
SISSA - Solid State Problems Problem Set #9

Session 9 - This session is intended as a quick survey to cover the basics of the origin
of magnetic interaction in magnetic systems.

1. Direct magnetic interaction The direct magnetic interaction energy between two magnetic dipole
moments separated by a distance R is given by (in the SI unit system)

∆E =
µ0

4π

µ1 · µ2 − 3(R̂ · µ1)(R̂ · µ2)

R3

where µ0 = 4π × 10−7N/A2 is the vacuum magnetic permittivity, and R̂ is the versor of the vector
R connecting the two dipoles.

Atoms with net orbital and spin angular momenta L and S have an average magnetic moment
µ = µL + µS where µL = − eh̄

2me
〈L〉 = −µB〈L〉 and µS = −geµB〈S〉 where the Bohr magneton

µB = 9.274..× 10−24 m2A and the gyromagnetic factor ge is ≈ 2.0023.

Estimate the direct magnetic interaction energy between two dipoles of ≈ 1 Bohr magneton separated
by a distance of ≈ 1Å and verify that it is way too small to account for the magnetic interaction
responsible for the magnetic properties of many materials whose magnetic ordering temperature can
reach several hundred K (eg. 860 K in magnetite Fe2O3).

2. Coulomb and kinetic exchange interaction The direct magnetic interaction being too small
magnetism in materials has its origin in electrostatics coupled with Pauli principle.

Electrons are fermions, i.e. their wavefunction is antisymmetric upon exchange. This implies that
the probability of finding two electrons with the same spin at the same position must be zero. Hence,
electrons with like spins tend to avoid each other more than electrons with opposite spin. Thus the
Coulomb energy between electrons depends on their spin, i.e. electrons in orthogonal orbitals that
are spin aligned are more energetically favorable. This is known as Coulomb exchange and it is the
basis of the first Hund’s rule. Kinetic energy gain due to wavefunction delocalization may favor spin
pairing; this effect goes under the name of kinetic exchange.

Below we will work with a toy model to understand Coulomb and kinetic exchange.

a) Write the non-relativistic, spinless, Coulomb hamiltonian for two static hydrogen atoms that are
far apart such that the overlap of atomic orbitals can be considered small but non-negligible.
b) Assuming the interatomic interaction is perturbatively small, build a basis of symmetric and
antisymmetric two-body wavefunctions in order to use in the approximate solution of the above
Hamiltonian.
c) Write the Hamiltonian in the basis you have proposed. The matrix representation of this Hamil-
tonian will have terms that are often called ”Coulomb integral” and ”Exchange integral”. Make an
educated guess about which integrals match with these given names.
d) Find the eigenvalues and eigenfunctions of the Hamiltonian. What is the difference between the
two eigenvalues?
So far so good but we have not yet done anything with spin!
e) Based on the discussion about fermions above, assign the appropriate spin functions to each eigen-
vector and rewrite the Hamiltonian operator using the S2 operator, such that it identifies the energies
of respective eigenvectors correctly.
f) Rewrite the above Hamiltonian operator using the rules of angular momentum addition S2 =
(S1 + S2) · (S1 + S2) so that the final form resembles a Heisenberg spin hamiltonian H = −JS1 · S2.
Give the expression of J in terms of overlap, exchange and coulomb integrals. Do you expect J to be
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positive or negative in the case of the hydrogen molecule? Does the expression you have found agree
with your expectation? How about two electrons occupying two different 2p levels in an Oxygen
atom?
h) Rewrite the same energy operator using this time the Pauli spin-exchange operator whose eigen-
value is 1 for symmetric spin states, -1 for antisymmetric spin states.

Ref.: ch.2 of D.D. Stancil, A. Probhakar, ”Spin Waves: Theory and Application”, Springer 2009

3. Superexchange interaction Magnetic interaction depends on overlap between neighboring atoms.

How is it that magnetism is present in many transition metal oxides where magnetic atoms are far
apart, separated by non magnetic oxygen atoms?

How is it that magnetic interaction is sometimes ferromagnetic and sometimes antiferromagnetic ?

Ref.: ch. 7 of E. Pavarini, E. Koch, F. Anders and M. Jarrell, ”Correlated Electrons: From Models
to Materials Mdelling and Simulation”, Vol. 2, ForshungZentrum Juelich 2012, http://www.cond-
mat.de/events/correl12

4. Ferromagnetic spin-1/2 chain

Let us consider a 1D chain of N spin-1/2 particles interacting ferromagnetically as described by the
Hamiltonian

H = −2
J

h̄2

∑
i

Si · Si+1

with J > 0.

a) What is the ground state and the associated eigenvalue?

b) Rewrite the Hamiltonian in terms of the Pauli spin-exchange operator Pi,i+1.

c) Consider the basis of states |m〉 obtained by flipping the mth spin from the ground state. Write
the action of the Pauli spin-exchange operator on the basis elements.

d) Such basis can be argued to be suitable to expand the low lying eigenstates of this Hamiltonian.
Using |ψ〉 =

∑
Cn |n〉 expansion, and the Pauli operator form of the Hamiltonian, obtain an

equation for the expansion coefficients Cn. Show that it accepts solutions in the form of waves
in periodic media, similar to the ones obtained for lattice vibrations.

e) Derive the dispersion relation for the eigenvalues. What do the eigenstates look like? (Using
the lattice vibration analogy, you can guess that these quasiparticles are called ”magnons”)

The End.


