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Quantum Theory of Spin Waves

In Chapter 1, we discussed the angular momenta and magnetic moments of
individual atoms and ions. When these atoms or ions are constituents of a
solid, it is important to take into consideration the ways in which the angular
momenta on different sites interact with one another. For simplicity, we will
restrict our attention to the case when the angular momentum on each site is
entirely due to spin.

The elementary excitations of coupled spin systems in solids are called spin
waves. In this chapter, we will introduce the quantum theory of these excita-
tions at low temperatures. The two primary interaction mechanisms for spins
are magnetic dipole–dipole coupling and a mechanism of quantum mechanical
origin referred to as the exchange interaction. The dipolar interactions are of
importance when the spin wavelength is very long compared to the spacing
between spins, and the exchange interaction dominates when the spacing be-
tween spins becomes significant on the scale of a wavelength. In this chapter,
we focus on exchange-dominated spin waves, while dipolar spin waves are the
primary topic of subsequent chapters.

We begin this chapter with a quantum mechanical treatment of a sin-
gle electron in a uniform field and follow it with the derivations of Zeeman
energy and Larmor precession. We then consider one of the simplest exchange-
coupled spin systems, molecular hydrogen. Exchange plays a crucial role in
the existence of ordered spin systems. The ground state of H2 is a two-electron
exchange-coupled system in an embryonic antiferromagnetic state. It serves
to illustrate the origins of the exchange interaction and also provides a vehicle
for our discussion on the Heisenberg spin Hamiltonian in ferromagnetic solids.

2.1 Charged Particle in an Electromagnetic Field

We obtained the time-independent Schrödinger equation (1.46) by quantiz-
ing the total energy of a particle moving in an electrostatic potential. Since
we also want to understand the effects of a magnetic field, we now concern
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34 2 Quantum Theory of Spin Waves

ourselves with understanding the interactions of a charged particle in a gen-
eral electromagnetic field. Maxwell’s equation from Gauss’ Law specifies the
divergence of the magnetic flux density as

∇ · B = 0. (2.1)

This allows us to express B as the curl of a vector

B = ∇× A, (2.2)

where A is known as the vector potential.1 If we substitute this into Maxwell’s
equation from Faraday’s law

∇× E = −∂B
∂t

, (2.3)

we obtain

∇×
(
E +

∂A
∂t

)
= 0. (2.4)

Thus, we can set

E = −∂A
∂t

−∇φ, (2.5)

where φ is known as the scalar potential.
Now, consider the motion of a particle with charge q in an electromagnetic

field. The force acting on the particle is given by

F = q[E + v × B] (2.6)

or

m
dv
dt

= q

(
−∂A

∂t
−∇φ + v × (∇× A)

)
. (2.7)

Since
dAx

dt
=

∂Ax

∂t
+
(

vx
∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

)
, (2.8)

we can write

(v ×∇× A)x = vy

(
∂Ay

∂x
− ∂Ax

∂y

)
− vz

(
∂Ax

∂z
− ∂Az

∂x

)

=
∂

∂x
(v · A) − dAx

dt
+

∂Ax

∂t
.

(2.9)

1 Note that (2.2) gives us the freedom to write A = A′ + ∇φ, since ∇× (∇φ) = 0
for any scalar function φ. Further, we must specify the divergence as well as the
curl to uniquely define a vector function. Generally, the choice of ∇ · A is made
for convenience. The choice ∇ · A = 0 is known as the Coulomb gauge [1].
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With some simple algebra, we simplify Eq. (2.7) to

d

dt
[mv + qA] = ∇[−qφ + q(v · A)]. (2.10)

Let us borrow the concept of a Lagrangian from classical mechanics, to
aid us in the interpretation of Eq. (2.10). Consider the motion of a particle,
in three dimensions, in a potential V (x). The Lagrangian for the particle is
defined as the difference between the kinetic and potential energies:

L = T − V

=
1
2
m|ẋ|2 − V (x).

(2.11)

The motion of the particle is given by the Euler–Lagrange equation (cf.
Goldstein [2])

d

dt

(
∂L
∂ẋ

)
=

∂L
∂x

. (2.12)

Substituting (2.11) into (2.12) yields mẍ + ∇V = 0. If we define the force
exerted on the particle as F = −∇V , we recover the first law of Newtonian
mechanics, F = mẍ. We can also identify the canonical variable p = mẋ
as the momentum of the particle in consonance with Newton’s second law
F = dp/dt.

Returning to our discussion of a charged particle in an electromagnetic
field, consider the x component of (2.10),

d

dt
[mvx + qAx] =

∂

∂x
[−qφ + q(v · A)] . (2.13)

If we identify the Lagrangian as

L =
1
2
mv · v − qφ + qA · v, (2.14)

we observe that (2.13) is the Euler–Lagrange equation in one dimension,

d

dt

(
∂L
∂ẋ

)
=

∂L
∂x

. (2.15)

We can also identify the conjugate momentum variable for x,

px =
∂L
∂ẋ

= mvx + qAx . (2.16)

Performing a similar analysis for the y and z-components of (2.12) leads to

p = mv + qA. (2.17)

A reformulation of Lagrangian mechanics, introduced by the Irish mathe-
matician W. R. Hamilton, allows us to express the equations of motion as first
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order differential equations in a phase space defined by x and p. The Hamil-
tonian of a system, introduced in Eq. (1.43), is defined as the sum of the
kinetic and potential energies. A particle with velocity v has kinetic energy
T = (p ·v)/2. To study the interaction of the particle with an electromagnetic
field, we use (2.11) and rewrite the Hamiltonian as

H = T + V

= p · v − L

= p ·
[

1
m

(p − qA)
]
− m

2

[
1
m

(p − qA)
]2

+ qφ − qA · 1
m

(p − qA)

=
1

2m
[p − qA]2 + qφ, (2.18)

where we have used (2.17) to eliminate v. We make the transition to quantum
mechanics, following the procedure adopted in Section 1.4.2, by replacing the
operator p with (�/i)∇ to yield

H =
1

2m

[
�

i
∇− qA

]2

+ qφ. (2.19)

Finally, we postulate that the particle is described by a wavefunction Ψ(r, t),
which is a solution to the time-dependent Schrödinger equation

i�
∂Ψ

∂t
= HΨ. (2.20)

The Schrödinger equation (2.20) is an operator equation that describes
how the wavefunction Ψ evolves with time, while H is time independent.
Other interpretations of time evolution in quantum mechanics, such as the
Heisenberg and the interaction pictures [3], allow operators like H to become
time dependent. We shall confine our present discussions to the Schrödinger
picture of quantum mechanics.

2.2 Zeeman Energy

Let us write the wavefunction of the particle in a static electromagnetic field
as

Ψ(r, t) = ψ(r)e−iEt/�. (2.21)

Substituting Ψ(r, t) into Eq. (2.20), we find that ψ(r) must satisfy the equation

1
2m

[
�

i
∇− qA

]2

ψ + qφψ = Eψ (2.22)
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or

− �
2

2m
∇2ψ − �

i

q

2m

[
∇ · (Aψ) + A · ∇ψ

]
+
[

q2

2m
A2 + qφ

]
ψ = Eψ. (2.23)

Recall that we had some flexibility in our definition of the vector potential A,
and in particular we can specify ∇ · A to our convenience. A common choice
is ∇ · A = 0, referred to as the Coulomb gauge. Hence,

∇ · (Aψ) = (∇ · A)ψ + A · ∇ψ = A · ∇ψ. (2.24)

Furthermore, for a uniform magnetic field, since

∇× (B × r) = B∇ · r − r∇ · B + (r · ∇)B − (B · ∇)r
= (∇ · r)B − (B · ∇)r
= [3B − B]
= 2B,

(2.25)

we can write
∇× A =

1
2
∇× (B × r). (2.26)

Using Eqs. (2.24) and (2.26), we find that the second term on the left of
Eq. (2.23) can be simplified and written as2

−�

i

q

m
A · ∇ψ = −�

i

q

2m
(B × r) · ∇ψ

= − q

2m
B ·

[
r ×

(
�

i
∇
)]

ψ

= − q

2m
B · (r × p)ψ

= − q

2m
(B · L)ψ

= −μ · Bψ,

(2.27)

where we have used the classical definition of angular momentum L = r× p.
We define the Zeeman energy as

Ez = −μ · B, (2.28)

and note that it yields a lower energy when the magnetic moment μ is parallel
to the applied magnetic field.

