Spring 2004 — Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and

question clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Free electrons in d=1,2, and 3 dimensions

Consider N free electrons contained in a space of “volume” L¢, with d = 1,2, and 3,
respectively. Assuming periodic boundary conditions at the box boundaries, determine

for each dimension d:

1. the allowed one-electron eigenfunctions, their quantum numbers, and their en-

ergy.

2. the Fermi momentum kpr and Fermi energy Ep, obtained by occupying each

one-electron state with 2 electrons of opposite spin.

3. the density of electronic states per spin, n(E) = Y, §(F — Ex), to be calculated
both at the Fermi energy Er and at £/ — 0.

4. the value (even approximate) of the free electron heat capacity C, = 0E;(T') /0T,

where F,; is the total internal energy of the electron gas at temperature 7.



Problem 2. Orbital wavefunction of Helium atom

Consider the orbital part of the two-electron ground state ®(7,7) of the Helium

atom, satisfying the following Schrodinger equation in atomic units:
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where 75, for ¢ = 1,2, are the positions of the two electrons, the ion position being
considered fixed at the origin + = y = 2z = 0, Ej is the ground state energy and
Z = 2 is the atomic number. The orbital wavefunction ® is symmetric under particle

interchange ®(7,7) = ®(r%, ), because the ground state is a spin singlet.

1. Show that if an electron position 7} is very close to the ion, namely that |7;| << 1,

the following electron-ion ”cusp condition” is verified ezactly for @, e.g. for i = 1:
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for || — 0.
Hint: Neglect the angular dependence in the Laplacian , so that:
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2. What happens when the two electrons are very close ?

Hint: change variables ¥ = 7| — 75 and R= 71+7%, and study the case |r| << 1, at
fixed non zero ]é\ Find therefore the analogous electron-electron cusp condition
in this limit:

[PV, R) = &(7, R) (3)
for |r] — 0.

3. Does a Hartee-Fock wavefunction ®(7,7) = ¢(71)¢(7) satisfy the above cusp
conditions (ion-electron and electron-electron) for some orbital ¢(r) 7 (Consider
for instance a simple exponential for ¢(r) = exp(—B|r]), where B is a suitable

constant).



Problem 3. A simple system with three spins

Consider a quantum system made of three spin % particles interacting through the
Hamiltonian:

H = Ksy-sy+ J(s2-83+ s -83).

1. Show that Si5 = s; + s and S = sy + s9 + s3 are constants of motions, whereas

Slg =81 + 83 and 823 = 89 + s3 are not.

2. Find the eigenvalues of the Hamiltonian as functions of J and K and of the

conserved quantum numbers.

3. Discuss the energy and the symmetry of the ground state for K = J > 0 and for
K=J<0.

4. (More difficult, optional) Draw a ‘phase diagram’ for the ground state as a func-
tion of J and K. That is, partition the KJ plane in regions, each characterized

by different symmetries (i.e. quantum numbers) of the ground state.



Problem 4. Eigenstates of one-dimensional potentials

You certainly remember that the gaussian wavefunction ¢g(x) = Ce=*"/(27%) ig the

ground state solution of the harmonic potential.

1. Consider now the wavefunction
bo(z) = Cew(5)" (4)

where o is a quantity with dimension of a length, and n is a positive integer. For
what class of integers n is ¥y an acceptable wavefunction? For each acceptable
n, what is the corresponding potential V,,(x) for which 1, is an eigenstate with

energy eigenvalue Fy = 07 Plot the resulting potential for n = 4.

2. Generalize the previous construction, i.e., find out the general form of the poten-

tial V(x) such that the following wavefunction
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is an eigenfuction with energy eiegenvalue Ey = 0. (Here W (x) is an arbitrary
function, such that the resulting 1y is normalizable, and W is a constant with

dimension of energy.) Can 1 be an excited eigenstate? If not, why?

3. Consider now states of the form:
¥(z) = P(a)e (5)" (6)

where P(z) is a polynomial of degree > 1 in z. Discuss why, on general grounds,
1 cannot be the ground state of a regular potential. By writing the Schrodinger
equation explicitly, prove that v is a candidate excited state of the potential V,,(x)

found in point 1) only for n = 2.



Problem 5. Electrons in a magnetic wire with a domain wall

Let us consider an electron in a wire which is infinite along the z direction and has a
square cross section with edge length L. The wire is composed of a magnetic material
whose magnetization has, in each point, the direction of the unit vector 1\7[(1') The

Hamiltonian of the electron is:

P, A .

where o is the vector of the Pauli matrices, and A is the spin splitting of the electron
due to the coupling with the magnetization, and it is constant. An infinite potential

constrains the electron to remain inside the wire, while motion along z is free.

e Find the energy spectrum of an electron with spin up and of an electron with
spin down inside a wire with uniform magnetization (M = (0,0, 1)) and write the
eigenfunctions of the Hamiltonian. Hint: separate motion transverse and parallel

to the wire.

e For a fixed energy F, count the number of different eigenfunctions of the Hamil-

tonian at that energy.

~

Now consider a wire where the direction of the magnetization is M = (0,0, 1) for
z<0and M = (0,0,—1) for z > 0. The position z = 0 where the magnetization

changes sign is called a domain wall.

e Find the reflection and transmission coefficient of an electron with energy E and
spin up which propagates from the region z < 0 toward the region z > 0 and is
scattered by the domain wall. Study only the energy region £ < %(W JL)? —

2
|A|/2 and assume |A| << %(W/L)Q.



Problem 6. Scattering through a localized spin in 1-D

Consider an electron which moves in one-dimension. In general its wave-function

Yr(z)
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¢y (x) and ¢ (x) are, respectively, the spin up and spin down components of the wave-

can be described by a spinor

function.

At the origin x = 0 the electron scatters through a d-like potential —U §(z), with
U > 0. In addition a spin-1/2 impurity S , sits at the origin and is coupled to the

electron spin through the exchange term
2.J6(z)S - &, (8)

with J > 0 and where ¢ = (0, 0y, 0.), 04, 0, and o, being the Pauli matrices which act
on the spin components of the electron wave-function. The localized-spin wave-function

(fixed at = 0) may also be represented by a two-component spinor
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The total wave-function (electron plus localized spin) has therefore four components

o) xg, with o, 8 =T, |. The Hamiltonian is therefore

so that
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Suppose that the electron arrives from x = —oo in a plane-wave state with momen-

tum £k and spin up, namely with the initial wavefunction



After the electron scatters through the localized potential and spin, it will be partly
reflected and partly transmitted. Moreover the exchange term (??) may also induce
spin-flips of the electron and localized spin. Therefore the scattering process is charac-
terized by two transmission amplitudes ¢; and ¢| as well as by two reflection amplitudes,

ry and r|, where T and | refer to the spin components of the electron wave-function.

e Question: Calculate t, t|, 7y and 7.

Hints: At z = 0, use the continuity of the wave-function and the appropriate jump

of its derivative to reproduce the d-function singularity.



