Symmetry in PWSCF
and other QFE codes
(PHonon in particular)



Gamma point

When dealing with large systems Gamma point
sampling 1s often used.

CP 1s written with Gamma polnt sampling only.
This 1s due to special properties that can be

exploited for Gamma that make the calculation
faster than for a generic k




Special properties of Gamma point

If Gamma polnt 1s used

the wave functions can be assumed to be
real 1in real space !

por(r) = byr(r) = u(r)

This imposes constraints in its
reciprocal space representation

w(—G) = u* (G)

hence only half of the PW component are
independent and need to be stored/processed.




Special properties of Gamma point

Operators 1n Reciprocal Space regulre simple
adjustments to cut 1in half the cost

Normallzatlon
(Yl) = Z\w = 2 Z — [ (0)[?

Ge{G-}

Where (;> are the G vectors whose first cartesian
component 1s positive

Kinetic energy:
Gmaa: maa:
h2

WITI) = Y - IGP(@GIP= 2 ) 5 \G! U(G)[

G GE{G>}




Special properties of Gamma point

Operators 1n Real Space can exploit REAL Arithmetics

Potential times wavefunction:
do 1r=1, nrr
vpsli(ir) = v(ir) * psi(ir)
end do

one COMPLEX multiplication takes 4 REAL ones

calls to REAL blas and lapack routines are similarilyf
more efficients and use less memory.




Special properties of Gamma point

FFT operations are a big part of the calculation

1g FFT index of a G

aux (ig )= psi(ig,ibnd) + (0.0,1.0) * psi(ig,ibnd+l)

img = FFT index of -G

aux (img)= CONJG (psi(ig,ibnd))+ (0.0,1.0) * CONJG(psi(ig,ibnd+l
call invfft (aux)

psir(ir, 1ibnd) = REAL ( aux(ir)

psir(ir, 1ibnd+1l) = DIMAG( aux(ir) )

the FFT of two wfcs at Gamma can be performed at the

same time! Similarly for the fwfft

aux (ir) = CMPLX( psir(ir, ibnd),psir(ir, ibnd+1l))

call fwfft (aux)

psi(ig, 1bnd) = 0.5 *( aux(ig) + CONJG(aux(img)) )

psi(ig, ibnd+l) = 0.5 *( aux(ig) - CONJG(aux(img)) )/(0.0,1.0)

Exploiting these properties the gamma only calculations are
at least twice faster and use less memory !




Crystal Symmetry

In calculations i1nvolving generic k-poilnts
crystal symmetry 1s explolited to reduce the
amount of work needed for a given desired

k-point sampling




Time Reversal Symmetry

A symmetry that 1s always present 1s the one due
to time reversal (reality of the hamiltonian)

This implies W_,(r) =V (r) [eig.val. €_p =€k ]

So we can always use only half of the k-points.




Crystal Symmetry

Crystal symmetry operations are i1n general
(im) proper rotations with possibly a fractional
translation.

S:r— 1" =8+ f)

Crystal symmetry operations form a Group.

SSReGg—8SReg




Crystal Symmetry
S:r—1r' =8+ f)

The Hamiltonian is invariant under sym.ops.

SHST =H

H(r,p;R) = H(r',p', R)
H(r,p; R) = H(S 'r— £,8'p,ST'R — f)

effect on a wfc:

if U(r) 1is an eigenfunction [eig.val €]

SO 1S \If/(’l“) — S\P(T) — \P(S_lfl“ — f) [eig.val €& ]




Symmetry and Bloch states
S:r—1r' =8+ f)
Effect on Block states:
if Ui (r) = expltkr] u(r) [eig.val. &g

then SWUg(r) = \Ifk(S_lT — f)




Symmetry and Bloch states

S:r—1r' =8+ f)
Effect on Block states:
if Ui (r) = explikr] u(r) leig.val. € ]
then SUL(r) = V(S 'r — f)

= explikS™'r —ikf] u(ST'r — f)

= explikStr] /' (7)

= expli(Sk)r] u'(r) = Wg(r)