The term proportional to q2A2 in Eq. (2.23) is often ignored since, for
typical magnetic field values, it makes a negligible contribution to the total
energy. In the absence of an electric field, the Hamiltonian thus reduces to

H = − �
2

2m
∇2 − q

2m
(L · B). (2.29)

2 The scalar triple product of three vectors has the identity a · (b× c) = (a×b) · c.
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2.3 Larmor Precession

Let us concentrate on the specific problem of an electron in a uniform magnetic
field assumed to be along the ẑ direction. Recall, from Section 1.4.4, that in
the presence of both spin and orbital angular momentum, the total angular
momentum J = L + S. If we neglect all orbital motion, the Hamiltonian
representing the interaction of the magnetic field with the magnetic moment
of the electron is

Hspin = − gq

2m
S · B, (2.30)

where we have used the Landé g-factor of Eq. (1.81) with L = 0. Writing S
in terms of the Pauli spin matrices (cf. Problem 1.5), we have

Hspin =
1
2

�ω0σz, (2.31)

where we have defined the Larmor precession frequency

ω0 = −gqB0

2m
=

gμBB0

�
, (2.32)

for a single electron in a magnetic field of magnitude B0. The eigenvalues of
σz are ±1 yielding the corresponding eigenvalues ± 1

2�ω0 for Hspin with the
spinor eigenstates χ↑↓, respectively. Thus, the general solution to the time-
dependent Schrödinger equation (2.20) is

Ψ(t) = c1 e−iω0t/2χ↑ + c2 e+iω0t/2χ↓ , (2.33)

where

χ↑ =
[
1
0

]
, χ↓ =

[
0
1

]
. (2.34)

A particularly interesting case results when we choose c1 = cos(θ/2) and
c2 = sin(θ/2) to yield

Ψ(t) = cos
θ

2
e−iω0t/2χ↑ + sin

θ

2
eiω0t/2χ↓. (2.35)

To interpret this wavefunction, let us first find the expected value of the x-
component of spin using the operator

Sx =
�

2
σx, (2.36)

where (cf. Eq. (1.93))

σx =
[
0 1
1 0

]
. (2.37)
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The expected value of this operator is

〈Sx〉 =ψ†Sxψ

=
(

cos
θ

2
eiω0t/2χT

↑ + sin
θ

2
e−iω0t/2χT

↓

)

× �

2
σx

(
cos

θ

2
e−iω0t/2χ↑ + sin

θ

2
eiω0t/2χ↓

)
.

(2.38)

Performing the required matrix multiplication and simplifying gives

〈Sx〉 =
�

2
sin θ cos(ω0t). (2.39)

In a similar manner, we find

〈Sy〉 =
�

2
sin θ sin(ω0t), (2.40)

〈Sz〉 =
�

2
cos θ. (2.41)

This solution represents a spin making an angle θ with the ẑ axis and precess-
ing about it with angular velocity, ω0. Thus, we find that a measurement on
the quantum mechanical system yields a result analogous to the semi-classical
description of a precessing moment adopted in Chapter 1.

2.4 Origins of Exchange: The Heisenberg Hamiltonian3

To be independent of any coordinate system, the energy of interaction between
two spins should depend on S1 and S2 only through their relative orientation.
Thus, the interaction should be a function of S1 · S2. The simplest form is
that of the Heisenberg Hamiltonian:

H = −2
J
�2

S1 · S2 . (2.42)

Here, S1 and S2 are angular momentum operators (see Section 1.4 and Prob-
lem 1.5) and J is referred to as the exchange constant for reasons that will
become apparent shortly.

To begin to get an understanding of the origin and meaning of the Heisen-
berg Hamiltonian, we consider the simplest system of coupled atoms whose
spins interact: molecular hydrogen. We would like to calculate the expected
energy of the hydrogen molecule, illustrated in Figure 2.1, to gain an un-
derstanding of how the energy is affected by the spins of the electrons.
3 This section follows a discussion in Mattis [4, Chapter 2]. Treatments of exchange

can also be found in Martin [5] and Rado and Suhl [6]. The approach taken here
was introduced by Heitler and London [7].
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electron 1 electron 2

+

proton a proton b

+ +

Fig. 2.1. The hydrogen molecule consists of two protons, each with a bound electron.
The protons are sufficiently close that the electronic orbitals overlap.

As discussed in Section 1.4.2, we can obtain such an estimate by comput-
ing the expectation of the Hamiltonian operator. This operator is obtained
by writing down an expression for the total energy of the system (kinetic plus
potential), and making the operator substitutions indicated in Table 1.1. The
total energy of this system can be written

H =
p2
1

2m
+

p2
2

2m︸ ︷︷ ︸
electron
kinetic
energy

− q2

cr1a
− q2

cr2b
− q2

cr1b
− q2

cr2a︸ ︷︷ ︸
potential energy between

opposite charges
(attractive)

+
q2

cr12
+

q2

cRab
,

︸ ︷︷ ︸
potential energy

between like
charges (repulsive)

(2.43)

where c = 4πε0, pi are the electron momenta, m is the electron mass, and
rij is the distance between particles i, j. The separation between the protons
Rab, will be considered fixed, as we are primarily interested in how the energy
is affected by the electron dynamics. As indicated in the equation, the total
energy consists of the kinetic energy associated with the electron motion, the
attractive potential energy between each electron and both protons, and the
repulsive potential energy between the electrons and between the protons. We
have neglected the kinetic energy associated with the motion of the protons,
assuming that they are relatively stationary because of their large mass. We
have also neglected the magnetic interaction between the electron spins, as
this interaction is much weaker than the electrostatic interactions contained
in (2.43).

If ψ is the wave function for the system, then the expectation of the en-
ergy can be obtained from Schrödinger’s equation (1.46) generalized to two
particles:

〈E〉 =
∫

ψ∗Hψ d3r1 d3r2∫
ψ∗ψ d3r1 d3r2

. (2.44)

Here, two volume integrations are necessary – one for the coordinate of each
electron. Since the correct answer will be the minimum value of this expression,
a small error in the wave function will result in an error in the energy that is
second order in small quantities. Consequently, we should obtain a satisfactory
answer with a reasonable approximation to the wave function. Because of
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this tolerance to errors in the wave function, this expression is said to be
stationary.4 If the atoms are far apart compared to the atomic diameter, we
should be able to construct a reasonable wave function using the unperturbed
hydrogen atom wave functions ϕa and ϕb. The unperturbed wave functions
satisfy the equations

(
p2
1

2m
− q2

cr1a

)
ϕa (r1) = E0 ϕa (r1) , (2.45)

(
p2
2

2m
− q2

cr2b

)
ϕb (r2) = E0 ϕb (r2) . (2.46)

Using these as basis functions, or building blocks, we can construct symmetric
and antisymmetric two particle wave functions as follows:

ψS =
1√
2

[ϕa (r1) ϕb (r2) + ϕa (r2) ϕb (r1)] , (2.47)

