INTERNATIONAL SCHOOL FOR ADVANCED STUDIES 1994 ENTRANCE EXAMINATION: CONDENSED MATTER

Solve one or more of the problems below (the order is irrelevant). Write out solution clearly and concisely. State each approximation used. Diagrams welcome. A single well-solved problem is better, than many half-solved ones.

Problem 1

Electron motion in a simple one-dimensional potential

Consider the one-dimensional motion of an electron in an attractive deltafunction potential

$$V_1(x) = -vl\delta(x)$$

where l is the length unit, and v > 0 has the dimension of an energy.

1) Find the ground state energy and eigenfunction for the electron. Consider next the same electron in a new potential with two attractive delta-functions, a distance d apart

$$V_2(x) = vl[\delta(x) + \delta(x - d)]$$

- 2) Construct, for d not too small, the approximate ground state and first excited state, using linear combination of the single δ -function solution, found earlier. Discuss in particular the splitting between the two states for large d.
- 3) Imagine an electron initially in the ground state of V_1 and turn on the potential V_2 at t = 0. Use Schrödinger's time-dependent equation to find the time evolution of the electron. Restrict to the two states found in 2), and discuss the physical significance of the result.
- 4) Consider finally two non-interacting electrons, in the potential V_2 . Describe the singlet (S = 0) and triplet (S = 1) configurations of these two electrons, and their relative energies.

Problem 2

Vibrations of a classical linear chain

Consider a linear chain of classical particles with mass m in one dimension, interacting with each other through the potential

$$V(r) = \frac{1}{\lambda^2 - 1} e^{-\lambda(r - r_0)} - \frac{\lambda^2}{\lambda^2 - 1} e^{-\frac{1}{\lambda}(r - r_0)}$$

where r is the interparticle distance, and r_{\circ} and λ are parameters of the potential ($\lambda > 1$). Assume interactions only between first neighbors, and Born-von Karman (periodic) boundary conditions for all the questions except the last.

- 1. At T = 0, find
 - (a) the equilibrium lattice spacing a_0
 - (b) the cohesive energy of the lattice
 - (c) its compression modulus $B = L(\partial^2 E/\partial L^2)$, where L is the total length of the chain and E is its total energy
 - (d) within the harmonic approximation, the density of states $n(\omega)$. Make use of the formula for the dispersion relation of a first-neighbor chain

$$\omega(k) = 2\sqrt{\frac{C}{m}} \left| \sin \frac{ka_{\circ}}{2} \right|$$

where $C = (\partial^2 V/\partial r^2)|_{r=a_0}$ is the force constant between neighboring atoms.

- 2. Discuss which physical properties of this system you expect to be affected by λ .
- 3. Describe (in terms of the atomic displacements) the vibrational mode(s) that will be excited by applying to the system an external perturbation with angular frequency $\omega_e = 2\sqrt{C/m}$.
- 4. (Optional) Suppose that the two extremes of the chain are kept fixed by two external supports, so that the lattice spacing is fixed at $a = a_o$. An external perturbation at the above frequency ω_e is applied, inducing atomic vibrations following the mode discussed above, with a peak displacement u_m (assumed to be much smaller than a). Calculate the direction and the amplitude of the force exerted by the chain to the two external supports.

Problem 3

Electron bound to a surface

An electron is located at a distance z > 0 from the surface of a perfect metal. 1) Using the method of images, determine the force F(z) acting on the electron, and derive the corresponding electrostatic potential V(z).

Consider then the one-dimensional hamiltonian

$$H = \frac{p_z^2}{2m} + V(z), z > 0$$

with $V(z) = +\infty$ if z < 0, and neglect motion of the electron on the plane parallel to the surface. In order to obtain a variational estimate of the ground state wavefunction and energy, one may try, in analogy with the hydrogen atom, the following variational trial functions (z > 0):

- 1) $\phi_1(z) = A_1 e^{-\alpha z}$
- 2) $\phi_2(z) = A_2 z e^{-\alpha z}$
- 3) $\phi_3(z) = A_3(z^2 z)e^{-\alpha z}$

where $A_{1,2,3}$ are normalization factors, and α is the variational parameter.

2) Choose the more appropriate (giving a short motivation of your choice) and determine the value of α which minimizes the expectation value of the energy.

[Useful integral: $\int_0^\infty z^n e^{-z} dz = n!$]

Problem 4

A model for the Jahn-Teller effect

Consider a system of N non interacting electrons in 2 dimensions, confined to a rectangular box whose edges have lengths a and b.

1) Write down the value of the ground state energy of the system for N=1,2,3, and discuss the corresponding degeneracy for a=b and $a \neq b$.

Suppose now that the lengths a and b are variable and that a classic elastic energy $E_{elastic}(a, b) = \frac{1}{2}(a^2 + b^2)$ is associated to the box.

2) Find the minimum total energy of the system (classical elastic plus quantum electronic) for N=1,2, and 3, and show that the equilibrium shape of the box is a square for N=1,2, while it is a rectangle for N=3.

Problem 5 Lattice gas

A lattice gas is a collection of atoms whose positions can take on only discrete values, corresponding to the sites of a regular lattice.

Assume the lattice is simple cubic, that each site is occupied at most by one atom, that the kinetic energy is negligible, that the energy of a pair of nearest neighbour atoms is $-\epsilon$ (with $\epsilon > 0$) and that the energy per atom is $-\mu$ (= chemical potential).

- 1) Derive the equation of state and describe the phase diagram in the mean field approximation (also known as Bragg-Williams or molecular field approximation).
- 2) Discuss the type of singularities appearing near the critical point.
- 3) Perform an exact calculation of the equation of state in a one dimensional lattice.

Problem 6

One dimensional free particle wavefunction in a finite box

- 1) Find the spectrum and the eigenfunctions of a free particle with mass m confined in a one dimensional region with coordinate x restricted to $x_l < x < x_r$, and with $L = x_r x_l$ being the size of the linear region.
- 2) Consider the ground state of the system for $x_l = 0$ and $x_r = L$. Find the overlap of this state with the approximate state obtained by joining the ground states of the two subsystems of size L/2 ($[x_l = 0, x_r = L/2]$ with $[x_l = L/2, x_r = L]$), obviously after normalization of the two states.

How good is the approximation? Plot the approximate two-subsystem ground state against the exact one of the entire system.

3) Discuss if there may be any efficient method to approximate the ground state of a system of size L by the knowledge of some excited states of the two subsystems of size L/2.