rho_in

Various possible choices, e.g.,:

● Superpositions of atomic densities.
● Converged n(r) from a closely related calculation (e.g., 
one where ionic positions slightly different).
● Approximate n(r) , e.g., from solving problem in a 
smaller/different basis.
● Random numbers.



Initial choice of rho_in

Various possible choices, e.g.,:

● Superpositions of atomic densities.
● Converged n(r) from a closely related calculation (e.g., 
one where ionic positions slightly different).
● Approximate n(r) , e.g., from solving problem in a 
smaller/different basis.
● Random numbers.

Initial guess of wfc

QE input parameter startingwfc

'atomic'  |  'atomic+random' | 'random' | 'file' 



Pseudopotentials in Quantum ESPRESSO 

Go to http://www.quantum-espresso.org/



Pseudopotentials for Quantum ESPRESSO 
Click on the element for which the PP is desired



Pseudopotentials for Quantum ESPRESSO 

Pseudopotential's name gives
Information about

-exchange correlation functional

-type of pseudopotential



Atomic and V_ion info for QE

ATOMIC_SPECIES
Ba 137.327 Ba.pbe-nsp-van.UPF
Ti 47.867 Ti.pbe-sp-van_ak.UPF
O 15.999 O.pbe-van_ak.UPF

QE input card ATOMIC_SPECIES example:

NOTE
should use the same XC functional for all pseudopentials.
ecutwfc, ecutrho depend on type of pseudopotentials used 
(should test for system & property of interest).



DFT Total Energy in an infinite periodic solid



DFT Total Energy in an infinite periodic solid



DFT Total Energy in an infinite periodic solid



THE END
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