ψA =
1√
2

[ϕa (r1) ϕb (r2) − ϕa (r2) ϕb (r1)] , (2.48)

or
ψ± =

1√
2

[ϕa (r1) ϕb (r2) ± ϕa (r2) ϕb (r1)] . (2.49)

We first calculate the normalization integral in the denominator of (2.44). For
the two-particle wave functions, we must perform a double integration over
the coordinates of both electrons:

∫∫
ψ∗
±(r1, r2)ψ±(r1, r2) d3r1 d3r2 = 1 ± α2, (2.50)

where we have used
∫

|ϕa (r)| d3r =
∫

|ϕb (r)| d3r = 1, (2.51)

and α is defined to be the overlap integral

α =
∫

ϕ∗
a(r)ϕb(r) d3r. (2.52)

After some manipulation, the numerator of Eq. (2.44) is found in a similar
manner to be
∫

ψ∗
±(r1, r2)H(r1, r2)ψ±(r1, r2) d3r1 d3r2 = 2E0(1 ± α2) + V ± U (2.53)

where V and U are a “coulomb integral” and an “exchange integral”, respec-
tively, defined by
4 We provide a more detailed discussion of stationary formulas and variational

formulations in Chapter 7.
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V =
∫

ϕ∗
a (r1) ϕ∗

b (r2)Hi (r1, r2) ϕa (r1) ϕb (r2) d3r1 d3r2, (2.54)

U =
∫

ϕ∗
a (r2) ϕ∗

b (r1)Hi (r1, r2) ϕa (r1) ϕb (r2) d3r1 d3r2, (2.55)

and Hi is the interaction part of the Hamiltonian given by

Hi =
q2

cr12
+

q2

cRab
− q2

cr1b
− q2

cr2a
. (2.56)

To understand why U is called the exchange integral, note that it gives the
probability of the system making a transition from the state ϕa(r1)ϕb(r2) to
the state ϕa(r2)ϕb(r1) owing to the presence of the interaction Hamiltonian.
Since these two states differ only by the interchange of the electrons, this
integral is a measure of the rate at which the electrons will exchange places.
The energies of the symmetric and antisymmetric states are, therefore,

E± = 2E0 +
V ± U

1 ± α2
. (2.57)

The difference in energy between the two states is

ES − EA = −2
V α2 − U

1 − α4
. (2.58)

The actual value of this difference will clearly depend on the relative magni-
tudes of α, V , and U .

So far so good, but what about spin? None of these calculations has ex-
plicitly taken spin into account, so how can the spin affect the energy? We
have seen that the energy difference between the symmetric and antisymmet-
ric states can be thought of as arising from the overlap of electronic wave
functions along with the possibility of the electrons exchanging positions. It
can also be thought of as depending on the spin orientations through the Pauli
exclusion principle, as we will now show.

First, we need to show that the complete two-particle wave function (by
complete we mean including spin) must be antisymmetric. This follows from
the Pauli exclusion principle: no two electrons can be in the same state at the
same time. To see that this principle requires an antisymmetric wave function,
consider what would happen if we interchanged the electrons.

• If the wave function is antisymmetric, then interchanging them should give
the negative of the wave function (−ψ).

• If the electrons were in the same state, then interchanging them will leave
the wave function (ψ) unchanged.

The only way that both conditions can be satisfied is for the trivial case
of ψ = 0. Consequently, we conclude that the use of antisymmetric wave
functions ensures that no two electrons can be in the same state, and the
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Pauli exclusion principle is satisfied. In statistical mechanics, the behavior of
particles that obey the Pauli exclusion principle is described by the Fermi–
Dirac statistics, and are referred to as fermions. In contrast, a moment’s
consideration of the same interchange operation on a symmetric wave function
would again leave the wave function ψS unchanged, but ψS would not have to
vanish. Consequently, symmetric wave functions do allow multiple particles to
be in the same state. Particles that do not obey the Pauli exclusion principle
obey Bose–Einstein statistics, and are called bosons. We will return to the
topic of bosons in a later section.

Having established that the complete wave function for a multiple electron
system must be antisymmetric, we must assign a symmetric spin function to
ψA, and an antisymmetric spin function to ψS. The possibilities are shown
in Table 2.1. As discussed in Section 1.4, the angular momentum (in this
case spin only) can be characterized by the total angular momentum and the
component along a single direction. Consequently, we have also listed the total
spin and the z-component of spin for the corresponding states in Table 2.1.

Since any of the three symmetric spin eigenfunctions could be used without
changing the energy (the energy is determined by ψA), we will use the symbols
χA and χS to represent antisymmetric and symmetric spin eigenfunctions,
respectively.

At this point, we note that the singlet state ψS χA has a total spin 0,
whereas each of the triplet states ψAχS has spin 1. Since these two states
have different energy, we should be able to construct an operator that could
give us the energy of the state by “sniffing out” the spin orientations without
regard to spatial coordinate symmetries. Before considering such operators,
let us consider how the spin orientation affects the energy.

If the two spins are lined up, the Pauli exclusion principle requires them
to stay away from each other thereby reducing the Coulomb repulsion en-
ergy between them. Based on this argument alone, one would conclude that
the ground state of H2 should be the triplet state. However, in hydrogen,
the increase in kinetic energy associated with the parallel spin configuration
outweighs the decrease in coulomb potential energy and the antiparallel con-
figuration turns out to be more favorable. The result is that the difference
in energy may be viewed as depending on the spin orientations through the

Table 2.1. Two electron spin eigenfunctions.

Function Parity Total spin z-Component of spin
1√
2

[χ↑↓ − χ↓↑] antisymm 0 0

χ↑↑ symm 1 1
1√
2

[χ↑↓ + χ↓↑] symm 1 0

χ↓↓ symm 1 −1
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exclusion principle. Thus, although the hydrogen molecule exhibits antifer-
romagnetic rather than ferromagnetic order, it does illustrate how energy
can depend on spin orientation, and hence helps to motivate the form of the
Heisenberg Hamiltonian. It is interesting that the interactions that give rise
to magnetic ordering are actually electrostatic in origin!

The task at hand, then, is to find an operator that can sense the spin
orientations and thereby give us the energy of the state. Clearly, one choice
would be the square of the total spin operator S2 since it has the properties
(see Section 1.4)5

S2ψSχA = �
2s(s + 1)ψSχA = 0, (2.59)

S2ψAχS = �
2s(s + 1)ψAχS = 2�

2ψAχS. (2.60)

A suitable operator would be

Hspin = ES +
1

2�2
[ET − ES] S2, (2.61)

where the subscripts now indicate singlet and triplet states rather than sym-
metric and antisymmetric (e.g., ET = EA), respectively. The dependence on
the relative orientations of the two electron spins can be made more apparent
by expanding the operator as S2 = (S1 + S2) · (S1 + S2) such that

Hspin = ES +
1

2�2
[ET − ES]

[
S2

1 + S2
2 + 2S1 · S2

]

= ES +
1

2�2
[ET − ES]

[
2�

2s(s + 1) + 2S1 · S2

]

=
1
4

[ES + 3ET] +
1
�2

[ET − ES]S1 · S2.

(2.62)

In the last line, we have made use of the fact that s = 1/2 for an electron.6

Since we are interested in low-lying excitations above the ground state,
the zero of energy is not important. We can, therefore, write Eq. (2.62) in the
form of a Heisenberg spin Hamiltonian (cf. Eq. (2.42))

H = −2
J
�2

S1 · S2, (2.63)

where

J =
1
2

(ES − ET) =
U − V α2

1 − α4
. (2.64)

5 Note that the spin operator only operates on the spin eigenfunction χA or χS .
6 In (2.62), s = 1/2 since it results from the single electron operators S2

1,2. In con-
trast, s = 1 in (2.60), since it results from the square of the total spin operator S.
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One last item and we will be over the hump of hydrogen molecule Hamil-
tonians and we can go on to bigger and better things.

