
Spring 2005 - Entrance Examination: Condensed Matter

Solve al least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Electrons in a wire

Consider an electron quantized inside an infinitely long hard wire of square cross
section:

V (x, y, z) =

{
0, if − a

2
< x < a

2
, −a

2
< y < a

2

+∞ otherwise
(1)

1. Based on the symmetry of the problem, write out the general form for the eigen-
states.

2. Using that form, solve Schrödinger’s equation and show that the motion along z is
free, while discrete eigenvalues are found in the (x, y) plane. Find the six lowest
eigenvalues in the plane, their eigenfunctions and their respective degeneracies.

Consider filling these eigenstates with n non-interacting electrons per unit length.

3. Calculate the increase of the Fermi energy EF and the evolution of the Fermi surface
(more precisely of the Fermi points) as n increases. In particular, identify and
describe the singularities that will occur in dEF

dn
.

4. Concentrate now on the electron density n2 corresponding to the second singularity.
Describe qualitatively the change of the total electron energy obtained by deforming
the square section (a, a) to a rectangle (a− δ, a + δ) with δ << a.

1



Problem 2: Atomic/molecular long-range interaction

with a metallic surface

Consider an atom or a molecule at a distance z, large compared with its linear di-
mensions, from a flat metallic surface that can be considered “ideal” in the sense that it
screens completely and instantaneously any electric field in its interior.

1. Consider an ion of net charge +Q and write the leading term in the force acting on
it. Is the ion attracted or repelled from the surface?

2. Write the corresponding ion-surface interaction energy.

Consider now a neutral bi-atomic molecule with a permanent dipole d that forms an angle
θ with the surface normal.

3. Write the leading term in the molecule-surface interaction energy. Does the molecule
prefer to be oriented parallel or orthogonal to the surface?

Consider then a neutral atom with no permanent dipole and frequency-dependent
atomic polarizability, α(ω).

4. Write the expression for the leading term in the atom-surface interaction energy in
terms of the ground-state expectation value of a suitable operator.

5. Re-express the above result in terms of the frequency-dependent atomic polarizabil-
ity.

6. Give an explicit expression of the interaction energy in the case of a hydrogen atom.

Hints:

1. The frequency-dependent atomic polarizability is given by:

α(ω) = −
∑

i>0

[
〈φ0|d|φi〉〈φi|d|φ0〉
h̄ω − (εi − ε0) + i0+

− 〈φ0|d|φi〉〈φi|d|φ0〉
h̄ω + (εi − ε0) + i0+

]

where φi are the eigenstates of the atom with eigenvalues εi in ascending order.

2. The ground state wavefunction of the hydrogen atom is

φ1s(r) =
1√
πa3

0

exp(−r/a0)

where a0 = h̄2/me2 is the Bohr radius.
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Problem 3: Spin-orbit splitting in a laterally confined

two-dimensional electron gas

Let’s consider a gas of electrons with effective mass m∗ moving in a plane. The
Hamiltonian is:

H =
1

2m∗
(p2
x + p2

y), (2)

where px = −ih̄ ∂
∂x

and py = −ih̄ ∂
∂y

are the Cartesian components of the momentum
operator.

1. Write the energy levels of the electrons confined in this plane assuming that the
plane is finite with dimensions Lx and Ly and that the wave-functions are zero for
|y| > Ly/2, while they obey to periodic boundary conditions along x. Show that
the energy levels can be labeled by a vector (kx, ky) and find the allowed values of
kx and ky. Discuss also the limit Lx →∞ and Ly → 0.

Now consider an electric field perpendicular to the plane. This field can act on the
electron spin through the spin-orbit interaction. Suppose that you can describe this effect
by adding to the free electron Hamiltonian a spin-orbit term:

Hso = α (σypx − σxpy) , (3)

where α is a number, proportional to the intensity of the electric field, and to the magni-
tude of the spin-orbit coupling. σx and σy are the Pauli matrices. Suppose also Lx >> Ly
so that electrons are free to move along x, while they are confined along y where you can
assume that only the lowest energy wave function is occupied.

2. The eigenfunctions of H + Hso are spinors with two components. The electron
energy levels of H are two-fold degenerate due to the spin degrees of freedom.
Using degenerate static perturbation theory show that Hso removes this degeneracy
for each kx 6= 0. Determine the perturbed energy levels and plot them as a function
of kx.

3. Determine the perturbed wave-functions to zeroth order and calculate the expecta-
tion value of the spin angular momentum S = h̄

2
(σx, σy, σz) on these states.

Hint: The Pauli matrices are

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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Problem 4: A particle in a box

A particle of mass m is confined bewteen two infinite plane walls separated by a
distance d. The particle is in its lowest possible energy state.

1. Which is the quantum-mechanical energy of this state?

Let the separation between the walls slowly (adiabatically) increase from d to 2d.

2. How does the expectation value of the energy change?

3. Compare the quantum mechanical energy change with the results obtained classi-
cally from the mean force exerted on the wall by a bouncing ball of velocity v.

Now assume that the separation between the walls is increased from d to 2d at a speed
much larger that the average speed of the particle. Classically there is no change in the
particle energy since the wall is moving faster than the particle.

4. How does the expectation value of the quantum mechanical energy change?

5. Calculate the probability that the particle is in the new ground state.
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Problem 5: Nuclear spin of molecular hydrogen

1. Calculate the probability that the total nuclear spin of a hydrogen molecule, H2, in
the gas phase is equal to 0, in the two distinct low- and high-temperature limits.

Hints: Neglect the magnetic interaction between nuclear spins. Do not be mislead by
the above hint and look for an effect which lifts the degeneracy between states of different
total nuclear spin. The equilibrium internuclear distance of H2 is deq = 1.40 Bohr radii,
the mass of a proton is Mp=1836 me, me being the electron mass, and the Boltzmann’s
constant is KB = 8.62× 10−5 eV/K. Think why the above information is relevant.

2. Can you tell why when hydrogen is cooled from above room temperature the fraction
of molecules which have 0 nuclear spin tends to stay the same as it is at high
temperature, contrary to the results of your calculations (if they are correct)?
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