
International School for Advanced Studies

2000 Entrance Examination: Condensed Matter

Do the multiple-choice tests �rst (but do not spend more than 1 hour on them!). Then

solve one of the problems below (or more, if the �rst one was correct). Write out

solution clearly and concisely. State each approximation used. Diagrams welcome.

Number page, problem, and question clearly. Do not write your name on the problem

sheet, but use extra envelope.

1 Spectrum of an half-harmonic oscillator

Consider an harmonic oscillator in one dimension:

H =
p2

2m
+
m!2

2
x2

and its eigenvalues, "n, and eigenfunctions, �n(x).

Suppose that a rigid wall [v(x) = +1 for x � 0, v(x) = 0 for x > 0] is then

inserted at the origin, and consider now eigenvalues and eigenfunctions of the resulting

asymmetric potential well.

i) What is the energy spectrum of this half-harmonic oscillator? Write the eigenfunc-

tion of its M-th excited state in terms of �n(x).

ii) Consider the expansion of this state in terms of eigenvectors of the original oscil-

lator, �halfM (x) =
P1

n=0 cn�n(x). Give the explicit expression for the expansion

coeÆcients, cn, on odd-numbered excited states of the original oscillator.

iii) From the expression for the energy of the eigenstate �nd a sum-rule that must be

satis�ed by even-numbered coeÆcients.

Suppose that the system is prepared in the ground state of the half harmonic oscilla-

tor and that at a given moment the delta-function potential is removed instantaneously.

iv) Is the probability for the system to be found at a later time on the ground state

of the complete oscillator more or less than 25 % ?
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2 Spinor rotations and phases

States of a spin-1
2
system are often represented in a 2-component formalism on the

basis

jSz "i �

 
1

0

!
jSz #i �

 
0

1

!

The spin operator S is then represented with the help of the Pauli matrices:

S =
�h

2
� where �x �

 
0 1

1 0

!
; �y �

 
0 �i

i 0

!
; �z �

 
1 0

0 �1

!

As well know, in this language, a generic rotation by an angle � about the axis de�ned

by the versor n̂ is represented by

D(n̂;�) = exp
�iS � n̂ �

�h
= exp

�i� � n̂ �

2
�

0
B@
cos �

2
� inz sin

�

2
[�inx � ny] sin

�

2

[�inx + ny] sin
�

2
cos �

2
+ inz sin

�

2

1
CA

Using this 2-component notation, answer the following issues:

a. Calculate a spinor jSx "i pointing in the positive x̂ direction, by applying a rotation

D(ŷ; �=2) of 90Æ around the ŷ axis, to the basis state jSz "i.

b. Let now the resulting spinor jSx "i rotate around ẑ by a suitable angle, so that it

�nally points to the positive ŷ direction. Compute the resulting spinor jSy "i.

c. Complete the trip of our spinor, by rotating the result jSy "i of point b around

the x̂ axis by 90Æ. Write the resulting spinor j�i.

d. Intuitively, the spinor j�i at the end of the loop should coincide with the starting

state jSz "i. Verify that a di�erent state is obtained instead. Compute the

observables hSz "jSz jSz "i and h�jSz j�i: are they equal or not?

e. Verify that the two states of points b and c are related by j�i = ei� jSz "i, and

compute the phase angle �.

f. Spinors are complex vectors: when taken around they acquire phases. \Trivial"

gauge phases are removed by parallel transport, which corresponds to setting to

zero the leading (linear) term in the phase change: h (�)j d
dt
 (�)

E
= 0. Ver-

ify that along each of the paths of points a, b and c, our spinor is parallel-

transported.

g. Geometric phases are obtained through parallel transport. By completing the

demonstration of point f, you have shown that the angle � is a geometric phase.

The candidate can demonstrate his culture by writing the name of the physicist

generally associated with this kind of geometric phases.
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3 Statistical Mechanics problem

A classical system can exist in N states i = 1; ::::; N with energies E1; :::::; EN . Let Ki;j

be the transition rate from state j to state i and Pi(t) the probability to be in state i

at time t. If the time evolution is written in the form dP=dt = �HP

1. determine H in terms of K's.

