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Spring 2003 – Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.

State each approximation used. Diagrams welcome. Number page, problem, and

question clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: One-dimensional binding

A particle moves in a one-dimensional δ-function attractive potential

H1 = −
h̄2

2m

d2

dx2
− vδ(x) . (1)

1) Consider its bound state ψ1, and find its energy E1 as a function of v. [Hints:

assume ψ ∼ e−|x|/λ; recall that 2δ(x) = d2|x|/dx2]

A second δ-function attraction is now added some large distance a apart

HT = −
h̄2

2m

d2

dx2
− vδ(x) − αvδ(x− a) , (2)

where α > 0 is a parameter measuring its strength. Obviously, neglecting the first

delta, −vδ(x), you would have a problem similar to the previous one, with H2 =

− h̄2

2m
d2

dx2 −αvδ(x−a), admitting a bound state ψ2 with energy E2. Consider the overall

ground state energy ET of HT as a function of α, and define a “binding energy” ∆

as the difference between the lowest among the ground states E1 and E2 of the two

separate δ-functions, and the true ground state ET , ∆ = min(E1, E2) − ET .

2) Sketch the behaviour of ET as α varies from 0 to ∞, and indicate where ∆ will be

the largest. [Hint: do not attempt a calculation of ET . Use only intuition and

symmetry arguments.]

3) Use perturbation theory to determine the approximate value of ∆ for the value of α

where you believe ∆ is maximum. [Hint: use (ψ1, E1) and (ψ2, E2) as unperturbed

states.]
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Problem 2. A ring with magnetic flux

Consider a one-dimensional ring of length L with coordinate x (0 ≤ x ≤ L), and a

magnetic field confined in a solenoid through its center, as shown in figure. The vector

potential A can be considered constant on the ring and the magnetic flux inside the

ring is Φ = LA. For a single particle, setting h̄ = e = c = 1, the Hamiltonian is

x

A

Solenoid

simply:

H =
1

2m
(−i∂x + A)2

and one should solve Hψ(x) = Eψ(x) with the requirement that ψ(x + L) = ψ(x).

1. Show that the field A can be eliminated by considering the wavefunction:

ψ(x) = e−iAxΨ(x)

2. What boundary conditions must be satisfied by the wavefunction Ψ(x)? Deter-

mine accordingly the spectrum of H for a generic flux Φ.

3. Which values of the flux Φ are consistent with a ground state with no current

flowing? [Recall that the current is j(x) = −(1/2m)ψ∗(x)(−i∂x + A)ψ(x) + c.c.]

4. Consider now two non-interacting electrons with opposite spins subject to the

same H. For which values of the flux Φ do you have a ground state with no

current flowing?
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Problem 3. A diatomic molecule

The adiabatic interatomic potential for the Na2 molecule, as a function of the dis-

tance R between the two atoms, can be represented in the form:

V (R) = A
[

e−2a(R−R0) − 2e−a(R−R0)
]

(3)

with A = 0.75 eV, R0 = 3.07 Å, and a = 0.84 Å−1.

1. Determine the T = 0 equilibrium distance of the molecule, and its binding energy,

neglecting quantum effects.

2. Determine the vibrational energy h̄ω of the molecule (for small oscillations) and

its moment of inertia I.

[The mass of Na is ≈ 23 times mass of the proton mp, which is in turn mp ≈

1.66 × 10−27kg. It is useful to know that h̄2/mp ≈ 4.1 meV Å2.]

3. For a gas of such molecules at T = 300Ko, evaluate the ratio between the number

of molecules in the first excited state N1 and that in the ground state N0, for

both rotational and vibrational excitations. [Recall that 300Ko ≈ 25.85 meV.]
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Problem 4. Atomic polarizability

Consider a hydrogen atom immersed in electromagnetic radiation. The Hamiltonian

of the electron in the ‘electric dipole’ approximation is:

H =
p2

2m
+ V (r) +

eEpz

mω
sinωt (4)

where p and r are the electron momentum and position (r = |r|), m and e are the

electron mass and charge respectively, E is the radiation electric field intensity (the

field is parallel to the z axis), and ω is the angular frequency of the electromagnetic

radiation.

1. First take V (r) = 1
2
mω2

0r
2, where ω0 is some positive frequency. Solve the classical

equations of motion and find z(t).

2. The polarizability P (ω) of the hydrogen atom is defined as the ratio between the

piece of the time-dependent induced dipole moment, ez(t), at frequency ω, and

the applied electric field. Find the classical expression of the polarizability. Take

into account only the steady state part of the solution.

3. Now solve the quantum mechanical problem with V (r) = −e2/r. Denote with

|φi〉 the eigenstates of the hydrogen atom Hamiltonian H0 = p
2

2m
+V (r) and with

Ei its eigenvalues. Use first order perturbation theory and find the wavefunction

|ψ0(t)〉 solution of the Schrödinger equation with Hamiltonian (1) coinciding, at

t = 0, with the ground state of the hydrogen atom. Consider only the steady

state part of the solution.

4. Find the mean value of z in the state |ψ0(t)〉 at linear order in the electric field

and compute the quantum mechanical expression of the polarizability.

5. (Optional) Compare the classical and quantum expressions of the polarizability

and discuss the result.

Hint: The following identity might be useful: 〈φi|pz|φj〉 = im (Ei−Ej)

h̄
〈φi|z|φj〉.
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