Electronic Structure:
from BlackBoard
to Source Code

Stefano de Gironcoli
Scuola Internazionale Superiore di Studi Avanzati
Trieste-Italy




Going beyond Local Density and
Gradient Corrected XC functionals
in Quantum-ESPRESSO




Jacob's ladder of Density Functional Theory

Chemical Accuracy

unoccupied 9, (1) l O exact exchange and exact partial correlation
occupied ¥, (r') exact exchange and compatible correlation
7(r) meta-generalized gradient approximation
Vn(r) generalized gradient approximation

n(r) | T O local spin density approximation

Hartree World

FIGURE 1. Jacob's ladder of density functional approximations. Any resemblance to the Tower
of Babel is purely coincidental. Also shown are angels in the spherical approximation, ascending
and descending. Users are free to choose the rungs appropriate to their accuracy requirements
and computational resources. However, at present their safety can be guaranteed only on the two
lowest rungs.




LDA and LSDA

GGA : PW91, PBE, revPBE, RPBE, BLYP

META-GGA: PKZB, TPSS,

SIC, DFT+U, hybrids

van der Waals functionals
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simple approximations can work reasonably
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FIG. 4. Relative magnitudes of contributions to total valence
‘<., energy of Mn atom (in eV).




simple approximations can work reasonably
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Summary of Geometry Prediction

LDA under-predicts bond lengths (always ?)

GGA error is less systematic though over-prediction is
common.

errors are in many cases < 1%, for transition metal
oXides < 5%




Summary: Comparing Energy of Structures

For most elements, both LDA and GGA predict the correct structure for a
material (as far as we know)

Notable exceptions: Fe in LDA: materials with substantial electron
correlation effects (e.g. Pu)




Redox Reactions can be more Problematic

GGA Exp
FePO, + Li -> LiFePO, 28eV  35eV
MnO, + Li -> LiMn,O, 3.6 eV 4.1 eV

V,5(POy); + LI -> LiV,y(POy)s 3.3eV 4.6eV

All these reactions involve the transfer of an electron from a
delocalized state in Li metal to a localized state in the transition
metal oxide (phosphate)




N, N, N,
H= 2. H = 2.V +2 Vitew () + 2 Vigucrns(13)
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Small self-interaction error
Metal
Self interaction in DFT
r is key problem in transition
p(r) metal oxides
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(\ Large self-interaction




Problems with LDA / GGA functionals

* Chemical accuracy (1 kcal/mol) is far.
- trends are often accurate for strong bonds (covalent, ionic,metallic)

- weak bonds/small overlaps are problematic

* Self interaction cancellation is only approximately

verified in LDA and GGA.

- molecular dissociation limit, TMO & RE and other atom-in-solid system.

°*van der Waals interactions are not taken into account

- occasional agreement with exp. from compensation of errors




SIC, DFT+U, hybrids

Self interaction correction was proposed as early as in 1981
by Perdew-Zunger. Conceptually important but not widely
used.

DFT+U has been introduced by Anisimov, Zaanen and
Andersen as an approximation to treat strongly correlated
materials. It has been more recently been applied also in
more normal system with encouraging results.

Hybrid functionals (like PBEO, B3LYB) mix a fraction of
Self-interaction-free HF with LDA/GGA functionals.
Is the method preferred by chemists.

It is very expensive in a plane-wave basis.
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The exact density functional for the ground-state energy is strictly self-interaction-free (1.e., orbitals demonstrably
do not self-interact), but many approximations to it, including the local-spin-density (LSDY) approximation for
exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any
density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the
variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method
introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham
scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-
correlation hole, while substantially improving the description of its shape. We apply this method to a number of
physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic
improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations
include (1) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii)
accurate binding energies of negative ions, which are wrongly unstable in LSD, {iii) more accurate electron densities,
|iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct long-
range behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band
gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate
of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and 5-d interconfigurational
energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional
occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on
€ recent results of Ceperlev and Alder.
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Hartree-Fock energy
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« Exact Exchange (OEP)

« Hybrid Functionals: HH, B3LYP, PBEO
(range separated) HSE




HF Vx using PWs

* FFT pseudo wfc to real space
So(k +G) TET gy (r)

* For each gpoint and each occupied band build “charge density”

ﬂq(r) — Qﬁlﬂ;—qﬁ’(r) (bkv{r)

* FFT charge to recip.space and solve Poisson eq.
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* FFT back to real space, multiply by wfc and add to result
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The q+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)
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The g+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)
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The g+G=0 divergence