[eig.val. €Sk — €k ]




Symmetry and Charge Density
S:r—1r' =8+ f)

o) =5 3 3 R W)

X




Symmetry and Charge Density
S:r—1r' =8+ f)
1
p(r) =+ D 1Wk(r)P

keBZ

— % Z Z %‘\Ifgk(’l“) 2

kelW SeGg =~ ¢

L > —|‘I’k “r— )P
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Symmetry and Charge Density
S:r—1r' =8+ f)




Symmetry and Charge Density
S:r—1r' =8+ f)

o) = 3 [Tk(r)]

o(r) = 1 30 3 welUa(S7r — f)P
® SeG keIw

o(r) = = S oS = f)




Symmetry and Forces
S:r—1r' =8+ f)




where

Symmetry and Stress

W)

W)

S:r—1r' =8+ f)
1 1 OH
= — U, —
ap N Z< d () Oeqp
keBZ
O'Oéﬁ— S‘ S‘Saa/Sbﬁ/ O-Oé,/B/
5 Seg a’,B’
1 OH
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kEBZ {2 Oeap
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Symmetry and Dynamical Matrix
S:r—1r' =8+ f)

1 0 H(q)
Dq — .7 — » I\
I()A,Jﬁ N Z < k‘ aRIQaRJB ‘ k>

ke BZ
D?Q,Jﬁ = Z Z Saa’Sﬁﬂ’ DS(I)a ,s(J)B’
® Seg Ia!,Jp
- 0°H
where D?O&,Jﬁ p— Z wk<qjk"7 L (q) 77|\Ijk>

OR1.0R 5

with Z wy, = 1

kelW

kelW




Symmetry and Dynamical Matrix
S cr — 1" =8S(r+ f)

DIa JB = Z Z Saa’sﬁﬁ’ Ds(I)a ,s(J)B’
® 8eg Ia',JpB

Displacements for all g in the star,
all atoms in the cell,
all Cartesian directions
would be needed to advance scf dfpt

this 1s most often too much
(except for bulk semiconductors...)




Symmetry and Dynamical Matrix

If we reduce the symmetry to only those
sym.ops. that do not rotate the g wvector

S'r—%r’— S(r+ f) Sq=q
Dla JB = Z Z Saa’sﬁﬁ’ DS(I)a ,s(J)B’
° Seg’ Ia’,Jp

this can be reduced to
displacements for all atoms in the cell,

all Cartesian directions
The price 1s an increased number of k-points

e o ot 12©2©2©2©
o o4 8@ +qx = 3@2@2@2@

This 1s most often still too much




Symmetry and Delta rho

If we reduce the symmetry to only those
sym.ops. that do not rotate the g wvector

S:r%r’:S(r—l—f) Sq =q
Apg1a(r) = Z Wi(r) AWiiqra(r)
kEBZ
1 . _ .
Apq,1a(r) = 7 D D Sap Dbgsnp(S™'r — fexplig]]
Seg’ B
Apg 1a(r) =2 Z w Yi(r) AViygra(r)
keIW/

We can perform DFPT calculations on small groups
of patterns that transform among themselves
- 1rreducilble representations




Symmetry and Delta rho

Let's have

S:r— 1" =8(r+f) Sq=q

Let's assume we have irr. reps.

qu,u Z \Ijk A\Ijk‘anM(T)
kEBZ
A,Oq,,u( = — > >1D,uy qu I/(S_lrr — f)eXp[Z¢g]
®Scg’ v

Apgu(r) =2 Z w Ui(r) AWgiqu(r)
kel W’




Symmetry and Delta rho

Let's have

S:r—r'=Sr+/f)

How do we get the irr. reps. ?

Generate a Random Matrlx RM

RMj, ;53 = (rand,rand)

Symmetrize 1t

Dla JB_ Z Z Saa’sﬁﬁ’

Diagonalize 1t 7 S€g Ia',Jp
L
E Dla JBUJB — Mw? AN

(I)Oé s(J)B’

each degenerate level identifies an 1irr.rep.
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