2. Is probability conservation preserved by time evolution?

If Ki;j = Kj;i

3. show that the eigenvalues of H can not be negative.

4. Is there always a zero eigenvalue and when is it unique?

If the system is in contact with a thermal bath at temperature T and detail balance is

satis�ed

5. determine the similarity transformation which makes H symmetric.

6. Under which conditions Pi(t) reaches its equilibrium value at large times?

7. Calculate the time evolution for a 2-state system with arbitrary initial conditions

and the time dependence of the average energy.
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4 Phase separation in a simple model

N boson particles are de�ned in a one dimensional lattice, namely their positions x are

restricted to assume discrete values i = 1; � � �L. The "hard core boson" condition is

assumed, i.e. each site cannot host more than one boson. The particles can hop from

each site i to nearest neighbor sites i� 1 with matrix elements �t < 0, If two bosons

are nearest neighbors the gain in energy is given by �V < 0. The Hamiltonian can be

formally written in second quantized notation as:

H = �t
L�1X
i=1

(byibi+1 + h:c:)� V
L�1X
i=1

nini+1

where byi creates a hard core boson at site i and ni = byibi is the boson occupation

number at site i, ni = 0; 1 from the hard core boson condition. (Warning! do not try

to solve the model for arbitrary N and L.)

1) Write down the explicit matrix elements of H for N = 0; 1; 2 particles and L = 2

in the basis where particles have �xed positions (e.g. for N = 1 there are two states

where the particle is localized at i = 1 or at i = 2).

2) Generalize to arbitrary L the simple ground states for a. N = L and b. N = 1.

(Case b. is a one-dimensional tight-binding model: optionally use periodic boundary

conditions if you are not familiar with open boundary conditions).

3) Use the results (2) to evaluate the condition for which the particles cluster together

even for N < L. Hint: evaluate the expectation value of the Hamiltonian over the state

with all particles at position i � N . Then compute the energy cost to evaporate one

particle from the particle rich region i � N to the particle empty one i > N . At

what value of V=t it is convenient to form a phase separated ground state in the

thermodynamic limit (for L!1 at �xed density � = N=L) ?

4) Optional: the phase-separated ground state is determined in (3) with a variational

calculation. How rigorously can it be proved that phase separation shows up in the

ground state of the model for large enough V=t ? (Hint: try to show that the exact

ground state energy per site coincides in the thermodynamic limit with the variational

one of the phase separated state, this without solving explicitly the model but using

upper and lower bounds for the exact energy.)
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5 Image-charge bound states

Consider an electron in vacuum, a distance z above a plane surface of a medium with

very large dielectric constant. The dielectric has two e�ects: a) it provides a positive

polarization charge below the surface; b) it also provides an in�nite barrier against

electron penetration at z < 0. The attraction at z > 0 between the electron and the

polarization charge, plus the barrier for z < 0, form a potential well where the electron

can be bound, while still moving freely along x; y, parallel to the surface. Since the

potential due to the polarization can be reproduced by an image charge, these bound

states go under the name of "image-charge states". The scope of this exercise will be

to determine their properties.

1. Specify the magnitude, sign, and position of the image charge of the electron,

and from this establish the force between electron and image (assume in�nitely large

dielectric constant as in a metal to simplify the result). Integrate the force to obtain

the potential, and compare the result with that for two real charges a distance 2z apart.

2. Quantize the electron motion in this image charge potential well, by writing

Schroedinger's equation, separating z from (x; y) motion, and solving each separately

by direct identi�cation with other well known standard problems (free motion and

3D hydrogen atom for L = 0). Write out at the end the eigenvalues, for the lowest

states, as a function of the appropriate quantum numbers, namely n for z-motion, and

(kx; ky) for x; y motion. Knowing that 1 Rydberg= me4

2�h2
= 13.6 eV, what is the lowest

state energy in eV?

3. Describe the lowest image state eigenfunctions and its extension along z. Knowing

that 1 Bohr radius = �h2

me2
= 0.529 �A, how many Angstroms does the lowest image charge

state extend along z?