The exchange phenomenon can be further clarified by introducing the
Pauli spin exchange operator P . This operator simply interchanges the two
electron spins: Pχ↑↓ = χ↓↑. Using this property, it is apparent that

PχS = χS, PχA = −χA. (2.65)

Since this operator obviously senses the spin orientations, it should be no
surprise that the Hamiltonian can also be written in terms of it:

HP = −J
2

(2P − 1) . (2.66)

To verify the equivalence, we first need to find the expected value of the
Hamiltonian (2.63), then compare with the expected value of (2.66). From
(2.62) we have

1
�2

[ET − ES]S1 · S2 = −2
J
�2

S1 · S2 = Hspin − 1
4

[ES + 3ET] . (2.67)

Applying this operator to the singlet state gives

−2
J
�2

S1 · S2ψSχA =
(
Hspin − 1

4
[ES + 3ET]

)
ψSχA

=
(
ES − 1

4
[ES + 3ET]

)
ψSχA

=
3
4

(ES − ET) ψSχA

=
3
2
JψSχA.

(2.68)

Examination of the Hamiltonian expressed in terms of the spin exchange op-
erator (2.66) shows that it gives the identical result:

HP ψSχA = −J
2

(2P − 1) ψSχA = −J
2

(−2 − 1) ψSχA

=
3
2
JψSχA.

(2.69)

Following a similar procedure for the triplet state, we find that

HP ψAχS = HψAχS = −1
2
JψAχS (2.70)

from both the Heisenberg form (2.63) and the spin exchange form (2.66)
(see Problem 2.1). Thus, we have established the equivalence between the
Heisenberg and the Pauli spin exchange operator forms of the Hamiltonian.
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2.5 Spin Wave on a Linear Ferromagnetic Chain: Spin
Exchange Operator Method7

It is a great leap from the hydrogen molecule to a linear chain of coupled spins.
The fact that a Heisenberg Hamiltonian can be written for two coupled spins
is no guarantee that the Hamiltonian for N -coupled spins can be written in a
similar form. It is an even greater leap to postulate a Heisenberg Hamiltonian
for a 3D solid. In actual solids, the interactions are often so complex that the
concept of an exchange interaction ceases to be well defined. Nevertheless,
it turns out that many phenomena described by the Heisenberg Hamiltonian
are observed in magnetic materials so that it has been found to be a simple
model rich in physical insight. We, therefore, postulate the Hamiltonian for a
chain of N spins to be

H = −2
J
�2

∑

n

Sn · Sn+1, (2.71)

where we have made the additional assumptions that only nearest neighbor
interactions are important, and all nearest neighbor exchange interactions are
equal. We will further assume s = 1/2 and J > 0.

Using the Pauli spin exchange operator introduced in Section 2.4 we can
also write this Hamiltonian in the form

HP = −J
2

∑

n

(2Pn,n+1 − 1). (2.72)

Before continuing with the calculation of the expected energy, it is conve-
nient to introduce a compact notation introduced by Dirac. Instead of repre-
senting a state with a wave function, the state is represented by the symbol

ψ ↔ |ψ〉 . (2.73)

The Hermitian transpose (simply the complex conjugate for a scalar function)
is written

ψ∗ ↔ 〈ψ| . (2.74)

When the symbols are juxtaposed, an inner product is indicated. If the state
is represented by a vector, then the inner product is simply the vector dot
product. If the state is represented by a continuous function, then the inner
product implies integration:

〈ψ| ψ〉 =
∫

ψ∗ψd3r. (2.75)

As a joke on the word “bracket,” the symbol 〈ψ| is called a “bra” and the
symbol |ψ〉 is called a “ket” (note that the terminology does not refer to any
7 This section draws heavily on [8, Section 15-2].
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articles of clothing!). The inner product between two states represents the
probability amplitude that the system will transition between the states:

〈ϕ| ψ〉 =
∫

ϕ∗ψd3r. (2.76)

Finally, if an operator is placed between a “bra” and a “ket,” it represents
the expected value of the operator if the bra and ket represent the same state,
and a transition probability amplitude if the bra and ket states are different:

〈ϕ|A |ψ〉 =
∫

ϕ∗Aψd3r. (2.77)

Returning now to the linear chain of spins, with J > 0, the lowest energy
will clearly be that with all spins aligned. We will call this the ground state and
denote it |G〉. The spin exchange operator leaves the ground state unchanged,
so that

〈G|HP |G〉 = −JN/2. (2.78)

As before, we are not interested in the constant energy offset, so we can
subtract this energy and refer all excitation energies to the ground state. The
Hamiltonian (2.72) then becomes

HP = −J
∑

n

(Pn,n+1 − 1). (2.79)

This clearly gives zero for the ground state energy.
The lowest excited states of this system are those for which one spin is

flipped. One possible choice of basis states to use is the set of all possible
states in which only one spin is flipped. We will denote the state in which the
spin on the mth site is flipped by |m〉. The actual state of the system |ψ〉 can
be expressed as a sum over all possible states with one flipped spin

|ψ〉 =
∑

m

|m〉 〈m| ψ〉 , (2.80)

where 〈m| ψ〉 is the probability amplitude that the system is in the state with
a flipped spin at location m. The Schrödinger equation can be written

H |ψ〉 = E |ψ〉 ,

〈n|H |ψ〉 = E 〈n |ψ〉 ,
∑

m

〈n|H |m〉 〈m |ψ〉 = E 〈n |ψ〉 ,

−J
∑

i

∑

m

〈n| (Pi,i+1 − 1) |m〉 〈m |ψ〉 = E 〈n |ψ〉 .

(2.81)

Now consider what happens when the spin exchange operator is applied to
the state |m〉. If neither i nor i+1 are equal to m, then two parallel spins
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are flipped leaving the state unchanged and (Pi,i+1 − 1) |m〉 = 0. However, if
i = m, then the flipped spin at location m is transferred to location m + 1 so
that

(Pm,m+1 − 1) |m〉 = |m + 1〉 − |m〉 . (2.82)

Similarly, if i + 1 = m, then the flipped spin is transferred to location m – 1:

(Pm−1,m − 1) |m〉 = |m − 1〉 − |m〉 . (2.83)

Substitution of Eqs. (2.82) and (2.83) into (2.81) leads to

−J
∑

m

〈n| (|m + 1〉 − |m〉 + |m − 1〉 − |m〉) 〈m |ψ〉 = E 〈n |ψ〉 . (2.84)

To simplify this, we use the fact that the state with a flipped spin at location
m is orthogonal to the state with a flipped spin at location n unless m = n.
We further take the states to be normalized so that

〈m| n〉 = δm,n, (2.85)

and δm,n is the Kronecker delta. Consider the first term on the left-hand side
of (2.84):

−J
∑

m

〈n|m + 1〉 〈m|ψ〉 = −J
∑

m

δn,m+1 〈m|ψ〉

= −J 〈n − 1|ψ〉 .

(2.86)

Simplifying the remaining terms in (2.84) in a similar manner gives

−J (〈n − 1 |ψ〉 + 〈n + 1 |ψ〉 − 2 〈n |ψ〉) = E 〈n |ψ〉 . (2.87)

If the location of the nth spin is xn and the spacing between spins is a, let
us write

〈n| ψ〉 ≡ C (xn) , (2.88a)
〈n ± 1| ψ〉 ≡ C (xn ± a) . (2.88b)

Equation (2.87) can now be written as

− E
J C (xn) = C (xn − a) + C (xn + a) − 2C (xn) (2.89)

which is a difference equation with a solution of the form

C (xn) = eikxn . (2.90)
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k

0
0 π/a−π/a

4 J

Fig. 2.2. Dispersion relation for a spin wave on a linear chain of spins. The points
k = ±π/a represent the edges of the Brillouin zone. Because the spacing between
spins is a, any value of k outside this range is indistinguishable from the point within
this range obtained by adding or subtracting an integer multiple of G = 2π/a,
referred to as a reciprocal lattice vector.

