
Spring 2007 - Entrance Examination: Condensed Matter

Solve at least one of the following problems. Write out solutions clearly and concisely.
State each approximation used. Diagrams welcome. Number page, problem, and question
clearly. Do not write your name on the problem sheet, but use extra envelope.

Problem 1: Electrons in a box

A single free electron is constrained inside a hard-walled box of square parallelepiped
shape, of sides a, b, c.

1. Solve Schrödinger’s equation, find the spectrum of eigenvalues and eigenvectors, and
describe the electron ground state energy E0 and wavefunction Ψ0.

2. Calculate the forces exerted on the three faces of the box in directions a, b, c when
the electron is in the ground state, and from these the corresponding pressures
Pa, Pb, Pc. Comment the result.

3. Keeping a fixed box volume V , determine for what values of a, b, c, E0 is minimum.
Comment the result.

4. Now consider two electrons instead of one, initially with a, b, c determined at point
[3]. Ignoring their Coulomb interaction, determine their ground state energy for
total spins S = 0 and S = 1.

5. Suppose the box sides to be expandable, so that a, b, c can change, while keeping
the volume V fixed. Determine the values of a, b, c which minimize the ground state
energy respectively for total spins S = 0 and S = 1. Comment the result.

6. (Optional) Finally, turn on a weak delta-function repulsion between the two elec-
trons U = vV δ(x1−x2)δ(y1−y2)δ(z1−z2) where v is an energy parameter measuring
the repulsion strength and V is the volume. Use first-order perturbation theory to
estimate the value of v for which the ground state energy is ES=0 = ES=1.
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Problem 2: Simple model for a H2 molecule

Let us consider a very crude approximation for the H2 molecule, in which the electrons
can only occupy the 1s orbital |R〉 of the hydrogen atom and the distance D0 between
the atoms is fixed. The Hamiltonian H is such that if this orbital is empty the energy
is zero, if it is singly occupied (with spin up or down) the energy is ε, and if it is doubly
occupied the energy is 2ε + U . Moreover, there is a finite amplitude 〈R|H|R′〉 = −t for
hopping one electron from one atom to the other. Finally, for simplicity, consider the
case in which the overlap between the two 1s orbitals centered around different hydrogen
atoms is vanishing, namely 〈R′|R〉 = 0.

1. Calculate the energy levels and the eigenfunctions for the case of the H+
2 molecule.

2. Consider now the case of the H2 molecule and enumerate the number of singlets
and triplets.

2a. Calculate the variational energy for the “molecular orbital” state in which both
electrons occupy the lowest energy level found for H+

2 (with opposite spins) and
write down this state as a function of the singlets states. In this state, what is
the probability to find both electrons on the same atom as a function of U?

2b. The opposite “Heitler-London” approximation consists in writing the orbital
part of the ground-state wave function like:

|ΨHL〉 =
1√
2
(|R′〉|R〉 + |R〉|R′〉). (1)

Calculate the variational energy for this state and discuss the differences with
respect to the one of [2a]. What is now the probability to find the electrons on
the same site?

2c. Abandoning now the above approximations, carry out the exact calculation for
the energy spectrum (both for singlets and triplets) and plot schematically the
energy levels as a function of U . Discuss the validity of the approximations
[2a] and [2b] for weak and strong interaction U .

3. Now introduce the possibility that the distance between the two atoms could change,
namely D = D0 + δ. In this case, the hopping amplitude changes into t→ t(1− δ);
an elastic cost is also added, Kδ2/2. Find the equilibrium value for δ in the two
limiting cases U = 0 and U À t.
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Problem 3: Electron transmission through a

spin-dependent potential step

Consider the one dimensional motion of an electron with spin 1/2 in a spin dependent
potential energy: V (z) = 0 for z < 0 and V (z) = V0 + V1σz for z > 0 (σz is the Pauli
matrix, both V0 and V1 are positive and V1 < V0).

1. Find the transmission coefficient for an electron with spin-up (parallel to the z axis)
moving rightward with energy E to be transmitted from the region z < 0 to the
region z > 0.

2. Solve the problem at point [1] for an electron with spin down (parallel to the z axis).

3. Solve the problem at point [1] for an electron with spin along the +x axis. Discuss
the three cases 0 < E < V0 − V1, V0 − V1 < E < V0 + V1, E > V0 + V1.

4. Find the average value of the spin operator S = h̄
2
σ for the electron at point [3]

reflected in the region z < 0 and for the electron transmitted in the region z > 0.
Discuss the results as a function of energy.
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Problem 4: Spin-orbit coupling for one electron in a

box

Consider one electron described by the following Hamiltonian (atomic units are con-
sidered) with a simple spin-orbit interaction:

H = −1

2
∇2 + iγ [σy∂x − σx∂y] (2)

where γ > 0 is a (spin-orbit coupling) parameter, whereas σx and σy are Pauli matrices
acting on the electron spin σ = ±1/2. Periodic boundary conditions for the electronic
wave function are assumed in a finite cube with side L and volume L3.

1. Consider a spin dependent wave function ψ(σ, x, y, z) with given momentum kx, ky, kz,
quantized in unit of 2π/L. Determine the eigenvalue spectrum as a function of γ
and the momentum.

2. For what values of the box side L there exist zero energy eigenstates with non
vanishing momentum?
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Problem 5: Configurations of dimers on a

checkerboard

Consider a 2×L rectangular checkerboard, and L domino pieces, each occupying 2 squares
of the checkerboard.

1a. How many inequivalent configurations of domino pieces, NL, can you form?

(Hint: Try to find out a recursive relation between NL and NL′ for L′ < L.)

1b. Calculate the configuration entropy per site sL = kB(logNL)/L as L→ ∞.

Imagine now that spin-1/2 Pauli matrices are placed at the centers of each square of the
checkerboard. Let nearest-neighbor spins be paired into singlets, for instance, on sites
1-2:

|1 − 2〉 =
1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2)

2. How many configurations can you form where all the spins are paired into nearest-
neighbor singlets?

Let the Hamiltonian governing the system be:

H = J
∑

〈i,j〉

(

Si · Sj −
1

4

)

︸ ︷︷ ︸

Pij

= J
∑

〈i,j〉

Pij

Prove that for any singlet configuration:

3a. P12|1 − 2〉 = −|1 − 2〉.

3b. P23|1 − 2〉|3 − 4〉 = 1

2
|2 − 3〉|1 − 4〉.

Restricting your analysis to a L = 3 checkerboard, show that starting from the nearest-
neighbor singlets configurations the Hamiltonian generates configurations with singlets
between non-nearest neighbors.

4. Indicating by |Ψi〉 the necessary singlet configurations, set-up the Hamiltonian ac-
tion in the form H|Ψi〉 =

∑

j hij|Ψj〉 (the solution is not required).
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