4. Plot out the few lowest image-charge state eigenvalues for increasing kx, and

�nd the critical values of kx where they will cross the energy zero. Interpret the

critical kx value in terms of the z-extension discussed above. Find the corresponding

critical x-velocity in cm/sec of the electron in the lowest image charge state, which is

that velocity where the associated x-kinetic energy exactly compensates the z-binding

energy, so that given a possibility to scatter the image charge state electron will cease

to be bound.
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6 Magnetic susceptibility of a Fermi gas

The Hamiltonian to compute the spin susceptibility of an homogeneous fermionic sys-

tem at zero temperature in a magnetic �eld, ignoring any orbital e�ects, is given by

H = H0 � �
X
i

~�i � ~B : (1)

where � is the magnetic moment and ~� are the Pauli matrices. The susceptibility per

particle is de�ned as

� = ��
@2E0(B)

@B2

�����
B=0

; (2)

where � is the density of the system and E0 is the ground state energy per particle at

a given �eld B.

Pauli expanded the energy per particle as a function of the polarization p

E(p) = E(0)� �B p +
1

2
p2E 00(0) : (3)

1) Write the spin susceptibility in terms of E(p).

2) Calculate E(p) for the free gas, and verify that gives the usual Pauli spin suscep-

tibility �p.

Suppose that you want to compute � for a real system, like for instance neutron

matter at � = 0:32 fm�3 (for a neutron, the magnetic moment is � = 9:66� 10�27 J/T

= 6:03� 10�18 MeV/Gauss, and the constant combination �h2

2m
= 3:320� 10�42 J m2 =

20.72 MeV fm2). You have at your disposal a code which gives you the ground state

energy for a given polarization p and a given magnetic �eld B for a �nite number of

particles (take � 60) in a periodic box.

3) Which values you would choose for the number of particle with spin up and particle

with spin down ? Which are the values of the box size L for each couple of N "; N #

considered ?

4) Choose one of the above cases and write the energy as a function of B considering

the fermions as non{interacting.

5) With the guide of the non{interacting fermions, describe a strategy on how to use

the code to get an estimate of �=�p within 20� 30%. In particular give an estimate of

the value of B you need to use in the calculation.
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7 Two-dimensional electrons in a perpendicular mag-

netic �eld

Consider a single electron moving in the two-dimensional (x1 � x2)-plane and in the

presence of a magnetic �eld in the z-direction, i.e. ~B = (0; 0; B). The Hamiltonian is

H =
1

2m
~� � ~�; (4)

where the two-dimensional vector

~� = ~p+
e

c
~A;

being ~p the conjugate momentum of the coordinate ~x, and ~A the vector potential

satisfying ~r� ~A = ~B.

Classically the electron moves along circular orbits centered at position ~R which

depends on the t = 0 initial values of ~x and ~p.

1. Find ~R as function of the t = 0 values of ~x and ~p.

In quantum mechanics, ~� as well as ~R, as functions of ~x and ~p, become operators.

2. Calculate the following commutation relations: [�i;�j], [Ri;�j], and [Ri; Rj],

where i = 1; 2 labels the components of the two dimensional vectors.

3. Find the eigenvalues and eigenfunctions of the Hamiltonian (4), using preferably

the representation in terms of the above introduced �1, �2, R1 and R2. (Hints:

Write �i and Ri (i = 1; 2) in terms of conjugate variables X�, P�, XR, and PR,

where [X�; P�] = [XR; PR] = i�h, being all the other commutators zero. Then,

rewrite the Hamiltonian in terms of these variables. Alternatively, �x the gauge

and solve directly the Schr�dinger equation)

4. Show that each energy level is degenerate such that there is one state per �hc=(eB) =

0:6582� 10�16 Tesla/B square centimeters.

Now, introduce an electric �eld in the x2-direction by adding to the Hamiltonian the

term

ÆH = �eEx2: (5)

5. Find eigenvalues and eigenvectors of H + ÆH;

6. Calculate the average over the ground state of the transverse current operator

�e _x1.
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Optional: Add to the Hamiltonian H + ÆH an unrealistic barrier of the form

UÆ(R1):

Show that the wave function is perfectly transmitted across this barrier apart from a

simple phase-shift.

8 Bio-simulation exercise:
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