Substituting this trial solution into (2.89) and simplifying yields

− E
J eikxn = eik(xn−a) + eik(xn+a) − 2eikxn ,

− E
J = 2

(
eika + e−ika

2

)
− 2,

E = 2J (1 − cos ka) .

(2.91)

Associating the energy E with the frequency �ω gives the dispersion relation
(Figure 2.2)

ω =
2J
�

(1 − cos ka) . (2.92)

If the wavelength is long compared to the spacing between spins so that
ka � 1, the dispersion relation reduces to

ω ≈ J a2

�
k2. (2.93)

Recall that 〈n| ψ〉 ≡ C (xn) = exp(ikxn) represents the probability amplitude
that the flipped spin is located on site n. Referring to the semi-classical picture
of a precessing spin introduced in Section 1.4, we can interpret the spin wave
as an excitation in which the precession phase varies linearly from site-to-site
as illustrated in Figure 2.3.

If we were to add together several closely spaced frequency components,
we can form a “wave packet” that moves along the chain in the same manner
as a particle. Comparing �

2k2/(2m∗) with J a2k2 suggests a particle with an
effective mass

m∗ =
�

2

2J a2
. (2.94)
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k

Fig. 2.3. Visualization of a spin wave as a disturbance in which the angle of pre-
cession varies linearly from spin-to-spin in the direction of propagation.

This “particle” is sometimes called a magnon, and represents the movement
along the chain of a region where the likelihood of a flipped spin is high. The
movement is enabled by the probability that spins will exchange places with
a nearest neighbor, effectively moving the location of the flipped spin.

2.6 Harmonic Oscillator8

In Section 2.5, we considered the properties of a single spin wave on a linear
chain. Clearly, we would like to be able to discuss the properties of multiple
spin waves in 3D solids. To enable this more ambitious discussion, it is helpful
to briefly make a side trip into a very important model in quantum mechanics:
the harmonic oscillator. We will see that the concepts introduced by the model
play an important role in the description of magnons.

2.6.1 Harmonic Oscillator Eigenfunctions

We begin by considering the solution to the Schrödinger equation for a charged
particle in one dimension (cf. Eq. (1.46)):

− �
2

2m

d2ψ

dx2 + V (x)ψ(x) = Eψ(x). (2.95)

The classical harmonic oscillator consists of a mass on the end of a spring. In
this case, the potential energy is that of a stretched spring, or V = Kx2/2,
where K is the spring constant. We know from the classical problem that
there is a natural resonant frequency of oscillation of the spring given by
ω =

√
K/m. In terms of the resonant frequency, the potential energy can

be expressed V = mω2x2/2. Substituting this expression for the potential
into Schrödinger’s equation (2.95) gives the equation describing the quantum
mechanical harmonic oscillator:

8 For a more detailed discussion of the quantum mechanical harmonic oscillator,
see [3, Chapter 5].
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− �
2

2m

d2ψ

dx2 +
1
2
mω2x2ψ = Eψ. (2.96)

To obtain solutions to this equation, it is helpful to make the change of vari-
ables

ξ =
√

mω

�
x. (2.97)

After making this substitution, Schrödinger’s equation becomes

d2ψ′

dξ2
+
(

2E
�ω

− ξ2

)
ψ′ = 0. (2.98)

Next, we introduce a new function f such that

ψ′(ξ) = e−ξ2/2f(ξ). (2.99)

The equation for f is found to be

d2f

dξ2
− 2ξ

df

dξ
+ 2nf = 0, (2.100)

where 2n ≡ 2E/�ω − 1 or

E = �ω

(
n +

1
2

)
. (2.101)

It turns out that the solutions to (2.100) diverge as ξ → ∞ in such a way
that ψ′ also diverges unless n is a positive integer. Since the wave function
for a real particle must be bounded, we conclude that physically meaningful
solutions only exist when n is a positive integer. In this case, the solutions to
(2.100) are given by the Hermite polynomials Hn(ξ). The first few polynomials
are

H0(ξ) = 1,
H1(ξ) = 2ξ,

H2(ξ) = −2 + 4ξ2.

(2.102)

These polynomials have the following useful recurrence relations:

dHn

dξ
= 2nHn−1, (2.103)

Hn+1 = 2ξHn − 2nHn−1. (2.104)

The eigenfunctions for the original harmonic oscillator problem are, therefore

ψn(x) = Cn exp
(
− x2

2α2

)
Hn

(x

α

)
, (2.105)
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where α is a characteristic length given by α =
√

�/(mω). The constant Cn

is normally chosen so that the eigenfunctions are orthonormal, i.e.,
∞∫

−∞

ψn(x)ψm(x) dx = δm,n. (2.106)

Using the integral
∞∫

−∞

Hm(ξ)Hn(ξ)e−ξ2
dξ = 2nn!

√
π δm,n, (2.107)

the normalization coefficient is found to be

Cn =
(
α2nn!

√
π
)−1/2

. (2.108)

The normalized eigenfunctions are finally

ψn(x) =
e−x2/(2α2)Hn

(
x
α

)

√
α2nn!

√
π

. (2.109)

Using this expression along with the recurrence relations (2.103) and (2.104)
leads to a property that we will need in the next section:

dψn

dx
=

1
α

(

ψn−1

√
n

2
− ψn+1

√
n + 1

2

)

. (2.110)

2.6.2 Raising and Lowering Operators

It is convenient to introduce a new operator defined by

a =
√

mω

2�

(
x + i

p

mω

)
, (2.111)

where p = (�/i)d/dx is the 1D momentum operator from Table 1.1. Mak-
ing this substitution and again introducing the characteristic length α, the
operator can be expressed as

a =
1√
2

(
x

α
+ α

d

dx

)
. (2.112)

To understand the significance of this operator, we apply it to the nth har-
monic oscillator eigenfunction:

aψn =
1√
2

(
x

α
+ α

d

dx

)
ψn

=
1√
2

(
x

α
ψn + ψn−1

√
n

2
− ψn+1

√
n + 1

2

)

.

(2.113)
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Here, we have expanded the derivative using (2.110). Using the recurrence
relation (2.104) along with the normalized eigenfunctions (2.109), we can show
that

x

α
ψn −

√
n + 1

2
ψn+1 =

√
n

2
ψn−1. (2.114)

Making this substitution into (2.113) gives

aψn =
√

n ψn−1. (2.115)

We see that the effect of the operator a is to lower the state from n to n− 1.
For this reason, a is referred to as a lowering operator. Similarly, let us define
the operator

a† =
√

mω

2�

(
x − i

p

mω

)
=

1√
2

(
x

α
− α

d

dx

)
. (2.116)

Following a similar procedure as before, we find that (Problem 2.2)

a†ψn =
√

n + 1 ψn+1. (2.117)

We refer to a† as a raising operator since it raises the state n to n+1.
It is also interesting to consider the effect of consecutively applying the
operators:

a†aψn = a†√n ψn−1 =
√

n a†ψn−1 = nψn. (2.118)

We observe that the expected value of the operator a†a is simply the state
number n. What if we were to apply the operators in the reverse order? We
have:

aa†ψn = a
√

n + 1 ψn+1 =
√

n + 1 aψn+1 = (n + 1) ψn. (2.119)