* Gygi-Baldereschi PRB 34, 4405 (1986)
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Silicon Bulk

Silicon Ex with 8x8x8 k-grid and MxMxN g-grid
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Simple Molecules

HF PBE PBED EXP

PW G PW  PAW G PW  PAW G
N, 114 115 239 244 244 221 225 226 227
02 36 33 139 143 144 121 124 125 118
G 113 175 265 209 269 252 253 2b0 261

PAW : Paier ,Hirschl,Marsman and Kresse, J. Chem. Phys. 122, 234102 (2005)

Energies in kcal/mol = 43.3 meV




Scaling

Kinetic energy and local Potential

NPW + 2« FFT + NRXX
Non local potential

2* NBEND « NPW

*Fock operator

2%« FFT+ NBND* NQ * (NRXX + FFT)+ 2+ NRXX
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Kinetic energy and local Potential

NPW + 2« FFT + NRXX
Non local potential

2* NBEND « NPW

*Fock operator

2%« FFT+ NBND* NQ * (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case




Scaling

Kinetic energy and local Potential

NPW + 2« FFT + NRXX
Non local potential

2* NBEND « NPW

*Fock operator

2%« FFT+ NBND* NQ * (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case

Moore's law: computer power doubles every 18 months
( a factor of 10 in 5 yrs)




Scaling

Kinetic energy and local Potential

NPW + 2« FFT + NRXX
Non local potential

2* NBEND « NPW

*Fock operator

2%« FFT+ NBND* NQ * (NRXX + FFT)+ 2+ NRXX

From 10 to 100 times slower than standard case
Separation of long- and short-range part in X can help




the modified scf cycle

The HF energy is
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The HF equations are therefore
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the modified scf cycle

construct V_ext

guess rho in & phi_in

compute V_KS

diagonalize H_KS 1

r

compute rho_out

mix to get
new rho_in
& new phi_in|

compute forces, stress,
and other properties




the modified scf cycle

Let's introduce an auxiliary set of functions
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the modified scf cycle

Let's introduce an auxiliary set of functions
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the modified scf cycle

Let's introduce an auxiliary set of functions

Enp|®, U] = Z<¢z\ - —V2\¢z> / Vewt(r)p(r)dr + Eglp] + Ewr
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the modified scf cycle

Let's introduce an auxiliary set of functions

Enp|®, U] = Z<¢z\ - —V2\¢z> / Vewt(r)p(r)dr + Eglp] + Ewr
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The minimizing equations become

r=r]
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and  Yi(r) = ¢i(r), Vi




construct V_ext | the modified scf cycle

construct V_x[psi]

guess ]t,*ho_in

compute V_KS

w

diagonalize H_KS 1 1

compute rho_out

: mix to get
ho_in =rho_out ? new rho_in
yes
psi =phi ! [~

compute forces, stress,
and other properties




Adaptively Compressed Exchenge (ACE)

Applying the Fock operator is estremely expensive !




Adaptively Compressed Exchenge (ACE)

Applying the Fock operator is estremely expensive !

One can try to approximate it via a KB-type factorization in
the inner loop of the nested sct-cycle (ACE)

VEEW] ) ws)ag; (w))
7

such that it works exactly on the reference wfc |iy)

Lin Lin. Adaptively Compressed Exchange operator. arXiv, 2016.




Adaptively Compressed Exchenge (ACE)

Applying the Fock operator is estremely expensive !

One can try to approximate it via a KB-type factorization in
the inner loop of the nested sct-cycle (ACE)
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such that it works exactly on the reference wfc |iy)

W) = V;IS[F[‘I’]IW = |wg) Z w;)ai; ¢J’ Y] )

> s (V10 o) = 0
J = ay; = WVEF0]]);!

Lin Lin. Adaptively Compressed Exchange operator. arXiv, 2016.




Adaptively Compressed Exchenge (ACE)

Applying the Fock operator is estremely expensive !

One can try to approximate it via a KB-type factorization in
the inner loop of the nested sct-cycle (ACE)

VEEW] ) ws)ag; (w))
1,J
such that it works exactly on the reference wfcs |i;)

we) = VEEIW ), @i = @IVEET]0)5;

in this way the calculation of H psi in the inner loop is
comparable to a non-hybrid functional.

on the fully self-consistent wics the ACE operator is exact !

Lin Lin. Adaptively Compressed Exchange operator. arXiv, 2016.




LDA and LSDA

GGA : PW91, PBE, revPBE, RPBE, BLYP

SIC, DFT+U, hybrids

van der Waals functionals

... to be continued
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