It is clear, then, that the operators do not commute. We encountered non-
commuting operators when we discussed angular momentum in Section 1.4,
and we found it useful to specify their properties with commutators. In the
present case, (2.118) and (2.119) imply

[
a, a†]ψn ≡

(
aa† − a†a

)
ψn = ψn, (2.120)

or equivalently [
a, a†] = 1. (2.121)

It is often useful to generalize the notion from the specific case of a charged
particle in a quadratic potential well to an abstract state labeled by n
for which raising and lowering operators can be defined. In this case, we
define
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a =
√

mω

2�

(
q + i

p

mω

)
, (2.122)

a† =
√

mω

2�

(
q − i

p

mω

)
, (2.123)

where q and p are canonical position and momentum operators, respectively,
and m is a canonical effective mass. The Hamiltonian expressed in terms of
these canonical variables takes the form

H =
|p|2

2m
+

mω2

2
|q|2 . (2.124)

The canonical variables can also be expressed in terms of the raising and
lowering operators:

q =

√
�

2mω

(
a + a†) , (2.125)

p = −i

√
mω�

2
(
a − a†) . (2.126)

Substituting these relations into (2.124) leads to the Hamiltonian expressed
in terms of raising and lowering operators:

H =
|p|2

2m
+

mω2

2
|q|2

=
1

2m

mω�

2
(
a − a†) (a† − a

)
+

mω2

2
�

2mω

(
a + a†) (a† + a

)

=
�ω

2
(
aa† + a†a

)
.

(2.127)

Using the commutation relation (2.121), this can be written as

H = �ω

(
a†a +

1
2

)
. (2.128)

Let |n〉 represent an abstract state with state number n. The actions of
the raising and lowering operators on these states are given by

a|n〉 =
√

n|n − 1〉,
a†|n〉 =

√
n + 1|n + 1〉,

a†a|n〉 = n|n〉,

H|n〉 = �ω

(
a†a +

1
2

)
|n〉 = �ω

(
n +

1
2

)
|n〉.

(2.129)

Note that the action of the Hamiltonian operator on the state |n〉 gives the
energy of the state as given in Eq. (2.101).
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2.7 Magnons in a 3D Ferromagnet: Method of Holstein
and Primakoff 9

For our discussion of a 3D ferromagnet, we will again assume that only nearest-
neighbor interactions are important. We will also add the Zeeman energy from
a static bias magnetic field. The Hamiltonian in this case can be expressed

H = −2
J
�2

∑

j,δ

Sj · Sj+δ − gμBB0

�

∑

j

Sjz. (2.130)

In this expression, j represents a specific spin site in the crystal, δ represents
a vector to one of the nearest-neighbors of j, and we have chosen the sign of
B0 so that the lowest energy configuration occurs when all spins are “up.”

2.7.1 Magnon Dispersion Relation

It is computationally convenient to re-express the first term of (2.130) in terms
of the spin raising and lowering operators introduced in Section 1.4.3. For the
jth spin site, we define

S+
j = Sjx + iSjy, (2.131a)

S−
j = Sjx − iSjy. (2.131b)

In terms of these operators, the Hamiltonian (2.130) can be written as

H = −2
J
�2

∑

j,δ

[
1
2

(
S−

j S+
j+δ + S+

j S−
j+δ

)
+ SjzSj+δ,z

]
− gμBB0

�

∑

j

Sjz .

(2.132)
Now consider a state |sjz〉, where the z-quantum number on site j is sjz. We
know that (cf. Eq. (1.62))

Sjz |sjz〉 = sjz |sjz〉 , (2.133)

but we need to evaluate

S±
j |sjz〉 = λ |sjz ± 1〉 , (2.134)

or its Hermitian adjoint

〈sjz|S∓
j = 〈sjz ± 1|λ∗. (2.135)

Taking the inner product of (2.134) and (2.135) gives

〈sjz|S∓
j S±

j |sjz〉 = 〈sjz ± 1|λ∗λ |sjz ± 1〉 = |λ|2 , (2.136)

9 In addition to the original paper [9], discussions of this topic can be found in
Sparks [10, Section 3.2] and Kittel [11, Chapter 4].
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where we have assumed the states are normalized so that 〈sjz| sjz〉 = 1. To
find λ, we make use of the relation

S2
j =

1
2
(
S+

j S−
j + S−

j S+
j

)
+ S2

jz. (2.137)

The quantity S+
j S−

j can be eliminated from (2.137) using the commutator (cf.
Eq. (1.58c)) [

S+
j , S−

j

]
= S+

j S−
j − S−

j S+
j = 2�Sjz. (2.138)

The result is
S−

j S+
j = S2

j − Sjz (Sjz + �) . (2.139)

The inner product can now be evaluated:

〈sjz|S−
j S+

j |sjz〉 = 〈sjz|
(
S2

j − Sjz (Sjz + �)
)
|sjz〉

= 〈sjz|
(
�

2s(s + 1) − �
2sjz (sjz + 1)

)
|sjz〉

= �
2 (s(s + 1) − sjz (sjz + 1))

= |λ|2 .

(2.140)

We conclude that

λ = � (s(s + 1) − sjz (sjz + 1))1/2 (2.141)

and

S+
j |sjz〉 = λ|sjz + 1〉 = � (s(s + 1) − sjz (sjz + 1))1/2 |sjz + 1〉. (2.142)

Following a similar procedure, we find (Problem 2.3)

S−
j |sjz〉 = � (s(s + 1) − sjz (sjz − 1))1/2 |sjz − 1〉. (2.143)

We next introduce the basis states |nj〉, where nj is the number of spin devi-
ations (flipped spins) at site j. Increasing nj by 1 decreases sjz by 1. We also
introduce raising and lowering operators similar to those for the harmonic
oscillator with the properties

[
ai, a

+
j

]
= δi,j ,

[
a±

i , a±
j

]
= 0.

(2.144)

When these operators are applied to the basis states, we obtain (cf. Eq. (2.129))

aj |nj〉 =
√

nj |nj − 1〉 ,

a+
j |nj〉 =

√
nj + 1 |nj + 1〉 ,

a+
j aj |nj〉 = nj |nj〉 .

(2.145)
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Since flipping a spin reduces the z-component of the spin on the site, we have

Sjz|sjz〉 = � (s − nj) |sjz〉 (2.146)

or
sjz = s − nj , (2.147)

where s is the total spin on the site. Since we saw previously that a flipped
spin distributed over a group of sites corresponds to a quasi-particle called
a magnon, the operators a+

j and aj can also be viewed as magnon (or spin
deviation) creation and annihilation operators, respectively. Since more than
one flipped spin can exist on a site (depending on the total spin), it is possible
for multiple magnons to exist at the same location, and we conclude that the
quasi-particles do not obey the Pauli exclusion principle. This means that
magnons behave as bosons.

Using Eqs. (2.147) and (2.142), the effect of the raising operator on the
new basis states can be written as

S+
j |nj〉 = � (s(s + 1) − (s − nj) (s − nj + 1))1/2 |nj − 1〉

= �
(
2snj − n2

j + nj

)1/2 |nj − 1〉

= �
√

2s

(
1 − (nj − 1)

2s

)
√

nj |nj − 1〉 .

(2.148)

Comparison with (2.145) suggests that the spin raising operator S+
j can

be expressed in terms of the new harmonic oscillator raising and lowering
operators as follows:

S+
j = �

√
2s

(

1 −
a+

j aj

2s

)1/2

aj . (2.149)

Following a similar procedure, we find that

S−
j = �

√
2sa+

j

(

1 −
a+

j aj

2s

)1/2

. (2.150)

Equations (2.149) and (2.150) are known as the Holstein–Primakoff transfor-
mation [9].

We now make the low-temperature approximation that makes this problem
solvable. Specifically, we assume that the total number of flipped spins in the
system is small compared to the total number of spins. In this case

〈
∑

j

(

1 −
a+

j aj

2s

)1/2〉

≈ N, (2.151)

where the brackets indicate the expected value. This suggests that we can
approximate the radical by
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(

1 −
a+

j aj

2s

)1/2

≈ 1. (2.152)

If s is small, this may introduce considerable error in the term for the jth site,
but since the operator is averaged over the entire sample, the overall error in
the energy will be small provided

〈∑

j

(a+
j aj)

〉

2Ns
� 1. (2.153)

We can then approximate the spin raising and lowering operators as

S+
j ≈ �

√
2s aj , (2.154)

S−
j ≈ �

√
2s a+

j . (2.155)

Substituting these approximations into the Hamiltonian (2.132) and keeping
terms up to second-order in creation/annihilation operators gives

H = − 2J s
∑

j,δ

[
a+

j aj+δ + aja
+
j+δ − a+

j aj − a+
j+δaj+δ + s

]

− gμBB0

∑

j

(
s − a+

j aj

)
.

(2.156)

We would now like to diagonalize this Hamiltonian. Since the form of
Eq. (2.156) clearly shows the coupling between adjacent spins, we suspect
the basis states that will diagonalize the Hamiltonian will involve collective
excitations of all the spins in the system. The transformation to collective
excitations can be made through the use of the Fourier transforms of the
aj ’s. We therefore introduce the operators10 a+

k and ak which create and
annihilate magnons of wavevector k, respectively:

a+
k = N−1/2

∑

j

eik·rj a+
j ,

ak = N−1/2
∑

j

e−ik·rj aj .
(2.157)

Here, rj is the vector locating the jth site in the crystal. The inverse transform
is

a+
j = N−1/2

∑

k

e−ik·rj a+
k

aj = N−1/2
∑

k

eik·rj ak.
(2.158)

10 Our choice of sign convention in the exponent is that of Oguchi [12] and opposite
to that of Holstein and Primakoff [9].
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The commutation relation for the new operators is
[
ak, a+

k′

]
=

1
N

∑

j,l

e−ik·rj eik′·rl
[
aj , a

+
l

]

=
1
N

∑

j,l

e−ik·rj eik′·rlδj,l

=
1
N

∑

j

ei(k′−k)·rj

= δk,k′ .

(2.159)

The last step results from the periodicity of the crystal (Problem 2.4). If
the site j has Z-nearest neighbors, the Hamiltonian then becomes

H = −2JNZs2 − gμBB0Ns + H0, (2.160)

where

H0 = − 2J s

N

∑

jδkk′

(
e−i(k−k′)·rj eik′·δa+

k ak′ + ei(k−k′)·rj e−ik′·δaka+
k′

−e−i(k−k′)·rj a+
k ak′ − e−i(k−k′)·(rj+δ)a+

k ak′

)

+
gμBB0

N

∑

jkk′

e−i(k−k′)·rj a+
k ak′ .

(2.161)

As before, the sums over j will cause all of the terms to vanish unless k = k′.
We now have

H0 = − 2J s
∑

δk

(
eik·δa+

k ak + e−ik·δaka+
k − 2a+

k ak

)
+ gμBB0

∑

k

a+
k ak

= − 2J sZ
∑

k

(
γka+

k ak + γ−kaka+
k − 2a+

k ak

)
+ gμBB0

∑

k

a+
k ak,

(2.162)

where we have defined
γk =

1
Z

∑

δ

eik·δ. (2.163)

For crystals with a center of symmetry γk = γ−k and H0 can be further
simplified with the commutation relation (2.159):

H0 = −2J sZ
∑

k

(
γka+

k ak + γk

(
1 + a+

k ak

)
− 2a+

k ak

)
+ gμBB0

∑

k

a+
k ak

= −4J sZ
∑

k

(γk − 1) a+
k ak + gμBB0

∑

k

a+
k ak

=
∑

k

(4J sZ (1 − γk) + gμBB0)a+
k ak.

(2.164)
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One last simplification allows us to write

H0 =
∑

k

n̂k�ωk, (2.165)

where n̂k = a+
k ak is the operator for the number of magnons with wavevector

k, and the frequency is given by

�ωk = 4J sZ (1 − γk) + gμBB0 . (2.166)

As an example, consider the case of a simple cubic lattice. In this case, the
nearest neighbors are along the ±x, ±y, and ±z axes at a distance a and we
have

γk =
1
Z

∑

δ

eik·δ

=
1
6
(
eikxa + e−ikxa + eikya + e−ikya + eikza + e−ikza

)

=
1
3

(cos kxa + cos kya + cos kza) .

(2.167)

The dispersion relation becomes finally

�ωk = 24J s

(
1 − 1

3
(cos kxa + cos kya + cos kza)

)
+ gμBB0. (2.168)

For small k, this reduces to approximately

�ωk = gμBB0 + 4J sa2k2. (2.169)

2.7.2 Magnon Interactions

The first rigorous calculation of spin wave interactions was done by Dyson [13,
14]. However, in the words of Oguchi [12], “Although Dyson’s paper is rigor-
ous, it is not so easy to understand.” Consequently, to obtain an understanding
of these interactions, we follow Oguchi’s approach, which is based on a fur-
ther expansion of the Holstein–Primakoff transformation. We therefore need
to expand the square root in Eq. (2.152) to higher order:

(

1 −
a+

j aj

2s

)1/2

≈ 1 −
a+

j aj

4s
. (2.170)

The spin raising and lowering operators then become

S+
j ≈ �

√
2s

(
aj −

a+
j ajaj

4s
+ · · ·

)
, (2.171)

S−
j ≈ �

√
2s

(
a+

j −
a+

j a+
j aj

4s
+ · · ·

)
. (2.172)
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Substituting these expressions into (2.132) and keeping terms to fourth order
in creation/annihilation operators gives

H = −2JNZs2 − gμBB0Ns + H0 + H1 (2.173)

where

H1 =
J
2

∑

j,δ

(
a+

j a+
j+δaj+δaj+δ + a+

j a+
j ajaj+δ + aja

+
j+δa+

j+δaj+δ

+a+
j ajaja

+
j+δ − 4a+

j aja
+
j+δaj+δ

)
.

(2.174)

At this point, we again transform this expression to one in terms of a+
k and

ak. The ensuing calculation quickly becomes very tedious, so let us consider
the transformation of only the first term to get an idea for what happens:

H(1)
1 =

J
2

∑

j,δ

a+
j a+

j+δaj+δaj+δ

=
J

2N2

∑

k1k2k3k4

∑

j,δ

e−i(k1+k2−k3−k4)·rj e−i(k2−k3−k4)·δa+
k1

a+
k2

ak3ak4 .

(2.175)

As before, owing to the periodicity of the crystal, the sum over j gives
∑

j

e−i(k1+k2−k3−k4)·rj = NΔ(k1 + k2 − k3 − k4) , (2.176)

where Δ(0) = 1 and Δ(x 	= 0) = 0 (i.e., it is equivalent to the Kronecker delta
Δ(x) = δx,0). Consequently, the term vanishes unless momentum is conserved:

k1 + k2 = k3 + k4. (2.177)

The sum over nearest neighbors can then be written
∑

δ

e−i(k2−k3−k4)·δ =
∑

δ

eik1·δ = Zγk1 , (2.178)

where γk1 is given by (2.163). The first term in the Hamiltonian (i.e.,
Eq. (2.175)) can now be written

H(1)
1 =

JZ

2N

∑

k1k2k3k4

Δ(k1 + k2 − k3 − k4) γk1a
+
k1

a+
k2

ak3ak4 . (2.179)

When all of the terms are collected, the interaction Hamiltonian becomes

H1 =
JZ

N

∑

k1k2k3k4

Δ (k1 + k2 − k3 − k4) (γk1 + γk3 − 2γk1−k3) a+
k1

a+
k2

ak3ak4 .

(2.180)
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For a simple cubic lattice at long wavelengths (ka � 1), γk can be ap-
proximated from (2.167) to be

γk ≈ 1 − (ka)2/6, (2.181)

and

γk1−k3 ≈ 1 − (k1a)2

6
− (k3a)2

6
+

k1 · k3a
2

3
. (2.182)

The magnitude of the interaction Hamiltonian is therefore proportional to

γk1 + γk3 − 2γk1−k3 ≈ 1
6
(
k2
1a

2 + k2
3a

2 − 4k1 · k3a
2
)
. (2.183)

The transition probability from a state with magnons k1,k2 to a state with
magnons k3,k4 is proportional to |〈3, 4|H1 |1, 2〉|2 ∼ (ka)4, so that the inter-
actions are very weak for long-wavelength magnons.

In the case of the spin eigenstates |sjz〉, the z-component of spin can
only be raised or lowered until the z-component is equal to the total spin.
Further applications of the raising or lowering operators, S±

j , will give zero.
In contrast, the states |nj〉 have a harmonic oscillator on each site, so that the
number of spin deviations is unlimited. The fact that in reality not more than
2sj spin deviations can exist on a given site gives rise to what Dyson calls
the kinematical interaction. As we have mentioned, a spin wave is actually a
collective excitation; a single spin deviation does not appear on a particular
site, but is rather distributed over all of the sites in the crystal. Because of
this, the expectation value of the z-component of spin for one spin deviation
in a lattice of N sites is of order s − 1/N instead of s − 1 (taking the ground
state to be all spins up). Speaking classically, the kinematical interaction is
caused by the fact that the cone angle of the spin precession can only be
opened to π. However, the above z-component of spin suggests a cone angle
on the order of

√
2/(Ns) � 1 for N large (Problem 2.5). Hence, we expect the

effects of the kinematical interaction to be small at low temperatures where
the number of magnons present is small compared to the number of sites in the
crystal.

In Dyson’s analysis, there is another interaction that results from the fact
that the spin wave states |sj , sjz〉 are not eigenfunctions of the Hamiltonian
(2.132). Dyson calls this the dynamical interaction. The effects of the simul-
taneous presence of two spin waves can be modeled by applying two rotations
to a given spin vector. The fact that rotations do not commute results in
a mutual disturbance that is the dynamical interaction. However, since two
very small rotations almost commute, we expect the dynamical interaction to
likewise be very small.

The effects of these interactions can be grouped into three categories,
namely those due to
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(1) the dynamical interaction only,
(2) the kinematical interaction only, and
(3) more complicated effects involving both interactions.

Dyson [14] shows that the contributions from (2) and (3) exactly cancel for
all non-negative powers of temperature T . For negative powers of T , he shows
that the contribution of the kinematical interaction to the free energy is less
than exp (−Tc/T ), where Tc is the Curie temperature. This interaction, there-
fore, makes a rigorously negligible contribution for T → 0 when the number of
magnons is small. The net result is the following very significant conclusion:
the kinematical interaction has no effect on the spin wave scattering proba-
bility amplitudes at low temperatures. These processes are governed entirely
by the dynamical interaction. Therefore, the scattering probability amplitudes
given by our harmonic oscillator model (that does not contain the kinematical
interaction) should be entirely satisfactory.

Finally, we note that our Hamiltonian (2.173) does not contain any three
wave processes; i.e., terms involving three creation/annihilation operators.
This is because we have neglected the magnetic dipole–dipole interactions
between the spins in an effort to simplify the discussion. When dipole–dipole
interactions are included, it is possible to have magnon splitting and magnon
confluence processes as illustrated in Figure 2.4(b),(c). These processes are
represented by terms in the Hamiltonian of form

H′
1 =

∑

k1,k2,k3

Δ(k1 + k2 − k3)
(
V (k1,k2,k3) a+

k1
a+
k2

ak3 + h.c.
)

(2.184)

where h.c. indicates the Hermitian conjugate.
Dipole–dipole interactions also affect the magnon dispersion relation in

the absence of magnon interactions. The net result is to make the dispersion

k1

k2

k3

k4

k3

k1
k2

k1

k2

k3

(a)

(b)

(c)

Fig. 2.4. Representative 3- and 4-magnon interactions. Part (a) depicts the scatter-
ing process indicated by (2.180), (b) depicts the magnon splitting process described
by the first term in (2.184), and (c) illustrates the magnon confluence process de-
scribed by the Hermitian conjugate term in (2.184).
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relation anisotropic even for long-wavelength excitations. To understand the
origin of the anisotropy, recall that there is a null in the field from a dipole
in directions along its axis, while the field is strongest perpendicular to the
axis. If we define θ to be the angle between the direction of propagation
and the spin axis, then we expect the shift from dipole coupling to be zero
for propagation in the direction θ = 0, and for the shift to be greatest for
the direction θ = π/2. This spreads the dispersion relation into a band of
frequencies for ka � 1 as illustrated in Figure 2.5. This band of frequencies
is referred to as the spin wave manifold. Calculations of the effects of dipole–
dipole interactions are simpler in a classical formulation for continuous media,
so we will defer a more detailed treatment until Chapter 5.

k

=

0=

0

ħω θ

θ

π/2

Fig. 2.5. Spin wave dispersion diagram near k = 0 with dipolar interactions. The
dipole–dipole interactions spread the range of frequencies into a band depending
on the direction of propagation with respect to the spin orientation. For θ = 0 the
dipolar coupling is zero, and the dispersion relation is given by (2.169). Compared
with Figure 2.2, the presence of a bias field raises the frequency for k = 0 spin waves.

Problems

2.1. In this problem, we will verify the equivalence of the Heisenberg Hamil-
tonian and the alternative form expressed in terms of the Pauli spin exchange
operator when applied to the hydrogen triplet state ψAχS.

(a) Calculate the expected value of the Heisenberg Hamiltonian by evaluating

−2
J
�2

S1 · S2 ψAχS =
(
Hspin − 1

4
[ES + 3ET]

)
ψAχS, (2.185)

where J = (ES − ET)/2.
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(b) Calculate the expected value of the alternative Hamiltonian by evaluating

HP ψAχS = −J
2

(2P − 1)ψAχS. (2.186)

2.2. Show that

a†ψn =
√

n + 1 ψn+1, (2.187)

where

a† =
1√
2

(
x

α
− α

d

dx

)
(2.188)

and

ψn(x) =
e−

x2

2α2 Hn

(
x
α

)

√
α2nn!

√
π

. (2.189)

2.3. Referring to Section 2.7.1, show that

S−
j |sjz〉 = � (s(s + 1) − sjz (sjz − 1))1/2 |sjz − 1〉 . (2.190)

2.4. Consider a linear chain of N spins. The exact solution on a finite chain
will depend on the boundary conditions at the ends. A common choice in
solid-state physics is the periodic boundary condition, i.e., ψ(x1) = ψ(x1+N ).

(a) If xn = na and ψ(x) = eikx, show that the allowed values of k are km =
2πm/Na, where m = 0,±1,±2, . . . ,±N/2 (assuming N is even).

(b) With the definitions from Part (a), show that

N−1∑

j=0

eikmxj = 0, km 	= 0 (2.191)

N−1∑

j=0

eikmxj = N, km = 0. (2.192)

(2.193)

2.5. Consider a classical vector of length s precessing about the z axis. If the z-
component of s is s−1/N with s � N , show that the cone angle of the preces-
sion (i.e., the angle of s with respect to the z-axis) is approximately

√
2/(Ns).
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